Combined System-Level Redundancy and Modular Arithmetic
for Fault Tolerant Digital Signal Processing

W. K. Jenkins, B. A. Schnaufer, and A. J. Mansen
Department of Electrical and Computer Engineering and
The Coordinated Science Laboratory
1308 West Main St.

Urbana, Illinois 61801
U.S.A.

ABSTRACT

This paper proposes combining system-level modular
redundancy with the arithmetic modularity of residue
number system (RNS) arithmetic to achieve fault tolerance
in high speed digital signal processing (DSP) systems.
Double, triple, and quadruple modular redundancy, system-
level concepts which are frequently used in commercial
fault tolerant computers, are combined with RNS
modularity for realizing important DSP computational
kernels. The discussion includes the development of the
serial-by-modulus (SBM) RNS architecture in which
residue digits are processed sequentially in circuits that
handle only one modular operation at a given time, thereby
sacrificing speed for circuit simplicity. As a potential
application of the SBM concept, a variable word length
sum-of-products signal processing kernel is developed
based on a serial-by-modulus RNS architecture. Due to the
fact that the RNS is not a weighted number representation,
if the instantaneous dynamic range requirement can be
estimated it may be possible to perform the computation
with only enough residue digits to provide the necessary
dynamic range. The variable word length concept is
demonstrated through computer simulation.

1. INTRODUCTION

It has been shown in earlier work that RNS designs
can be effective for realizing high speed sum-of-products
DSP kemels, such as finite convolution/correlation that is
characteristic of FIR digital filters [1]. The modular
structure of RNS arithmetic induces a natural modularity in
the hardware, resulting in a system architecture that can be
partitioned conveniently to achieve good parallelism and
testability in VLSI integrated circuits. To achieve fault
tolerance, redundancy can be incorporated into the RNS
arithmetic to facilitate error detection, location, and
correction [2, 3]. In recent years RNS arithmetic has been
used more for DSP applications that are dominated by
repetitive multiply-accumulate cycles than for general-
purpose computing where many types of diverse operations
tend to be equally important.

2. ERROR CONTROL RNS CODING
Redundant RNS coding achieves error control by providing
redundant RNS modules and a general RNS error checker.
With this approach the complete power of RNS error
detection/correction theory is brought to bear on the
problem of detecting erroneous residue digits, locating

1063-6889/93 $03.00 © 1993 IEEE

28

faulty modules through subspace projection, and correcting
errors through base extension. This approach is very
general in that the mathematics provides powerful error
control capabilities, including error detection, error location,
error correction and softly degraded performance in the
presence of repeated hardware failures. It may also result in
the minimal hardware redundancy within the VLSI modules
themselves. The disadvantage of this approach is that a
rather complex error checker is required to fully utilize the
benefits of the powerful algebraic properties provided by
redundant RNS coding.

A RNS code is constructed as a direct sum of many
simple modular structures (either fields or rings) which have
moduli that are pairwise relatively prime integers. If {mq,
my,...,mp} is the set of moduli and M = my'my - -
m[_, then the interval [0, M-1] is called the legitimate range
of the RNS because it represents the useful computational
range of the number system. RNS arithmetic is performed
as

(X1, s X)) * (Y15 o YL) = (215 -0 Z1),

where zj = (x; * y;) mod mj and * denotes addition,
subtraction, or multiplication. Since z; is determined
entirely from x; and y;, RNS arithmetic is carry-free in the
sense that there is no propagation of information from the
i-th channel to the j-th channel, i # j. The lack of carry
propagation means that errors in one digit cannot be
propagated into other digits during operations involving
addition, subtraction, or multiplication. The non-weighted
structure of the RNS code is another property that makes
RNS arithmetic useful in the design of fault tolerant
processor structures. A faulty module can be identified by
RNS error checking techniques and disconnected without
affecting other modules. If the original RNS contains
enough dynamic range, the reduced processor can continue
to function with a reduced dynamic range (word length).

A redundant RNS is formed by adding extra moduli
that are not used to increase the computational range, but
rather provide additional degrees of freedom needed for error
detection and correction. If r redundant moduli are added to
create L+r total moduli, all L+r moduli must be pairwise
relatively prime to ensure a unique representation for each
state in the system.

