ADAPTIVE BEAMFORMING USING RNS ARITHMETIC

Barry J Kirsch! and Peter R Turner?
1. Naval Air Warfare Center - Aircraft Division, Code 5051, Warminster PA 18974
2. Mathematics Department, U S Naval Academy, Annapolis MD 21402

Abstract

This paper is concemed with the solution of the
adaptive beamforming problem using an algorithm-
architecture-arithmetic combination which has the
potential for solution of the problem on a small platform
which might be suitable for use on aircraft or sonobuoys.
The arithmetic used is the RNS system implemented on
an array of processors which can be reassigned as the
algorithm proceeds. The underlying algorithm is a
modified Gauss elimination. The (non-RNS) division
operations are eliminated in favor of some scaling and
the adaptive use of the processor array to accommodate
the growth in dynamic range.
Key Words RNS arithmetic, Gauss elimination

1. Introduction

If directional interference impinges an antenna array,
that interference will be attenuated depending on the
direction. Appropriately chosen amplitude and phase
weighting of the antenna elements steer the nulls of the
resulting beam pattern in the direction of the
interference. The problem has been extensively studied
in [5}, for example. This paper describes a particular
algorithm using novel processor implementations.

An array of N antenna elements are sampled at time

k to form a complex snapshot vector ;. A collection of
K>N of these snapshots form the NxK data matrix X.

Inner productsbetween the data vector £, and weightsw
yield the scalar outputsy,. The problem is to determine
the complex weights wy, wy, ...,wy; that optimize the
response ¥. It is called adaptive beamforming (ABF)
when the weights are adjusted continually.

In one formulation the weights are obtained by
solving the system R%W = § where R=XX"[K is the
estimated covariance matrix; § can be either the
steering vector or the cross-correlation vector.

The concern of this paper is with obtaining solutions
quickly on a physically small processing unit for
operation on platforms such as aircraft or sonobuoys.
Speed of numerical processing is the reason for
choosing RNS arithmetic and dictates that non-RNS

U.S. Government Work Not Protected by U.S. Copyright

36

operations be kept to an absolute minimum; this in
turn places constraints on the algorithm. The algorithm-
architecture combination proposed here is based on
using Gauss elimination to solve the above system.

Divisions are avoided by allowing substantial growth
in the dynamic range. This is achieved by the adaptive
use of an array of RNS processors and some scaling to
reduce the growth of matrix elements.

In the remainder of this section, we summarize
briefly the relevant aspects of residue number systems,
and its extensions to complex RNS arithmetic.

Section 2 is concerned with the modified Gauss
elimination algorithm and with the basic philosophy of
the proposed algorithm. In Section 3, several of the
subproblems and their associated difficulties are
considered. These center on the questions of growth of
the matrix elements and the use of adaptive
RNS-base extension and scaling to handle the growth.

Section 4 brings the ideas together in a detailed
description of the overall elimination algorithm. In
Section 5, the back substitution phase is described.

Residue Number System (RNS) arithmetic is an
exact integer arithmetic which is naturally parallel and
carry-free. Due to this parallelism, RNS addition and
multiplication is faster than conventional integer
arithmetic for comparable dynamic range. Because of
the restriction to the integers, it is often necessary to
convert between RNS and standard binary for
operations such as division, square roots and
comparison that are not easily handled in RNS.

Signal processing tasks such as FIR’s and DFT’s are
multiply-accumulate (MAC) intensive; RNS is ideal for
these operations. More complicated algorithms such as
adaptive processing, involve more non-RNS operations.
The conversion of RNS numbers to binary is expensive;
if enough conversions must be made, the advantages of
RNS are lost. Much of this paper is concerned with
how we can eliminate these operations in ABF.

For an extensive introduction to RNS see [9]
Integers are mapped to an L-tuple of residues by
reducing the integer mod p; (1<i<L) where the moduli
p; are relatively prime. The dynamic range, M, of the

L
system is the product of the moduli M = 11-11Pi

Arithmetic operations are performed on the respective
elements in the L-tuples. Integers X and Y are mapped

t0 (X, X3, -...X) and (v, ¥2, ..yr) wherex, =X mod p,,

y;=Y mod p,; addition and multiplication are then
performed by componentwise modular arithmetic:

X+Y = (&@ypy)y, Dy, (xL@y),L)
XxY = ((x1®)'1)p1' (x2®y2) p <xL®y'-)PL)

where (a®b),, (a®b), denote arithmetic mod p. The
resulting L-tuple is the RNS representation of the sum
or product which can, if desired, be converted to binary
using the Chinese Remainder Theorem (CRT).

