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Abstract

Transformations of real and arbitrary 2 x 2 matrices
are employed in parallel algorithms based on Jacobi-
like procedures for matriz factorizations like the eigen-
value and the singular value decompositions. Cast in
the primitives afforded by the CORDIC algorithms,
significant speedup may be achieved in the performance
of special-purpose processor array architectures. In
this paper, we discuss the use of CORDIC for uni-
tary two-sided 2 x 2 matriz transformations. We em-
phasize integration of evaluation of parameters with
application of transformations, using only the prim-
itives afforded by CORDIC. Implementation alterna-
tives are presented in both non-redundant and the re-
dundant and on-line approaches to CORDIC.

1 Introduction

Several real-time signal processing applications re-
quire fast computation of matrix factorizations like
the eigenvalue and the singular value decomposition.
A variety of paralle] architectures and algorithms pro-
posed for the computation of these factorizations use
Jacobi-like procedures which are amenable to parallel
implementation [1].Central to these Jacobi-like proce-
dures is the transformation of 2 x 2 submatrices of
the input data matrix. COordinate Rotation Digi-
tal Computer (CORDIC) [2] algorithms, intended for
the computation of inverse tangents and vector rota-
tions, afford the required primitives. Cavallaro and
Luk {3], Delosme [4], and Yang and Bohme [5] have
demonstrated the use of CORDIC for real 2 x 2 ma-
trix transformations. Recently, redundant and on-line
CORDIC based approaches have been suggested by
Ercegovac and Lang [6] and Lee and Lang [7].

Arbitrary data matrices occur in time-frequency sig-
nal analysis, adaptive detection and high-resolution
spectral estimation. The use of CORDIC for complex
arithmetic was addressed by Hitotumatu [8]. Earlier
work in applying CORDIC to complex matrix trans-
formations is due to Deprettere and van der Veen [9]
and Cavallaro and Elster [10]. In [11], Delosme sug-
gested the use of implicit CORDIC (rotation angles
are not explicitly computed) for two-sided unitary ma-
trix transformations as required in the computation of
the SVD of arbitrary matrices.

In this paper, we present a two-sided unitary matrix
transformation structured to facilitate integrated eval-
uation and application through the use of CORDIC
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primitives. This two-sided transformation is a gener-
alization of previous approaches and may used as an
atomic step in parallel SVD and eigenvalue decompo-
sition arrays implementing Jacobi-like algorithms. We
discuss implementation alternatives in conventional
(non-redundant) CORDIC and the redundant and on-
line enhancements to CORDIC.

2 Jacobi-like Matrix Algorithms

Jacobi-like algorithms iteratively converge to the de-
sired factorization (SVD, eigenvalue) of a given matrix
A, through the application of suitable two-sided uni-
tary (orthogonal for real matrices) matrix transforma-
tions to 2 x 2 sub-matrices of the input matrix as

AOZA) Ak+1 :UkAka (k:011)27“'))

where the unitary matrices Uy and V; are chosen ap-
propriately [12, 13]. Typically, two-sided transforma-
tions are employed for diagonalization or triangular-
ization of input matrices. A two-sided transformation
yielding a diagonalization may be expressed as
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and VT = f(4,0¢,6,,0¢,0.).

The diagonalizing two-sided transformation (1), is
central to parallel Jacobi-like algorithms for comput-
ing the SVD/eigenvalues of arbitrary/Hermitian ma-
trices. However, for the SVD of arbitrary matrices,
it may not always be possible to satisfy convergence
constraints based on the parameters governing the
transformation matrices while ensuring diagonaliza-
tion [12]. An approach to guaranteed convergence is
the completion of diagonalization in two steps, each of
which requires a two-sided transformation like (2) un-
der the relaxing constraints 6, = 6,05 = 05,0 = 6,
and 6, = 6; [12]. The two-step diagonalization may
be implemented in a pipelined manner by changing the
systolic schedule on the array given in [1] to decrease
the overall computation time [14].

where
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2.1 ©Q Transformations
If0, =0,,0p = 0;,0; = 6, and 6, = 6 in (2), then
U and V may be factorized as

—si 0.
u=[mgamd] 6 )
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Definition 1 A Q transformation is a two-sided uni-
tary 2 x 2 matriz transformation, where U and V, the
left and right matrices, respectively, are given by (3).