A simple example illustrates the principles of RNS
error detection and correction. Consider a redundant RNS
defined by m| = 3, my = 4, m3 = 5, and my = 7, where the
legitimate (computational) range is provided by m; and my,
and where m3 and m4 provide the redundancy necessary for
error checking. All numerical quantities must be scaled so
that the results of all calculations always remain within the
legitimate range [0, 11]. The illegitimate range [12, 419]
is used only when a single digit error occurs. Note that a
legitimate state can be correctly represented by any three of
the four residues (as well as by any two of the residues).
For example, x = § = (2, 1, 0, 5) is correctly represented by
(2, 1, 0) in the reduced RNS defined by {mj, my, m3}, by
2, 1,5) in {my, mp, my}, by (2,0, 5) in {my, m3, my4},
or by (1, 0, 5) in {mgp, m3, my}. Therefore if one of the
original residue digits is erroneous, and if one digit is
discarded from the original set of four residues, a correct
representation results if and only if the erroneous digit is
discarded. Once an erroneous digit is located, the correct
value can be found by base extension using the subset of
correct digits.

The mechanism by which a single digit error
transforms a legitimate number into an illegitimate one is
easily explained using the Chinese Remainder Theorem.
Whenever an error occurs in the i-th digit, the resulting
illegitimate number x' can be expressed as the correct
number plus an error, X' = (x + ¢;) mod Mt. The
minimum e; always causes x' to fall outside the legitimate
range, whereas the maximum ¢; is small enough so that
large errors cannot wrap-around into the legitimate range.
For the example above, the Chinese Remainder Theorem
takes the form

(x) mod 420 = (140(2x))mod 3 + 105(1- x)mod 4
+ 84(4x3)mod 5 + 60(2x4)mod 7)mod 420

from which it is seen that the minimum possible error is
60, while the maximum is 360. Therefore, a single error
always transforms x into an x' that falls into the
illegitimate range [12, 419].

The error detection/correction procedure requires three
basic steps: 1) It is first determined if an error has occurred
by checking if the number is legitimate or illegitimate, 2)
the erroneous digit is found by discarding the digits one at a
time until a legitimate reduced representation is found, and
3) the correct digit is produced by a base extension using
the reduced set of digits found to be legitimate in step 2.
There are many variations on this procedure, and many
different approaches to carrying out the details of each step
which are described in the literature. In general, the error
control approach described in this section has not received
any widespread application in practice, largely because the
error checker itself is relatively complicated and is not well
suited for real time operation.

Much of the effort in designing for RNS fault
tolerance involves determining that an error has occurred,

29

and locating the module responsible for the incorrect result.
The approach described above might be called an external
error checking scheme, since the entire collection of residue
digitals is taken into a global error checker which then
determines if an error occurred and where it originated.
Another approach, which is simply mentioned here for the
sake of completeness, carries the local error checking
philosophy to a greater degree. In this approach some
simple local error checking techniques are applied within
each RNS module to internally check for RNS digit errors.
Recently Beckman et. al. [4] published work on a group-
theoretic framework for fault-tolerant computation that
provides a rather compete theory of analysis and design for
error correcting codes that can operate within a specific
RNS module. Although a complete discussion of this
promising approach is beyond the scope of this paper, such
techniques may eventually lead to fault tolerant designs
with less redundancy and less overhead power consumption
by eliminating the need for complicated error checkers and
the extensive replication of hardware.

3. RNS MODULAR REPLICATION

The questions of complexity and reliability of a
complicated error checker motivate the search for alternative
error checking mechanisms that avoid complicated error
checking procedures. One of the best known schemes to
achieve fault tolerance in general computer systems is to
simply provide three completely independent computer
systems and to compare their results at various stages of a
computational task. As long as two of the computers
agree, the result is declared to be correct. If two out of three
systems consistently agree, but the third consistently
disagrees, the latter is declared "faulty” and is removed from
further consideration. Reliability is maintained by
continuing to compare the results of the remaining two
properly functioning systems. If the two functioning
systems eventually cease to agree, then a second failure has
occurred, and some type of off-line diagnostics can be
invoked to determine which of the two has failed. Once the
faulty system is identified and removed from further voting,
the computational process can continue on the remaining
functioning computer. This fault tolerant scheme,
illustrated in Fig. 1, is well known as triple modular
redundancy (TMR).