An extension of RNS is Quadratic RNS (QRNS) [1]
which allows complex arithmetic using pairs of real
integers. A complex integer (a+jb) is mapped to a pair
of real integers (zz*). Given a prime p = 4k+1 for
some k€Z, a Gaussian prime, then the congruence

x2= -1 mod p has two solutions in the field Z, that
are multiplicative and additive inverses of one another.

We denote them by i ! and define a mapping from
the complex integers mod p, Z,[j] into Z,XZ, by

O(a+jb) = (z,z")

where z = (a+jb) mod p, z* = (a-jb) mod p. The
(addition-preserving) inverse mapping is given by

87'(zz%) = @'(+2")), +ji2j! (z-27)),

Thus, if 8(a+jb) = (z,z"), 6(c+jd) = (w, w") then, with all
additions mod p, 6((a+c)+j(b+d)) = (z+w,z*+w")

The Gaussian primes requiring up to 8 bits are 5, 13,
17,29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149,
157, 173, 181, 193, 197, 229, 233, 241.

In conventional arithmetic, complex multiplication
requires four real multiplies and two real adds. A
further extension [1] to QRNS is the Galois Enhanced
QRNS (GEQRNS) which reduces this to just two real

RNS-adds. To achieve this, map the pair (z,z*) to their
logarithms, (e,, e,.) with respect to some generator ¢ of
Z,. Thatis, {a | i=0,1.2,..p-2} = Z,\0. The integer z
is therefore equivalent to (), and can be uniquely
represented by this exponent. These logarithms may be
added mod p-1 to perform multiplications: (a’a/), =
(ah "‘)p. Hence, a complex multiply requires just 2 real
adds. Zero multipliers are handled as a special case.

A practical RNS system does not have infinite
precision. There is a dynamic range limitation, just as

37

there is for a conventional processor. Algorithms must
be designed to control the growth of intermediate
results. Periodic scaling is necessary. This scaling can
not be done directly in RNS. It can be achieved by
converting back to the integers and then dividing.
Conversion, through CRT or Mixed Radix Conversion
(MRC) algorithms, or the core function [9], carries
overhead that may negate the advantages of the RNS.
Therefore, we want to stay in RNS as long as possible,
being careful not to overflow the dynamic range.

An analysis of the potential growth can determine
when scaling is required. More frequent or earlier
scaling increases the loss of precision. We therefore
scale occasionally during the computation rather than
prescaling the data to keep the whole process in range.

Another possibility is scaling using the L-CRT. The
L-CRT operation can be partitioned into 4 stages [3],
[4] which are amenable to pipelining. If a continuous
stream of data is to be converted from RNS to binary,
the effective conversion rate is one conversion every
clock cycle after the pipeline latency delay.

The L-CRT is computed by factoring M into a real
scale factor ¥ and an integer M’ = 2* such that M =
VM’ ,and 0 < M’ < M. The L-CRT is given by

X; - <i[m,.<m;‘x;,,/vj>w

i=1
where |+ denotes the integer-part or floor function

L

and m;= [] p;. The L-CRT is a residue-to-binary
eV jsi

conversion that scales by V' with error bounded by

0 < [X/V-X, | <L which is small since L<M.

2. Modified Gauss elimination

The primary reason for selecting Gauss elimination
for solving the linear system is that it is a simple
algorithm using fewer arithmetic operations than other
options. In ABF we face "one-off" problems so that
storing the matrix factors is not important. Changes in
the relative directions or strengths of the required
signal and jammer result in new systems of equations.

Gauss elimination demands relatively few non-RNS
operations and the divisions can be eliminated by
modification of the algorithm. Symmetric factorizations
such as Cholesky, also require square-roots.

The modified algorithm discussed here uses integer
arithmetic performed in RNS with some scaling and
range extension to achieve a solution which is a scalar
multiple of the desired solution. Only the relative
magnitudes of the weights are needed.