We denote the factors as inner and outer matrices
with the obvious connotation, and the resulting trans-
formations as the inner and outer transformations (dif-
ferent from inner rotations i.e outer transformation
matrices with —7/2 < ¢,% < 7/2 and outer rotations
where 7/2 < ¢,9 < 37/2).

The versatility of the Q transformation lies in the
Judicious use of combinations of inner transforma-
tions to affect the arguments of the complex data el-
ements while using the outer rotational transforma-
tion to achieve the desired final effect. Table 1 shows
some choices for parameters of the inner transforma-
tion, 84,83,0¢ and 6,,. The Z inner transformations
cause the interchange of arguments along either diag-
onal while the R,C and D inner transformations, re-
spectively, render the data elements along either row,
column and diagonal, real.

Table 1: Inner Transformations

Type Values

Imain ocl = 0{ = -—0/3 = —0;.; = (0d bt 0.;)/2
Tosy 0o = —0; = —05 =0, = (0. — 05)/2

Rupper au, aﬂ = _(ob + 0¢)/2; 0(, -4, = (05 - 0.,)/2

Rlower oa. 0ﬂ = _‘(ed + 0;)/2, 06, _004 = (od - 0(:)/2
clzft 0ay—oﬁ = (0c-9¢)/2; 95,9.., = —(0c+0¢)/2
Cright | 8a,—0ps = (04— 65)/2;0¢,0, = —(6a + 65)/2
Dmm'n aa, 0p = —(ad + 0.;)/2; og, —OU = (0,1 - 0.,)/2
Doy 0a,0 = —(95-}-05)/2; f¢,—0, = (05—95)/2

Lemma 1 Applying some combination of inner
transformations is equivalent to applying a single in-
ner transformation whose parameters are a sum of the
corresponding parameters of the transformations used,
when the parameters of individual transformations are
determined using the matriz resulling from application
of the previous transformations.

In Table 2 we detail the parameters (of Q trans-
formations) for different input matrices and desired
transformations. The Type I Q transformation (up-
per) triangularizes an arbitrary 2 x 2 matrix using an
Riower inner transformation and a Givens rotation [13]
on the right outer transformation. The Type II trans-
formation diagonalizes upper triangular matrices re-
sulting from the Type I transformation, using a com-
bination of Dymain and Z,;; inner transformations in
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that order, together with an outer two-sided diagonal-
ization of a real 2 x 2 matrix (See Appendix A). The
Type IIl Q transformation, which consists of an in-
ner transformation combining an Rypper and a Crign:
transformation, with an outer two-sided diagonaliza-
tion as in the Type II Q transformation, may be used
to diagonalize any 2 x 2 Hermitian matrix.

Theorem 1 Given an arbitrary 2 x 2 matriz, at most
two Q transformations are needed for diagonalization.
If the 2 x 2 matriz is Hermitian, then only one such
transformation is necessary.

Proof. (cf. [12)) Given an arbitrary 2 x 2 matrix
choose a Type I Q transformation followed by a Type
1T Q transformation for diagonalization. A Type III Q
transformation may be used to diagonalize any 2 x 2
Hermitian matrix. 0O

3 CORDIC for Q Transformations

CORDIC (COordinate Rotation DIgital Computer)
algorithms systematically approximate the value of
certain trigonometric functions or their inverse using
only a fixed sequence of additions or subtractions,
and shifts. The algorithm was later unified for ele-
mentary functions by Walther [2]. CORDIC is based
upon defining a vector (zo,yo0) and applying a rota-
tional transformation. The rotation angles are decom-
posed into a sequence of n known angles, such that
0 =20p --+0,_1 = 77} 0:6;, where §; = tan—12-"
and o; = +1. The CORDIC recurrence relations are

Tig1 = Ti+oiy2™t
Yiv1 = Yi—0iz2” 4)
ziyn = zi+o0ib;.