Quadruple modular redundancy (QMR) is a related
concept in which every important component is replicated
four times. In one popular implementation of QMR, each
circuit board that contains a critical subsystem is provided
with two copies on the same board. In addition, every
circuit board is duplicated, so that the bus interfaces with
four identical copies of each subsystem. The outputs of
subsystem pairs are compared locally on each board before
the results are placed on the bus. As long as there is
agreement at the board level a correct signal is passed to the
system controller. However, when the local board level
comparison fails to obtain an agreement between the
subsystems on that board, a signal is sent to the system
controller indicating that an error has occurred on the

corresponding board. This result is not used, but the correct
result is produced by the duplicate board-pair, which
presumably achieves agreement between its subsystems
during this time. This concept is called quadruple modular
redundancy (QMR), which is illustrated in Fig. 2.

With QMR, there is generally no need to perform
error correction on-line, but rather enough redundancy is
built into the design so that error-free results continue to be
produced in redundant modules even while the system is
undergoing physical board replacement. However, this type
of fault tolerant system is inefficient with respect to
hardware redundancy and power consumption. It is not very
attractive in situations where the computer system is
inaccessible to a technician, such as in computers carried on
unmanned spacecraft.

A similar type of fault tolerance, illustrated in Fig. 3,
can be achieved with an RNS design that does not require an
elaborate error checker, but relies on double modular
redundancy (RNS-DMR) and simple comparator circuits.
For example, suppose an RNS architecture is chosen that
has five information digits and one redundant digit, i.e., the
system has approximately 17% redundancy in terms of
excess word length. Suppose also that two copies each
RNS module are built into the hardware and corresponding
RNS digits are compared at various check points during the
computation. If a particular RNS digit pair does not agree,
that digit is declared erroneous. An erroneous RNS digit
can either be discarded, or it can be reconstructed using the
RNS correction mechanism discussed previously in Section
2. If the corresponding RNS module pair consistently fails
to agree, then the module is declared faulty and permanently
removed from the system, or simply removed until a
technician can perform a module swap. In an environment
where technician servicing is impractical or impossible, it
may be possible to provide spare modules within the
hardware so that numerous failures can be discarded before
the system catastrophically fails. This concept is a form of
soft system degradation in which the effective word length
(dynamic range) becomes incrementally shorter as failures
occur, until eventually the word length is too short for
effective computation. The fault tolerant architecture
described above can handle both hard (permanent) and soft
(transient) errors. The only difference between the two
cases is that a faulty module will typically be put back into
operation on the next cycle if soft errors are suspected,
whereas it will be permanently removed from operation if it
develops a history of faulty performance that is indicative of
hard failure.

In the above design the modular redundancy and
pairwise voting (comparing) is similar to QMR, although
the inherent modularity of the RNS architecture allows
more flexibility and increased efficiency. While the QMR
requires a factor of 4.0 in hardware redundancy, the RNS
design described above requires a hardware redundancy factor
of 2.34 (a factor of 2.0 comes from the DMR and the 0.34
comes from the 17% excess word length in each module) to
achieve a similar degree of fault tolerance. This approach
attempts to creatively use RNS redundancy with a simple

30

distributed error checking scheme to avoid the difficulties of
a complicated error checker that cannot be distributed
effectively among the individual VLSI modules [5].

4. SERIAL-BY-MODULUS ARCHITECTURES

In many DSP applications the high speed of a fully
parallel implementation may not be essential, in which
case an interesting alternative is a serial-by-modulus
(SBM) RNS structure. In a SBM-RNS architecture the
residue digits x1q, . .., x|, are transmitted through the

processor serially, i.e., xq arrives first, then x5, etc.