Gauss elimination for an nxn system A% = b can be

described as an n -1 step process in which, at stage i we
eliminate all subdiagonal entries in column i of A. We

denote the matrix at the i* stage by A® (so that

A=AM) and its elements by af. Similarly the
components of the right-hand side at stage i will be

denoted by b,-(‘). In its simplest form the algorithm is
for i=1to n-1
forj=i+1ton

ai=0, bV =p" - mp?®

ji
for k=i+1ton ay " =al -ma
To complete the solution, this elimination phase is

followed by the back substitution:

5, = b0l
for i=n-1 down to 1

m= a,.‘,."/a,.?’,

forj=i+l1ton bY-= bsm-ag)xj

x;= bi(i) / ai(ii)

For general linear systems, pivoting is necessary in
Gauss elimination to reduce the effect of roundoff
error. The matrix here is hermitian positive definite.
Partial pivoting destroys the symmetry and, more
importantly, for a positive definite system it does not
improve the numerical stability of the algorithm. [11]

To maximize the efficiency of our RNS processors
we want to eliminate the non-RNS divisions. At this
stage, simply regard this as a requirement for solution
using an integer processor.

Consider therefore one step of the elimination
process. Suppose that we are eliminating in column i
and consider the effect of this elimination on row j>i.
In the conventional application of Gauss elimination,

we use the multiplier a]-(,.')la,? which requires division.

This division can be eliminated by simply "cross-
multiplying" between the two rows so that for each k>i
a,.S:"’ = ala? - afa
This evidently preserves the integer nature of the
matrix elements but has associated costs. The most
important difficulty introduced by requiring integer
arithmetic is that the matrix elements can grow rapidly.
To get an idea of the rate of growth, consider just
one step of the elimination in which we are effectively

ab
dealing with a 2X2 matrix d]' The standard Gauss

c
elimination yields d-b(c/a) in the bottom-right whereas
the integer-preserving form gives ad-bc which is a
times that for the standard algorithm. For the full

climination this means a,f:'” becomes the determinant
of the original matrix - potentially a large number.

At each stage of the elimination, it is possible that
the largest element could approach twice the square of
the largest element at the previous stage. In the
beamforming problem, the complex integer arithmetic
allows the possibility of even (slightly) faster growth.
For this approach to be viable we must be able to
handle a very large dynamic range in the later stages of
the elimination. This can be achieved in principle by
the "column-parallel, parallel-channel” approach.

The basic idea is to use an array of RNS processors
allocated to the various columns of the matrix. As the
elimination proceeds, fewer columns are still "active”.
Processors used for inactive columns can be reallocated
to extend the dynamic range for the remaining columns.

For the column-parallel version of Gauss elimination

denote by &}(0 that part of the j® column of A” below
row i. We form the multiplier vector s® = @®/a and

modify subsequentcolumns by @ = @ - a ™. This
is a "vector + scalarxvector" operation. The obvious
modification for integer arithmetic is

0 _ 00 _ 00
aj = a; a, - a'v~ a;

which is a "scalarXvector + scalarxvector” for which
our RNS processor can be designed.

The idea behind the adaptive parallel-channel
implementation of the algorithm is that a number of
parallel RNS processor channels would be used, each
operating with a specific modulus. The number of
channels allocated to a data item determines the
dynamic range for that data. Initially the processors
would be divided evenly among the matrix columns.

After each stage the number of active columns is
reduced by 1 but the required dynamic range is
increased. The idea is to adaptively allocate processors
to columns so that the number of processors grows with
the dynamic range. The idea is easily illustrated for the
case of four columns using 12 RNS processor channels.

The adaptive nature of the algorithm is illustrated in
Figure 1 for a hypothetical 4x4 system, the first stage
uses a three-dimensional RNS representation. At the
next stage, only three columns are active so a fourth
modulus can be used to extend the dynamic range.
Similarly for the third (and final) stage of the
elimination only two columns remain active so a six-
dimensional representation can be used. The extent of
the range extension depends on the basis elements.

The description and figure are intended to convey
the broad philosophy of the solution process not the
practical detail. The number of RNS channels, the
choice of basis elements and control of the growth of
matrix elements are all important factors.

FIGURE 1 Schematic diagram of the adaptive dynamic range allocation of RNS processors.