CORDIC may be used to rotate (zo,yo) through a
given angle zo (o; is chosen to drive z to zero), or
compute the inverse tangent of (y/zo) (0: is chosen
to drive y to zero and z, = tan~!(yo/z0)). Due to
the nature of the recurrence relations (4), for data of
n bit wordlength, no more than n iterations need be
performed. Also, the final values of the variables z
and y need to be corrected for an accumulated scale
factor

n-1 n-1 n-1
1 -
- J— - -2
o= Ik = o = Iviee
3.1 CORDIC and Complex Arithmetic

Walther [2] showed that the domain of convergence
of CORDIC is limited by 84z = 377y 6;. For a non-
repetitive sequence of angles 0,4, sums to x~ 1.73 ra-
dians (99°). Once the angle 9 satisfies [0] > maz, the
CORDIC algorithms no longer converge. It is neces-
sary that the range of input variables be restricted so
that the angles remain within the domain of conver-
gence. Since the argument of a complex number has
a range [—w, 7], it is necessary, either to extend the
range of convergence or use a modified representation
for the complex data element.



Table 2: Parameters for Q transformations

Type Inner Parameters

Outer Parameters

1 0o = 0s = —(0a+6.)/2,0: = —0, = (64 —6.)]2

¢ =0,9 =tan""(R./Ra)

11

Oa = —(0,+6,)/2,05 =0 = —0., = (6, — 6,)/2

tan(¢ + ¢) = R,/(R; F R,)

III 0q =

—0s=—0c =0, = —0,/2

Y =¢=tan"! (2Rs/(Ra — R.))/2

3.1.1 Modified Polar Representation

A complex number, z = z, + iz; may be written as
z = R,e*®s, where

R, =sign(zr)V Z,-2+Z.'2,9, = tan_l(z.'/z,-), (5)

with —7/2 < 8, < x/2. This is a modified polar
coordinate representation of a complex number where
a sign is ascribed to the modulus and the range of
the argument is restricted to the principal values of
arclangent [8]. Note that the sign of the modulus is
positive in the right half-plane and negative in the
left half-plane. This information may be encoded by
an additional bit representing the half-plane of the
argument and the argument may be defined by the
tuple (H,9), where H is 0 (right half-plane) or 1 (left
half-plane) and —7/2 < 6 < 7/2 (See Figure 1 for
angle format).

Modified Polar Representation Angle Format

IEI —90°| 45° 1800
1 P T
MSB LSB

Esxtended Range Angle Format (Daggett’s)

(]

~180°| 90°]| as° 32%
1 7 3 K

MSB LSB

Figure 1: Angle Formats for the Complex Argument

3.1.2 Extended Range CORDIC

In [15], Hu et al., show how the range of convergence
of the CORDIC algorithm may be expanded. Using
an angle format (Figure 1) suggested by Daggett [16]
and an extended angle sequence that requires two ad-
ditional iterations with indices of zero, the range of the
CORDIC algorithms in the circular mode is extended
to Omaz ~ 3.3 radians (189.9°).

Either of the above methods may be employed to
accurately represent the arguments of complex data
elements. The advantage of using the modified po-
lar coordinate representation is that no additional
CORDIC iterations are necessary. However, the ad-
dition of arguments is not straightforward. A set of
pre-processing rules is needed to handle the addition
of complex arguments. The rules are tabulated in Ta-
ble 3, where H is the bit-value representing the half-
plane of the argument, and 8 is the value of the argu-
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ment restricted to the closed right half-plane. To han-
dle subtraction of arguments, a unary negation is also
defined. The sign of the modulus after argument addi-
tion depends on H (if H = 1, then the sign is negative
since the modified polar coordinate representation (5
allows for negative moduli. On the other hand, using
the extended range method simplifies argument addi-
tion, since the Daggett representation makes use of the
wrap-around property of two’s complement arithmetic
and the argument is in the range [—w,n]. However,
additional CORDIC iterations are necessary and the
scale factor is different (K, = 2K,,).