Assume that the moduli are b-bit integers, so that there are
"b" parallel bits throughout the entire processor. In rough
terms, the SBM RNS architecture operates L times slower
than a fully parallel design, although the hardware
complexity is somewhat reduced. This reduction in
hardware complexity is not proportional to the speed
reduction, because RNS arithmetic is ultimately
implemented by some form of table look-up, and it
remains necessary to have appropriate ROM-based tables
for every modulus in the RNS. However, there will be
some reduction in complexity due to common adders and
busses for all moduli. Another attractive feature is that the
shorter word length of the signal path facilitates more
effective testing of circuits during manufacture. Serial-by-
modulus arithmetic, similar in principle to bit-serial binary
arithmetic that was popular in the early days of digital
filters, represents a compromise between the slower speed
of bit-serial binary arithmetic and the high cost of bit
parallel binary arithmetic [6]. The motivation is to reduce
the hardware complexity of the implementation by going
to a SBM-RNS design, and then to provide fault tolerant
DMR by duplicating each SBM module in the hardware.
Obviously a SBM-RNS-DMR design does not provide
much protection against hard errors because a failure in one
module is likely to be catastrophic with respect to all the
RNS digits it must produce. However, the scheme appears
to be effective for soft errors, as well as for certain types of
memory errors in the RNS arithmetic look-up tables.

An SBM-RNS architecture using prime moduli
requires an efficient realization for both mod (p;-1)
logarithmic addition (multiplication) and mod p; addition
(accumulation). A typical design uses a standard 2's-
complement adder whose output addresses a ROM
correction table, which produces the correct modular sum
from the binary sum. When the adder implements an index
addition the inverse logarithmic mapping is encoded into
the same correction table so translation from index form to
residue form does not require any additional hardware.
Consider an RNS defined by the four 5-bit moduli 31, 29,
23, and 19. When two residues are added in a 2's-
complement adder, the result may require as many as six
bits, including the high order carry-out bit. Furthermore,
since there are four moduli, it will take two "label" bits to
uniquely identify each residue so that it can be
unambiguously identified with the correct timing interval.
In total each residue, together with its timing label and
carry-out buffer, can be encoded with 8-bits, as illustrated

in the block diagram of Fig. 4. The ROM in Fig. 4
consists of four independent correction tables corresponding
to the four different m;, i = 1, 2, 3, and 4. The 2-bit
timing label, appended to the corresponding residue by two
extra bits, serves as the two highest order bits of the
address, so the correct look-up table is automatically
addressed. The circuit of Fig. 4 contains zero detect and
force zero circuits, which are necessary to handle the case
of a zero operand when the module is used as a multiplier
that requires mod(p;-1) addition. When the module is used
for simple mod p; addition the special zero handling
capability is turned off.

Since the label bits are attached to each residue digit (as
opposed to being generated locally by a synchronized
clock), simple comparators can be used at strategic
locations to check that no timing skew has occurred and to
guarantee that digit synchronization is properly maintained
throughout the processor. A design based on the four
moduli listed above realizes more than 18 bits of effective
word length in a module that has only an 8-bit word
length. Not only has the total hardware requirement of the
SBM-RNS structure been reduced as compared to the
completely digit-parallel form, but the module can be more
easily tested due to its short word length. Of course, the
effective speed of the processor is reduced by an
approximate factor of four. Note that two modules similar
to the one shown in Fig. 4 (one for multiplication and one
for addition) form the basis of a sum-of-products DSP
kemel. The sum-of-products concept is illustrated in Fig.
5 where the ROM in the standard IA (index-add) cell is
programmed to correct for both mod(p;-1) addition and to
implement the inverse index mapping. The standard A
(add) cell is programmed for simple mod p; addition.

In one particularly interesting configuration the SBM-
RNS architecture could be used for the design of an
elemental component in a sum-of-products processor that is
required to operate in a noisy environment where the
probability of soft errors is high. In such an environment
the processor would continue to compute additional residues
until it has processed enough error free digits to provide the
dynamic range needed for the final output. Such a compute-
until-correct fault tolerant concept is feasible because the
digits in the RNS code are not weighted and have no
relative significance. As long as a final number of error-
free digits can cover the dynamic range of the output, and as
long as the output translation device is given the proper
information as to which digits are correct, the Chinese
Remainder Theorem translation algorithm can be modified
under program control to produce a valid output. The
compute-until-correct fault tolerance concept could be used
in noisy environments for systems that must keep
functioning as long as possible without the benefit of
technician servicing. An example of such a computing
environments are those encountered by computing systems
that operate in deep space probes. Although compute-until-
correct fault tolerance is an interesting concept, it will not
be further addressed in this paper.