Processor
Active matrix 1 2 3 [4 5 |6 [7 [8 9 Jw |u |12
RNS basis vector and residues of matrix elements

p. [p: |ps |p1 P |ps]p1 . |ps Ipx P |ps
m m _m
off o o ol [T [[al |a@ [a@ faid [af |9 [o2 [« |t
N L0 0 0 1 1 1 1 1 4 1 1 4 1 1 1
o o2 o ol | o | e [| Jo2 |2 | o o a2
M o o 0 1 1 1 1 5 1 1 1 1 ™| . m 0
S o ool o) ol | o | R o for fo o |a
W @ { :
":1) ad(e) 04(3) a4(4)_ aﬂ) aﬂ) aﬂ) ag) a,g) afz) ag) ag) ag) a.ﬂ) aﬁ) aﬁ)

3
a33

3)

(3)
asz 34 | Q34 az4 434 |Gag

(3)
34

of

aﬁ) aﬁ’ aﬁ)

Figure 1 should not be interpreted too literally. The
apparent reprogramming of processors 4-12 for the
second stage is wasteful. It is pictured that way for
simplicity. In practice, processors 4-12 would be
unchanged and used for the base extension to be
discussed shortly. Processors 1-3 are all modified for
modulus p,. Column 2 is then processed in channels
1,4-6, column 3 in 2,79 and column 4 in 3,10-12.
Similar changes would be made at subsequent stages.

The back substitution is discussed in Section 5.

3. Difficulties with the proposed algorithm
Several difficulties are apparent in the outlined
algorithm. In this section we discuss some of these and
present refinements to alleviate the problems. We
discuss these for a four antenna array, so that the
covariance matrix will be 4x4. It is also assumed that
the elements of the covariance matrix can be uniquely
represented using three 7-bit moduli. The overall array
will be assumed to have 16 RNS processors. Whatever
operations are performed on the matrix must be
repeated for the right-hand side vector but we omit
details of this.

The elements of the covariance matrix are scalar
products of the data vectors. These, for a 4-antenna

39

problem, we take to be vectors of length around 16.
Scalar products relative to a fixed RNS basis are readily
performed in the proposed architecture provided the
dynamic range is adequate for all intermediate results.
With 16 processors subdivided into 4 groups of 4
each representing a column of the matrix, each row can
be computed in one RNS-channel scalar-product time.
Four such operations generate the complete matrix.
Note that, at this stage, we have a 4-dimensional basis
vector even though the matrix elements could be stored
using just three. The additional modulus accommodates
some of the dynamic range growth that will be needed.
With RNS processors that are programmable for
different base moduli the same basis vector can be used
for all columns. Changing base moduli requires new
tables to be loaded. This must be balanced against any
loss of precision entailed in controlling dynamic range.
Scaling the covariance matrix to reduce the dynamic
range requirement is equivalent to coarsening the input
data resolution. We consider this shortly along with the
question of scaling during the elimination. If scaling is
used then the choice of scale factors is important.
The biggest problem is the rate of growth of matrix
elements and the consequent need for range extension.
For a positive definite matrix, Wilkinson [11] establishes
that there is no growth for Gauss elimination. However,
if integer arithmetic without divisions is used, as we saw

in the previous section, the growth rate can be of the
order of squaring the largest element at each stage.
Example
Consider 4 antennas and K=16 data vectors for a
signal S=0dB at (° and a jammer J=40dB noise at 23°.
The covariance matrix involves division of the scalar
products by K. Since the relative weights are required,

this division can be ignored. The resulting matrix has’

largest element around 2.6X10° or 2!*® and so can be
represented in the proposed 3-dimensional RNS form.

After one step the active matrix has largest element
around 2x107 or 224, This growth is much less than the
worst case mentioned above. A 4-dimensional RNS
representation would suffice although there is capacity
for a S-dimensional basis at this stage.

The next stage produces a 2X2 active matrix with
largest element 2X10'. Almost worst case growth has
occurred. A 7-dimensional basis would suffice. (Eight
channels per column are available.) The final step
yields 2.7X10% so that near worst case growth has again
occurred but the 16 RNS channels have this range.

The growth in this example cannot be assumed to
represent the general case. Without special knowledge
we must allow for worst case growth which could not be
accommodated in the same array without some other
growth control. We discuss periodic scaling of the active
matrix shortly. First, we consider the base-extensions.

There are two aspects to the base extensions needed
for the algorithm. The first is the mathematical problem
of finding residues relative to new basis elements of an
integer given only by its residues relative to the existing
basis. This question has been discussed extensively for
various special cases, [2], [7], [8], [10}, for example. The
present situation is almost the simplest; we wish to add
one or more new moduli to the basis. In our parallel
architecture, any one processor would be concerned
with the addition of a single basis element. The process
is described in [2] using conversion from the RNS
representation to the associated mixed radix system,
MRS and then computing the residue of the resulting
MRS representation relative to the new modulus.