Table 3: Addition of Arguments in Modified Polar
Coordinate Representation

Unary Negation | Addition

(Hi,61)
+
(Hz,62)

—(H, 0) = (H, —9) (Haum, 0num) = {

Osum =61 + 02
if (No overflow in 8,um)
Hyum = H, & H,

else -
Haum = Hl 3] H2

3.2 Implementation of Q transformations

The computational primitives afforded by the
CORDIC algorithms in the circular mode are vector
rotations and rectangular-to-polar-coordinate conver-
sions (inverse tangent computations). The structur-
ing of Q transformations facilitates the use of these
very primitives. We now show how evaluation (of pa-
rameters for the inner and outer transformations) and
application, is integrated through the use of CORDIC.

3.2.1 Implementing Inner Transformations

We assume that the complex data elements of the in-
put matrix are represented in rectangular coordinates.
Since the inner transformation affects only the argu-
ments of the complex data elements, it is convenient to
first compute the polar coordinate representations of
the data elements. The parameters for inner transfor-
mations may then be determined as they depend only
on the arguments of the complex data elements (Ta-
bles 1,2). The inner transformation is accomplished by
modifying the arguments of the data elements using
the appropriate parameters. A transformation back
to rectangular coordinates completes the inner trans-
formation. Two CORDIC operations are required per
data element to evaluate the parameters and apply the
inner transformation.



Given the parameters, inner transformations may
be applied using one CORDIC operation per data ele-
ment by treating each data element as a vector in the
complex plane and rotating it by an angle correspond-
ing to the sum of the appropriate left and right inner
transformation parameters. Figure 2 shows the steps
in the integrated evaluation (of parameters) and appli-
cation of inner transformations and Figure 3 outlines
the application given the parameters.

In the particular cases of the inner transforma-
tions in Types I, II and III Q transformations, inte-
grated evaluation and application may be completed
in fewer steps. Note that the inner transformation in
each case renders the arguments of a pair of complex
data elements zero, and is equivalent to vectoring (y-
reduction) the respective data. Thus, one CORDIC
operation per affected data element is needed to ap-
ply the inner transformations.

by +ibi
dr + 1d;

a, +ia;

i t .
input — e + s

begin
1: par do /* rect. — polar representation */
z, +iz; = Ko Xe'%, Vz € {a,d,¢c,d}
end
2: par do /* compute inner parameters*/
{0a,05,0¢,0.} = f(8a,0s,0.,04)
end
3: par do /* add appropriate left and right inner
parameters to arguments and compute
polar — rect. representation * /
KnXeCs40intol) _ K2(z! 4 iz))
end
par do /* two-sided scale factor correction (K2) */

1 !
i) - 7]

4:

end
end ,
r+iai by +ib;
output — 0(!: 9ﬂ, 95, aw, {Z/ I:zl d' I:d' ] =
ar +ta; by +1b;

[ & IiaF
0 €' 0 el

Figure 2: Inner Transformation - Evaluate & Apply

cr + tcit dp +1d;

Additionally, in the case of the Type I Q transfor-
mation, the arguments of the elements in the corre-
sponding column are reduced by the arguments of the
affected elements. Hence, two pairs of data elements
may be identified, where an element of the pair is ren-
dered real and the other is rotated in the complex
plane by the negative of the argument of the former
element. Vectoring the elements in the lower row of
the columns and using the negative of the resulting
sequence of gs (cf. [7] - rotation angle in decomposed
form) to drive the rotation of the data elements in
the upper row, accomplishes the inner transformation
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br + b
dr + id.

ar + ta;

input — [ e+ ici

. 62, 6s, 06, 6.

begin

1: par do /* rotate data element in the complex plane
by the sum of the appropriate left and

right inner parameters */
!
R(8, + 6, [;f] — Kn [’] :

z!
Vz € {a,b,¢c,d}
end
2: par do /* scale factor correction (Kyn) */

! 1
w[2]- [z
nd

e
end ’ ’ ! ’
- ar + ta; br+ibi] —
output [ ¢ +ic d +id!
[e"’“ 0 ] [ar+ia.‘ br + tb; ] [e'af 0
0 €' cr +ic; dy +id; 0 e

Figure 3: Inner Transformation - Apply

using two pairs of tandem CORDIC operations (See
Figure 4). Also, in all three cases (Types I, II & III),
the inner parameters may be evaluated with an extra
addition/subtraction-shift step following the applica-
tion since they depend only on the arguments of the
affected data elements which should now be available
in the CORDIC z-registers.