31

In a second configuration the SBM-RNS architecture
could be used as the basis of a variable word length
processor. This concept is developed more fully in the
next section, where a computer simulation is presented to
illustrate the principles of operation.

5. VARIABLE WORD LENGTH FILTERS

The SBM-RNS architecture can be used as the basis
for the design of a variable word length (VWL) processor
[6,7]. In the following discussion it will be assumed that
the overall processor has DMR to protect primarily against
soft errors. Consider the situation in which a large amount
of stored data must be processed at high speed by a sum-of-
products operator, such as a digital correlator or an FIR
digital filter. This scenario may occur in video processing,
where frames are buffered and stored to give the processor
working time to complete essential processing on each
frame. Assume that the processor is designed to have a
total of L moduli. When the output of the sum-of-
products processor is small, some of the residue digits are
redundant and, therefore, do not have to be computed. For
simple RNS operations such as addition, subtraction, and
multiplication, the residue digits corresponding to different
moduli do not interact with each other. Therefore,
redundant digits do not need to be computed since their
results are not required. Which terms are in excess depend
solely on the final output of the computation and not on
intermediate results. Since the algebraic structure
implemented by the RNS is an integer ring, for
computations involving addition and multiplication, the
size of intermediate results is not important in determining
the output dynamic range. So, for a sum-of-products
computation, only the size of the final result determines
how many residues are necessary for that computation.

To implement a VWL filter, certain assumptions must
be made in order to adaptively change the number of
residue terms. Since the output of the current calculation
is unknown, it is not certain how many digits are
necessary; thus, the previous output(s) must be used. It is
assumed that the output signal is slowly changing such
that the current computation would use approximately the
same number of terms that were needed in the previous
calculation. A set of buffer residues must be added at times
to make sure the output always remains valid. Since this
can take away some of the efficiency of the algorithm, as
small a buffer as possible should be used. Several different
methods of determining the buffer are discussed in the
following section.

5.1 Buffering Methods

In case the current output exceeds the range of the
minimum set of moduli needed for the previous
computation, one or more extra terms may be added to
prevent overflow. The added buffer reduces efficiency but
is necessary in some situations. This section outlines
several buffering methods.

5.1.1. Constant Buffer

With a constant buffer, once the minimum number of
terms is determined by the result of the previous
calculation, one more residue term is added to prevent
overflow in the next calculation. This creates a buffer
range that is added to the current range so that the new
result can exceed the current range and still remain valid.
Even with a buffer, overflow can occur if the output
increases too abruptly. If the signal is not changing
slowly enough, then the current output could possibly
jump over the buffer range and create an overflow
condition. If two redundant terms are added, instead of only
one, the probability of overflow is further reduced.

5.1.2. Adaptive Buffer

One drawback to the constant buffer method is that
extra terms may not always be necessary and will only
slow down the system. For instance, the output could be
far from the end of a range and not changing fast enough to
go into the buffer range. This means that no buffer term
would be necessary until the output gets closer to the
upper edge of the current range. If the constant buffer
method were used, the extra term(s) would unnecessarily be
computed. However, there are instances with any signal
when a buffer is needed because the previous output is near
the edge of the current range and, no matter how slowly the
signal is fluctuating, the next may spill into a larger range.
A method that could adapt to these situations should
improve the efficiency of the filter by eliminating
unwanted calculations.

An adaptive algorithm proposed in this work
determines when to use a buffer by calculating how close
the previous output is to the edge of the next larger range.
If it far from the boundary then no buffer is added. If it is
close, then two buffer terms are added. If it is between
these extremes then only one buffer term is added. The
current range is taken to be the minimum range necessary
to represent the previous output. The closeness ranges are
fixed in size and do not fluctuate when the current range
changes.