The second fundamental problem of base extension
is the time-penalty for reprogramming RNS processors
for new base moduli and the extension operation itseif.

Consider first the operation count for base extension.
There is a natural parallelism in the operations for a
column. For each element, n, first compute the MRS

representationn = a,+ap,+ap,p,+... We setag = (n),,1

and then aq, = (p{'(n—ao))‘,,2 which requires 2 operations
in the mod p, processor. Then computing a, requires
three multiply-accumulate operations in the p;,
processor and so on. The a; computation for the next
element can be concurrent with the second stage. The

40

total time for the MRS conversion will therefore consist
of the column length C times the time for computing
the final modulus plus a latency time for a single
element to pass through the earlier channels.

The conversion of one entry requires i operations in
the i processor except that the first processor is not
needed. For an RNS basis of dimension L the total
number of multiply-accumulate operations to obtain the
MRS representation of the first element is therefore
L(L+1)/2-1. The rest of the column takes (C-1)L
giving a total of L(2C+L~1)/2-1 parallel operations.

This operation count must be increased since the
elements of the pivot column are also converted in
each processor effectively doubling the vector length to
give a final count of L(4C+L-1)/2-1. For the first
stage, C=4 and L=4 so that the delay is 37 modular
multiply-accumulate times. For the final step, C=2,
L =8 and the delay for this step is 59 operation times.

For each new modulus a vector of effective length
2C must be processed. The computation consists of
L -1 operations. For the same two stages as above this
entails 24 and 28 operations respectively.

Before this last step, the processors must be
reprogrammed for the new modulus. The principal cost
is the loading of two look-up tables, one for QRNS and
one for GEQRNS. For 8-bit moduli these consist of
256-bytes each. Assuming a transfer rate of 4
bytes/clock this operation takes 128 cycles which is
longer than the RNS-MRS conversion. We may assume
that the loading and conversion are concurrent.

With a throughput of 1 multiply-accumulate/cycle,
the overall delay for base-extension is therefore around
150 cycles. Because of this cost some scaling is
incorporated into our algorithm. However scaling has
its own associated costs - both in time and accuracy.

Suppose that at some stage of the climination, we try
to preserve the actual dynamic range by scaling and
that the active matrix contains elements which are close
to extremes of the range. Suppose (the components of)
the elements lie in [-M,M]. For complex arithmetic, the
worst case implies components of the form ad-bc €
[-4M?, 4M?] which demands scaling by a factor of the
order of 4M. This is comparable to scaling the elements

of the matrix by 2/M in advance of the computation.

Consider the simpler situation of multiplying two 32-
bit positive integers which are close to the limits of the
range and scaling the product to this range. Write

a=a,2"%+a, b=b2"%+b, where a,,a,, b, b,<2'.
Now the scaled product is [a+b2%%] whereas the

comparable prescaling yields [a/2'¢]+(52'®] = a, *b, . For
a,, b, close to the extremes of the range [ab/2] <
ab, + min(b,,a;) + min(a;,b,) so that the relative

difference is around 1/max{a,,b;) which is about 2-16,
The effect of scaling, for numbers close to the extremes
of the range, is similar to that of prescaling, roughly
halving the resolution of the data.

Suppose we use the same dynamic range throughout.
In the above example, the components of the initial
matrix had a range of about 19 bits using three 7-bit
moduli, so we are indeed close to the extremes. For
growth that is not quite worst case, we might expect the
number of bits required to double at each stage. (This
rate is achieved in the later stages in the example.)

Scaling is approximately equivalent to halving the
precision of the active matrix - at each stage. Three
such stages are needed which is equivalent to having
fewer than three bits of precision in the covariance
matrix. What effect does such degradation in precision
have on the solution?

The standard error analysis for Gauss elimination is
not applicable since it assumes the divisions are
performed. A few preliminary experiments on
quantized data were conducted to see how the
performance degraded with data resolution (# bits).
The same data was used for each variation in resolution
and the difference in the beam plots was examined.