a

r = orpic |- corbiC | 3;
rotation scale-factor
[ ge—— COrrection |ap a}
Fo=.
r —1 CORDIC c
C»?;E:Eon scale-factor
Ci _.y . correction |—gm- () * {
, +/-
O corpic |~ corbic |~ br
rotation scale-factor . * * +
b el —p] correction |—pm b; 9
ea ﬂeg ®
bo--o,
d
"1 orpic |~™ CcorDIC {~*™ D
_reduction scale-factor
di —’ —p»} correction |—m- ()

Figure 4: Type I Inner - Evaluate & Apply

3.2.2 Implementing Outer Transformations

The outer transformation is essentially a two-sided ro-
tation. Given the parameters (¢, ¢), there are two ap-
proaches outlined in the literature for application of
two-sided rotations using CORDIC. From the arith-
metic of complex numbers, it is easy to observe that
the outer transformation may be applied indepen-



dently to the real and imaginary parts.

In the sequential approach [3], columns and rows
of the 2 x 2 matrix are treated as vectors for the left
and right rotations, respectively, and a total of eight
CORDIC operations (four each for the real and the
imaginary parts) are required for application. Another
scheme due to Yang and Bohme ([5], cf. Appendix A),
requires only four vector rotations (two each for the
real and the imaginary parts) along with additional
arithmetic and scaling operations. Figure 5 depicts
both approaches.

6 1 G 4
a3, —= cornic #-| CORDIC [—*corpic a
Vector Vector Scale Factor
a E Rotation lr Rotation Comection. [—#a
b, CORDIC CORDIC corDic [ b;
Vector Vector Scale Factor ,
bi—> Rotation e g-| Rotation ommection _’hl
[—— '
t CORDIC | coroic [—*corpc [ St
Vector | Vector Scale Factor )
L Rotation Rowtion  |_o | Comrection | <
” (] (] ,
dl CORDIC CORDIC [~ CorRDIC ™ d,
Vecter Vector Scale Factor )
di Rotation Rotation orrection  fem—tom
1
Cavallaro and Luk Two-sided Rotation
— a’
B coroic [ %r
+1- Scalo

Correction  Jrmi gi

— ,

coroic " br

+/- Scale Factor N

Cormction f—a- b}

HH [ ] » C;

e CORDIC r

+/- Scale l"‘a« >

COrmction  hemgee cx

pr— *

CORDIC 4

+1] Scale Factor ’

= Comrection g d‘

Yang and Bohme Two-sided Rotation
Figure 5: Outer Transformation - Apply

Unlike the inner transformation, we cannot gener-
alize the evaluation of parameters for the outer trans-
formations. However, since diagonalization or trian-
gularization is usually the aim of two-sided unitary
transformations, and the particular Q transformations
listed in this paper typify both kinds, we restrict our
discussion to the integrated evaluation and application
of the respective outer transformations. Diagonaliza-
tion is required in Types II and III Q transformations
and the Type I Q transformation triangularizes the
2 x 2 matrix. Also, it may be seen from Table 2 that
the Q transformations of Types II and III result in a
real 2 x 2 matrix after the respective inner transfor-
mations are completed (the lower row is made real in
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the case of the Type I Q transformation).

In the literature, there are two methods available to
compute the parameters required for the diagonaliza-
tion of a real 2 x 2 matrix. Appendix A details the
direct two-angle method for the diagonalization of real
2 x 2 matrices and the scheme due to Yang and Bohme
[5]. A disadvantage of the direct two-angle method
for diagonalization is that evaluation of the parame-
ters, which requires two additional CORDIC opera-
tions, necessarily precedes application. The scheme
due to Yang and Bohme allows simultaneous evalua-
tion and application, using two vector rotations, along
with additional arithmetic and scaling operations and
we adopt this scheme for the integrated evaluation of
parameters and application of the outer transforma-
tions in the Types II and III Q transformations.