5.1.3. Linear Prediction

The buffering methods described above depend on the
assumption that the output is slowly changing so that the
current output will not be far from the previous one. This
is not necessarily a good assumption and may cause the
output to jump over the buffer. Also, they do not take
into account if the output is decreasing towards a smaller
range. They only assume that the output will be larger
than the previous and, therefore, will need a larger range.
If a prediction algorithm is added to the above methods,
then better tracking should occur. Some of the
experiments documented in {7, 8]], as well as the example
presented in the next section, use a simple two-term linear
prediction method prior to computing the buffer. In this
case, a linear prediction of the current output from previous
outputs is used to estimate of the range requirement of
current output.

32

5.2 Computer Experiments

Computer experiments were performed in software
written in C that was designed to emulate an SBM FIR
filter. The program takes a specified set of strictly prime
moduli, computes the necessary correction tables, and stores
them in arrays which act as the hardware ROM. The filter
coefficients and the input data are read from files in binary
form; binary-to-residue and residue-to-binary conversions are
performed inside the program. By passing different
parameters from the command line, the simulator is
designed to perform any of the buffering algorithms
previously discussed.

Data analysis was also performed by the simulator.
For each output computed, a tabulation of the actual
number of residues used was saved in a file. From this, the
average number of residues for the entire batch of data was
computed, along with a histogram showing the statistical
distribution of the number residues were used.
Furthermore, the locations of and the total number of
overflow errors were tracked throughout the process. To
show how an optimum VWL algorithm could perform, the
minimum number of necessary residue terms was stored for
each output computed. An average was computed to
determine the optimum figure of merit.

Due to space limitations it is possible to present here
results from only one experiment, although many
experiments were performed and are fully documented in [7].
The results presented here are for the seven moduli {31, 29,
23, 19, 17, 13, 11}, an RNS that has a dynamic range of
approximately 30 bits. When the number of moduli
required is less than maximum, the subset chosen is taken
from the largest modulus to the smallest so that the
broadest sub-range is retained. For example, if only three
terms are needed then {31, 29, 23} are used.

All the different buffering methods were simulated by
first estimating the current output by simply using the
previous output, or by linear prediction using the previous
two output samples. For each estimated output, the
minimum number of residues necessary to represent that
number is computed, and the buffer terms are then added to
that number. For the constant buffer case, the buffer size is
defined to be either one or two, depending on the method
chosen. With the adaptive buffer method, the two closeness
ranges are passed as parameters (tabulated in the left column
of Table 1) to the simulator for buffer selection.

The test data used as an input signal for processing by
the VWL filer in this example was chosen to be an
experimentally measured neural signal recorded from a
single brain cell of a rat, with a record of 1000 samples.
This particular test signal was chosen for this experiment
because the signal contains spikes that require a large
dynamic range, although there is considerable "idle" time
between the spikes during which the VWL algorithm can
reduce the computational range. The filter characteristic
used in this VWL filter experiment was a low-pass FIR
filter designed using the Hamming window.

One particular experiment is summarized in Table 1,
where results are listed for a constant buffer algorithm with
one term, a constant buffer algorithm with two terms, and
an adaptive buffer algorithm with different choices for two
closeness ranges, as listed. In this experiment the filter
coefficients and the input were scaled so that the range of
the output did not exceed the range of five moduli.
However, the number of residue digits that are actually used
can be as high as seven. The low-pass filter used in these
comparisons had a normalized cutoff of 0.1 rads.

It can be seen in Table 1 that as the closeness ranges
are reduced in size, the average number of moduli used by
the adaptive algorithm decreases. However, as the number
decreases, so does the average dynamic range, until the
number of overflow errors begins to increase rapidly. Note
that the linear estimation scheme is more conservative in
the sense that for the same closeness ranges it maintains a
lower error rate. But it also does not reduce the average
number of residues as much. These results are not intended
to be conclusive, but rather to illustrate how an adaptive
word length design might function. More research will be
needed to determine the effectiveness of VWL designs in
practical problems.

ACKNOWLEDGEMENTS
The research is supported by the National Science
Foundation under grant number NSF MIP 91-00212.

REFERENCES
[1]1 M. A. Soderstrand, W. Kenneth Jenkins, Graham A.
Jullien, and Fred J. Taylor, eds., Residue Number
System Arithmetic: Modern Applications in Digital
Signal Processing, 1EEE Press, New York, NY, 1986.