The adapted beam patterns B(8) were computed for
varying precisions in the input data and |B{3g) - B(8,)|
was compared to the desired solution. Here6y, 8,
represent the signal and jammer directions respectively.
The single jammer INR=30 dB so the maximum
difference is about 30 dB due to thermal noise.
TABLE 1
Degradation of solution vs input data resolution

SNR=0, INR=30 dB. Values of 20 log,, |B(9,) - B(6,) |

bits Trial 1 Trial2 Trial 3 Trial 1 Trial 2
16 30dB 28dB 30dB 32dB 31dB

S5 28dB 29dB 30dB 33dB 32dB

4 26dB 32dB 39dB 30dB 34dB

3 28dB 31dB 28dB 31dB 31dB

2 17dB 21dB 20dB 22dB 28dB

1 9dB 17 dB singular 12dB 15 dB

Initially this looks promising; 3 or 4 bits data
resolution appear to yield tolerably good accuracy. This
first impression is misleading. For data vectors of length
16, data accuracy of 1 bit yields complex scalar products
which require 6 bits. Thus the final row of Table 1 used
matrices with approximately twice the resolution -
double the wordlength - of the resolution suggested by
the above analysis for no dynamic range growth.

From Table 1, it appears that data resolution of 4
bits yields reasonable results. This is equivalent to an
effective wordlength for the final solution of about 12
or 13 bits in the covariance matrix. Of course this is not

41

strong evidence for the adequacy of this precision - it is
evidence of the inadequacy of significantly less
precision. Sensitivity of the solution to precision in the
weights was considered by Nitzberg [6).

Some compromise between range extension (which
costs time) and scaling (which costs precision) is needed
to achieve acceptable results (in both senses).

4. The elimination algorithm

In this section, we describe in some detail the
algorithm for the elimination phase of the solution.
Throughout the discussion consider just a four-antenna
problem using K=16 data vectors. The initial matrix
elements are inner products of complex 16-vectors.

To decide how much growth can be allowed and
what scaling is necessary, we give consideration first to
the dynamic range which could be achieved for the final
stage of the elimination using 16 processors.

The largest dynamic range which can be obtained
using 16 Gaussian primes of 8 or fewer bits is 3.85x10%
or about 115 bits. The effective range [-1.92x10%,
1.92x10%] is sufficient for the example of the previous
section but is not enough to allow worst case growth.

Suppose the initial covariance matrix is represented
relative to RNS-basis {73, 89, 97} which has dynamic
range M, = [-315104, 315104] corresponding to a little
over 19 bits of precision. For vector length 16 both real
and imaginary parts comprise 2X16 products. This
allows the data to be quantized to 7 bits which appears,
from Table 1, to yield satisfactory tuning of the array.

The 16-processor array would have the initial matrix
stored relative to the four-dimensionalbasis {73, 89, 97,
101} which accommodates some of the growth for the
column 1 elimination. For the next stage only three
columns are involved and a five-dimensional basis can
be used. The Gaussian prime 197 is added to the basis.
Now, 73X89x97x101x197 = 12,539,268,473 so that the
available dynamic range at this stage is M, =
+6,269,634,236 which corresponds to +32.5 bits. Worst
case growth from the original dynamic range requires

a range of +4M? = +3.97x10" % 63.3xM,.

If the L-CRT is used for scaling the scale factor V'
must be chosen so that M’ is a power of 2. To avoid
the risk of overflow, scaling must be done before
elimination. Scaling the dynamic range at this stage to
+2% (choosing M’ =2%?) is equivalent to scaling the
matrix to =*2%; choosing V; = 315,104x2°% =
9.616210938 will suffice.

For column 2, maximal growth of the dynamic range
with an eight moduliis obtained by extending the RNS-
basis to {73, 89, 97, 101, 197, 229, 233, 241}. This yields

M, = :8.06x10'® = +2562 Worst case growth from M,

with the scaling already applied results in the range
+2%, Again the scaling must be done in advance. For
a generated range +2° we must scale the results of the
previous stage to the range +2%7 which requires a scale
factor V, = 6,269,634,236X2°%7 = 46.71241519.

Even the worst case growth at the final stage can be
accommodated in the 16-dimensional RNS
representation using the full basis above for which M,
= +1.92x10%. (This stage consists of "real X real -
complex X complex conjugate” which has a smaller
growth than the more general operations used earlier.)

The scaling achieved here is essentially optimal. The
final dynamic range available is approximately £2''%. To
keep within this the previous stage must be within the
range +2% and to stay within this the largest "power of
2" dynamic range allowable for the previous step is
+2%. These are the dynamic ranges achieved here.