The outer transformation in a Type I Q transfor-
mation is a triangularization which requires a Givens
rotation [13]. It may be treated as a one-sided right
rotation with the angle parameter (¢ for Type I @
transformation, see Table 2) determined by the lower
row of the data matrix. Vectoring the lower row of
the data matrix yields the parameter and achieves the
desired result. However, the upper row (real and imag-
inary parts) also needs to be rotated by the angle pa-
rameter resulting from the vectoring operation. These
operations may be done in parallel in a manner simi-
lar to the integrated evaluation and application of the
inner transformation in the Type I Q transformation.
Thus, the outer transformations may be applied and
the parameters required for the Types I, II and III
Q transformations may be evaluated in at most four
CORDIC operations (two for the real and two for the
imaginary 2 x 2 component matrices).

3.3 Area and Time Complexity

To achieve maximum parallelism in the implementa-
tion of the Q transformations, four CORDIC modules
are needed. Also, no more than four CORDIC mod-
ules are necessary to achieve maximum concurrency.
However, a mechanism for distribution of the neces-
sary parameters among the modules is necessary as ad-
Jacent modules may need to share parameters and ex-
change data. The proposed arrangement of CORDIC
modules to implement a Q transformation is shown in
Figure 6.

Let T be the time required to compute a Q trans-
formation. The time complexity analysis presented
below is indicative of the maximum parallelism that
can be achieved on the architecture of Figure 6. Let
Tc be the time to compute a basic CORDIC oper-
ation. We know that eight CORDIC operations are
necessary for the evaluation and application of the in-
ner transformation i.e. two CORDIC operations per
data element in general. If only application of the in-
ner transformation is desired the number of CORDIC
operations reduces to four in all, i.e. one CORDIC
operation per data element. The same is true for the
evaluation and application of inner transformations in
Types I-III Q transformations. Also, four CORDIC
operations are necessary for both application (Types
I, IT & III) and the integrated evaluation and applica-



Table 4: Area and Time Complexity of Q Transformations

Implementation Methods Apply Evaluate & Apply
Inner Outer S-F. Corr. | Area Time Time
Rect. — Polar — Rect. | Cavallaro-Luk | K, K: | 44c | (2.25+2.25)T¢ (2.25 + 3.25)Tc
Rect. — Polar — Rect. | Yang-Bohme Ki: K. 14Ac | (2.25+ 1.25)T¢ (2.25 +1.25)T¢
Complex Plane Rotation | Cavallaro-Luk | K, Kf 4Ac | (1.25+ 2.25)T¢ (1.25% + 3.25)T¢
Complex Plane Rotation | Yang-Bohme Kn, Kn 4Ac | (1.25+1.25)T¢ (1.25°% +1.25)T¢

%May not apply to others than Types I, II & III

tion of outer transformations (Types II & III), if the
schemes due to Yang and Bohme are used. As men-
tioned in the previous section, three CORDIC opera-
tions are needed for the integrated evaluation and ap-
plication of the Type I outer transformation. Table 4
summarizes the area and time requirements (expressed
as a sum of the times for inner and outer transfor-
mations, respectively) for applying and/or evaluating
parameters for Q transformations with conventional
{non-redundant) CORDIC.

3.3.1 Scale Factor Correction

The scale factors, as accumulated at the end of the
inner and outer transformations, respectively, for the
various methods chosen for implementation, are shown
in Table 4. It is assumed that a modified polar coor-
dinate representation of the complex argument is be-
ing used. If the extended range CORDIC algorithm
is employed, K, should be replaced by K. = 2K,.
Scale-factor correction schemes, based on additional
CORDIC-like iterations, are available to correct for
K, and K2 in 0.25T¢ [3, 4]. In the case of the ex-
tended range CORDIC algorithm an additional shift

i8 necessary.