[2] H. Krishna, K.-Y. Lin, and J.-D. Sun, "A coding theory
approach to error control in redundant residue number
systems - Part I: Theory and single error correction,”
Transactions on Circuits and Systems, vol. 39, no. 1,
pp 8-17, January 1992.

[3] K. M. Elleithy and M. A. Bayoumi, "Fast and flexible
architectures for RNS arithmetic decoding,” Transactions
on Circuits and Systems, vol. 39, no. 4, pp 226-235,
April 1992,

[4] P.E. Beckman and B. R. Musicus, "A group-theoretic
framework for fault-tolerant computation,” Proceedings
of the International Conference on Acoustics, Speech,
and Signal Processing, Vol 5, pp 557-560, San
Francisco, CA, March 1992,

[5] W. K. Jenkins and B. A. Schnaufer, "Fault tolerant
architectures for efficient realization of Common DSP
kemels," Proceedings of the 35th Midwest Symposium
on Circuits and Systems, Washington, D. C., pp 1320-
1323, August 1992.

[6] W. K. Jenkins and S. F. Lao, "The design of an
integrated RNS digital filter module based on serial-by-

33

modulus residue arithmetic," Proceedings of the 1987
International Conference on Signals, Systems, and
Computers, Port Chester, New York, pp 634-638,
October 1987.

[7] A. J. Mansen, "Variable Word-length DSP Using Serial-
by-Modulus Residue Arithmetic, M.S. Thesis,
Department of Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign, May 1993.

[8]1 W. K. Jenkins and A, J. Mansen, "Variable word length
DSP using serial-by-modulus residue arithmetic,
Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, April 27-30,
Minneapolis, MN, to appear.

| |

MODULE 1

MODULE 2 MODULE 3

I |

VOTER

'

Fig 1. Conventional triple modular redundancy (TMR).

I H T]
I 1 1

MODULE | MODULE 2 MODULE 3 MODULE 4

Figure 2. Quadruple modular redundancy (QMR).

' |

— - — - > [l
Imndl I[mod | I mod 2 mod 2 lmodL II mod L I
< - - >
CHECK CHECK CHECK
Y -« - — >
SELECT AND
P “oecoe [€

Y

Figure 3. RNS double modular redundancy (DMR).

TIMING
CHECK

F2

ADDER

<40
| LATCH |
X
ROM

(2% X ¥)

Figure 4. Serial-by-modulus RNS computational element.

cLocK cLocK
COEFFICIENT | l
INPUTS
" STANDARD 1A _r’ STANDARD A
—— CELL CELL
DATA l—-
INPUTS

Figure 5. Two SBM computational elements forming a sum-of-products DSP module.

34

Table 1. Results of Using the 7-term VWL RNS Filter on Neural Data

w/out Linear Estimation w/ Linear Estimation
Buffer Method Errors Ave. # of Res. Errors Ave. # of Res.
Constant Buffer
1 Term 0% 5.204 0% 5.220
2 Term 0% 6.202 0% 6.215
Adaptive Buffer
106, 107 0% 5.940 0% 5.951
103, 107 0% 5.479 0% 5.526
104, 107 0% 5273 0% 5.298
103,107 0% 5214 0% 5.228
102, 107 0% 5.205 0% 5219
10, 107 0% 5.204 0% 5.218
1, 107 0% 5.204 0% 5218
105, 106 0% 5.219 0% 5.265
104, 106 0% 5013 0% 5.036
103, 106 0% 4.953 0% 4.966
102, 106 0% 4.944 0% 4.957
10, 106 0% 4.943 0% 4.956
1, 106 0% 4.943 0% 4.956
104, 105 1% 4558 0% 4614
103, 103 2% 4.495 0% 4.542
102, 105 2% 4.481 0% 4.532
10, 103 2% 1479 0% 4531
1, 103 2% 4.479 0% 4.531
103, 104 17% 4.137 2% 4322
102, 104 18% 4.121 2% 4311
to, 104 18% 4.119 2% 4310
1, 104 18% 4119 2% 4310
102, 103 48% 3.696 5% 4.245
10, 103 S1% 3.649 6% 4.244
1,103 51% 3.649 6% 4.244
10, 102 77% 3.154 % 4.230
1, 102 80% 3.119 % 4.230
1,10 95% 2437 % 4.225

35