The effect of this scaling could be achieved by
quantization of the initial data. If we trace the scaling
back to the original matrix it is equivalent to scaling the
initial covariance matrix to *2, This in turn is
equivalent to using initial data with 5 bits resolution.
Note that the scaling proposed here would result in a
smaller loss of precision since the contributions of less
significant bits are retained as long as possible.

We summarize the elimination phase as Algorithm
1 below. For simplicity in this description, we only refer
to 16 RNS processors and include only the operations
for the 4x4 matrix itself.

ALGORITHM 1 Parallel RNS forward elimination
Input 44 matrix 4 represented in RNS with basis
{73, 89, 97, 101} but scaled so that
la;| < (73x89x97-1)/2 = 315104
Initialize The 16 processors are initialized for moduli
{73,89,97,101;73,89,97,101,73,89,97,101;73,89,97,101}
Denote by p, the prime modulus in processor k.
1. Scale A4 using V' = 9.616210938, M’ = 215
using processors 4j-3 to 4j for column j.
2. Processors 1-4:

Reinitialize for mod 197. Modulus vector is now:
197,197,197,197,73,89,97,101,73,89,97,101,73,89,97,101

Processors 5-16:

Compute MRS representations of matrix elements:

Processors 5-8 a;, a;,
Processors 9-12 a;, a;
Processors 13-16 a;,, a;,

3. Compute {a)g; (from the MRS representations) in
processors 1-4 using processor j for column j.

4. For ij>2, compute (a-‘(,-z))h = la;ay -aya,),

using Processors 2,5-8 for j=2
Processors 3,9-12 for j=3, Processors 4,13-16 for j=4

5. Scale ag") by L-CRT using processors as in Step 4

42

with V' = 46.7124 1519, M’ =2V
6. Processors 3,4,9-16: Compute MRS representations:

Processors 3,9-12 a,-(f’, ag),

Processors 4,13-16 a,-(zz’. a,‘f’

Processors 1,2,5-8: Reinitialize for mod 229, 233, 241
Modulus vector is now: 229, 229, 197, 197, 233, 233,
241, 241, 73, 89, 97, 101, 73, 89, 97, 101

7. Compute <at(12))p, in processors 1,2,5-8 using

Processors 1,5,7 for a,.(f’, ai(az),

@

Processors 2,6,8 for a,-(;), ay

8. For ij23, compute (aé(,3)>P. = (aéz)ag) -az(,z)ai(zz))pk

using Processors 1,3,5,7,9-12 for j=3
Processors 2,4,6,8,13-16 for j=4
9. Processors 1,3,5,7.9-12:
¢

Compute MRS representation of aﬁa)
Processors 2,4,6,8,13-16:

Reinitialize for mod 109,113,137,149,157,173,181,193
Modulus vector is now: 229, 109, 197, 113, 233, 137,
241, 149, 73, 89, 97, 101, 157, 173, 181, 193

10. Processors 2,4,.6,8,13-16: Compute (a,-s-s))pk
11. Processors 1-16: Compute
4 3) @ @ @
(aﬁ,,))pk = @ald —a&)a{a))h
Output (ag)) o J=iwhere

Py = (73,89,97,101), 5, = (73,89,97,101,197),

Ps = (73,89,97,101,197,229,233,241),

Py = (73,89,97,101,109,113,137,149,157,173,181,
193,197,229,233,241),

t

5. Back substitution

The apparent need for divisions at each stage of the

back substitution is the source of potential difficulty.

However the divisions can be eliminated entirely since

only a scalar multiple of the weight vector is required.
The back substitution begins with an upper

triangular system given fori = 1, ..., 4 by

ai?)xi * o +ai4(:)x4 = b.’(')

We simplify subsequent notation by rewriting this as

Ux = ¢ with elements denoted by «, Ci(1) .

We begin by describing the algorithm without paying
any attention to the problems of element-growth and
scaling. The idea is to use a column-oriented (or
column-sweep) algorithm with implicit multiplicationson
the left-hand side. The final row of the system

represents the equation ugx, = 04(1) and we substitute

this into the previous equations to get

0) o [.@

Uy Ugp Ugg O|%g| [Haa€1 ~HeaCe 3

1 1 2

O up upy Of%o| [ueacs”-tpecs”| e
u“ = =

0 0 ugpy Ofl%asl lugyed”-ugees”| e

0 0 O 1]x4 c‘('i) -64(2)

The arithmetic on the right hand side must be
performed but the multiplication on the left is not
needed since we are only interested in the relative
magnitudes of the weights.