Complex Complex
CORDIC Reg #0 CORDIC
Module #0 Reg #1 Module #1
Reg #n-1
Reg #0 Reg #n Reg #0
Reg #1 Reg #1
rleg #n-1 eg #n-1
Reg #n Reg #0 Reg #n
Reg #1
Complex Reg #n-1 Complex
CORDIC Reg #n CORDIC
Module #2{ Module #3

<@g Intermodular Data Bus
Figure 6: CORDIC Processor for Q Transformations

4 Redundant and On-Line CORDIC

In [6), Ercegovac and Lang present efficient im-
plementations of CORDIC using redundant and on-
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line schemes which demonstrate considerable speed-
up over conventional (non-redundant) CORDIC hard-
ware. The CORDIC recurrence relations are modi-
fied to eliminate the need for two shifters, and carry-
propagate adders are replaced by redundant adders
(carry-save or signed digit). This implies that the
modified y-recurrence may only be estimated, neces-
sitating the use of a selection function, depending on
the redundant representation used, to ascertain the
choice of os from the set {—1,0,1}. Also, the scale
factor is now variable and dependent on the sequence
of s chosen.

To overcome the variable scale factor problem, Tak-
agi et. al. [17], suggested a modification of the redun-
dant CORDIC scheme to ensure a constant scale fac-
tor for sine and cosine computation. Lee and Lang (7],
extended the constant scale factor redundant scheme
(CFR-CORDIC) due to Takagi et. al. for angle cal-
culation and rotation. Both redundant and CFR-
CORDIC have been applied to matrix triangulariza-
tion and SVD [6]. We now describe the use of the
methodology presented in [6] for computing the SVD
of real 2x 2 matrices as extended to the evaluation and
application of the inner and outer transformations of
a Q transformation. With CFR-CORDIC, the hard-
ware to compute scale factors is obviated.

4.1 Implementing Outer Transformations

Figure 7 shows an organization of redundant and
on-line computation modules for the evaluation and
application of Q transformations using redundant
CORDIC. This is an extension of the diagonal and off-
diagonal processor organization for the computation of
the SVD described in [6], since the evaluation of the
outer transformation and its application is essentially
equivalent to the diagonalization of a real 2 x 2 matrix
in the case of Types II and III Q@ transformations and
a triangularization for Type I Q transformations. The
hardware module for the evaluation of 8; and 8, con-
sists of a partial redundant CORDIC module pipelined
with two stages and an on-line module to compute
the decomposition digits 4' and 9". In addition, there
are on-line modules to compute K;, K, and K, four
partial on-line CORDIC rotation modules, an on-line
multiplication module and eight (one for each of the
two outputs of the four CORDIC rotation modules)
on-line division and conversion to conventional repre-
sentation modules. When compared to the hardware
for the two-sided real 2 x 2 matrix transformation in
(6], all modules except for the angle and scale factor
evaluation modules, are duplicated. The time to eval-
uate and/or apply the outer transformation is 5n+ 10,



where n is the data word-length, and is the same as
the estimate in [6]. For further details about the com-
position of the individual modules shown in Figure 7
and the area and time complexity analyses, the reader
is referred to [6].

nit,

Evaluate l Evaluate I d E
yr Scaling —l
Factors — [
K
‘Yl yr ' { g
a —= Ouline | p—={Online | ¢ —=|Ontne | d, (minelc
3| Roation | Pi{Roaton | Ci—={Ranton | di—{Routon
1 || 1
W 7! H
v/Cony. iv./Con v/Con: v./Con
Evaluation and Application K,
column Kl On-line
| ‘Yf  Multiplier
Y, K
S 1 ] 11
a —=|Online | b —={On-tine | c —= Online | d —= %lc
3~ foion | Di{onion | i~ Romn | di—{Roaion
l 1 H e [N
i ] ti} 14]
TN T T
Application
Figure 7: Redundant and On-Line CORDIC for Q
Transformations

4.2 Implementing Inner Transformations

The inner transformations of Types I-III Q trans-
formations depend on the arguments of two data ele-
ments. The hardware module for the evaluation of 6;
and 0, in Figure 7 may be utilized to evaluate these
arguments. However, instead of the two angle param-
eters generated in the outer transformation, decom-
position digits corresponding to the four inner trans-
formation parameters need be computed. Therefore,
internal to the angle evaluation module, an additional
module for computing decomposition digits is neces-
sary. Note that the computation of the inner parame-
ters is similar to the evaluation of #; and 4, from #,um
and fgigy [6]. The application of the inner transfor-
mation may be treated as two consecutive rotations,
corresponding to the left and right inner transforma-
tions, of each data element in the complex plane, and
an organization similar to Figure 7 may be employed.
However, the scale factor must be independently de-
termined for each data element and the scaling factors
corresponding to each of the four inner transforma-
tion parameters must be passed along the rows and
columns. The time complexity is 5n + 10, since it is
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similar to the implementation of the outer transfor-
mation.