Continuing in this manner, we finally obtain

@)
[C
100 O™ ! !
4)
010 O*x “11‘:2() Czss)
Uqgq Unp Unq U = =
NI 01 Oflxg| u,c| [
0001
. "11054)_ C-gs)

We can now use the final right-hand side vector as the

solution setting x; = c,-(s) and therefore eliminate the
divisions from the back substitution completely.

Clearly substantial growth on the right-hand side of
this system is likely. At the beginning of the back
substitution, the first row has range +2Y, the second
+2% the third +2° while the fourth has dynamic range
+218, The “"cross-multiplication” operations would
generate growth up to a maximum of about 222 bits.

Our algorithm has been based on the assumption of
small (typically 8-bit) RNS processors which rules out
any possibility of accommodating this growth in full.

During the elimination factors from similar dynamic
ranges were being multiplied but that is no longer the
case for the back substitution. The later rows have
greater dynamic ranges, and therefore more significant
bits, than earlier ones. We therefore choose to scale the
fourth row. In order to retain the same 16 base moduli
the right-hand side must be kept within +213. For the
first stage we must scale the fourth row to M’ =2%
which requires V' = 5.33819343x10"7.

Similar scaling is used at subsequent stages. This is
summarized in Table 2. Since scalings are applied only
to the right-hand side, any scaling must be applied to
all elements of this vector. The scale factors used for
the subsequent stages are approximately 24 and 2V,

What is the effect of this scaling? Consider quantities
A-+a, B+b where 4,B have similar magnitudes as do
a,b with a,b being much smaller than 4,B. Then

A+a A _ aB-4b

B+b B B(B+b) OelE)
So the error in estimating (4+a)/(B+b) by A/B is of

43

the order of (the reciprocal of) the scale factor. Thus
the error in the weights caused by this scaling is around
2°17 . the relative accuracy of the covariance matrix.
TABLE 2

Dynamic range and scaling for back substitution

i upe™ Scaled ¢ Scaled ¢ Scaled ¢
1 +28 £ 23 2% 1219 4D DI
2 £2% +289 425 213 2% 2% 21V
3 x2% £2M3 4279 427 #2602 2% 218
4 4213 4255 4255 422 4270 262 2% 413
6. Conclusions

In this paper we have presented a possible
algorithm-arithmetic-architecture combination for the
solution of the adaptive beamforming problem. The
solution uses RNS arithmetic and a modified Gauss
elimination algorithm. Divisions are eliminated at the
expense of a small number of scaling operations and
the adaptive use of an RNS processor array to
accommodate some of the growth in dynamic range
inherent in the integer solution of the system.

The indications from preliminary simulation of the
RNS processors suggest that this algorithm merits
further investigation with regard to speed, precision and
the effects of quantization.

References

[1] A.ZBaraniecka & G.A.Jullien, Residue Number System
Implementations of Number Theoretic Transforms in Complex
Residue Rings, IEEE Trans ASSP 28 (1980) 285-271.

[2] R.T.Gregory & D.W.Matula, Base Conversion in Residue
Number Systems Proc ARITH 3, IEEE, Washington DC,
1975, 117-125.

[3] M.Griffin, M.Sousa & F.J.Taylor, Efficient scaling in the
residue number system, Proc IEEE Intl. Conf. on ASSP, 1989
[4] J.Mellot, J.Smith, E.Strom & L.Smithwick, The Gauss
Machine: A GEQRNS DSP Systolic Array, to appear

[5] R.A-Monzingo & T.W.Miller, Introduction to Adaptive
Arrays, Wiley, 1980.

[6] R.Nitzberg, Computational precision requirements for
optimal weights in adaptive processing, IEEE Trans AES
16(1980) 418-

[7] K.-H.O’Keefe, A note on fast base extension for Residue
Number Systems with three moduli, IEEE TC-24 (1975)
1132-3.

[8] K.H.O’Keefe & J.L.Wright, Remarks on Base Extension for
Modular Arithmetic, IEEE TC-22 (1973) 833-835.

[9] M.A.Soderstrand, W.K.Jenkins, G.A Jullien, & F.J.Taylor,
Residue Number System Arithmetic: Modern Applications in
Digital Signal Processing, IEEE, New York, 1986.

[10] N.Szabo & R.Tanaka, Residue Arithmetic and its
Application to Computer Technology, McGraw-Hill, 1967
[11]J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford
University Press, 1965.