5 Current Work

In the proposed redundant and on-line CORDIC im-
plementations, both inner and outer transformations
were applied sequentially as two consecutive rotations
and the overhead due to evaluation was masked by
the on-line nature of computations. However, the ap-
proaches were based on direct methods. It is possi-
ble to reduce the time required to compute inner and
outer transformations, from 5n+6 to 3n+ 6 , by using
the schemes due to Yang and Bohme and improving
the concurrency of computations. This necessitates a
scheme for the on-line summation of angles [18]. Also,
newer redundant and on-line CORDICschemes (19, 20]
may be employed to improve implementations.

6 Conclusions

In this paper we introduced a two-sided uni-
tary transformation (Q transformation) structured
to permit integrated evaluation and application us-
ing CORDIC primitives. The Q transformation was
shown to be useful as an atomic operation in paral-
lel arrays for computing the eigenvalue/singular value
decomposition of Hermitian/arbitrary matrices and
three specific @ transformations which are needed
in such arrays were identified. Issues relating to
the use of CORDIC for complex arithmetic were ad-
dressed and implementations in both conventional
(non-redundant) CORDIC and redundant and on-line
modifications to CORDIC were described.

If the time to compute a CORDIC operation in non-
redundant CORDIC be T¢, the Q transformations
identified in this paper may be evaluated and/or ap-
plied in 2T using 4 CORDIC modules for maximum
concurrency. In either case, 0.57¢ is required to ac-
count for scale factor correction. Using an extension
of the redundant and on-line CORDIC proposed by
Ercegovac and Lang for computing the SVD of real
2 x 2 matrices, it was shown that a Q transformation
may be evaluated and/or applied in &~ 10n i.e twice
the time for a real 2 x 2 matrix diagonalization, where
n is the desired bit-precision.
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Appendix A Diagonalization Methods

This appendix details the methods reported in the lit-
erature for the diagonalization of a real 2 x 2 matrix using
a two-sided rotational transformation

] [a b
cd
A.1 Direct Two-Angle Method

The angles, 8, and 6;, are computed from 8,um
. + 6 and Oa4iyy = 6, — 60, where 6, ‘A
arctan ((cx b)/(d F a)).

cosd, sind,
—sinf, cosb,

cos#; —sinf;

81 0 ]
sinf; cosb; :
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A.2 Yang and Béhme Diagonalization

This scheme reduces the computation required in the
diagonalization. The principal advantage is that the eval-
uation of parameters for the rotational transformation is
integrated with the application. However, a few additional
arithmetic and scaling steps are necessary [5].

A.2.1 Evaluation and Application

The following are first computed from the input :

(d+ a) _(d—=a) _(c—=b) _{c+b
2 :m—% yqh = 2 y 2 = 2)

n=

Then, two vectoring (CORDIC y-reduction) operations are
performed

1 = sign(;m)/p? + ¢, r2 = sign(p2)\/p2 + ¢2,

6- = arctan(q:1/p1), 84 = arctan(gz/ps)-

The required angles 8; and 6,, and the results of the diag-
onalization, s; and sz, are then computed from

o= =) 5 _ Gte)

1 =T1—72, 82 = r1+7r2.

A.2.2 Application

As above, the following are first computed :

P = (d-;a)) P2 = (d;a)vQI = (C-z‘b)’ q2 = (C;—b)

Then, the angles 64 and 6_ are realized as 6_ = (4, —
61), 8+ = (6 + 81), and two vector rotations (CORDIC
z-reductions)

Py _,(n P2y _, (12
R(g_)(qx) (il)’ R(0+)(92) (12)
are performed. The transformed elements, a’, ¥, ¢’ and d’
are computed from the results of the vector rotations as

a'=r1 -r2, b'=t3—t1,c'=t1 + t2, d'=r1 + r2.
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