High-Radix Modular Multiplication
for Cryptosystems *

Peter Kornerup
Dept. of Mathematics and Computer Science
Odense University
Odense, Denmark

email: kornerup@imada.ou.dk

Abstract

Two algorithms for modular mulliplication with
very large moduli are analyzed, in particular for their
applicability when a high radiz is used for the multi-
plier. Both algorithms perform modulo reductions in-
terleaved with the addition of partial products, one al-
gorithm is using the standard residue system, whereas
the other utilizes a non-standard system employing re-
ductions modulo a power of the base. The emphasis is
on situations - like in cryptosystems — where modu-
lar ezponentiation is to be realized by many repeated
modular multiplications on very large operands, e.g.
for cryptosystems with key lengths of 500-1000 bits.

1 Introduction ,

Modular multiplication is a fundamental operation
in the implementation of modular exponentiation as
needed in many cryptosystems, e.g. the RSA two-key
system [6] and in the recently proposed digital sig-
nature standard DSS £3] In such applications very
large moduli are needed to safeguard the information,
which makes modular exponentiation a very compute-
intensive task. Also for use in communications a high
throughput is needed. Parallelism has to be exploited
to the highest degree possible, and single-chip imple-
mentations are preferable in many applications.

There has been a number of publications in recent
years reporting on modular exponentiation. A surve
of actual hardware implementations was given in [1],
and further designs and implementations have been re-
ported since then. All reported implementations so far
have been based on multiplications where accumulated
partial products are formed by interpreting the mul-
tiplier in base 2. A fairly straightforward such VLSI
1024-bit single-chip implementation was reported in
[9], where modulo reductions are based on quotient
estimates computed from the most significant bits of
the accumulator contents. An alternative approach,
where modulo reductions are computed from the least
significant bits based on an idea by Peter Montgomery
ZT, has been reported implemented on a gate-array in
7], also base 2.

*This work has been supported by the Danish Natural Sci-
ence Research Council, grant no. 5.21.08.02

1063-6889/93 $03.00 © 1993 IEEE

277

In this paper we will analyze these two approaches
for modular reductions during multiplications, how-
ever applied to higher radix implementations to re-
duce the total number of cycles. Emphasis will be on
designs which are suitable for single-chip VLSI imple-
mentations of modular exponentiations. A design for
radix 4 has recently been presented in [8], and a radix
32 design, which was presented in [5], is presently be-
ing implemented as a single chip prototype for RSA
encryption/decryption with 561-bit keys and a pro-
jected speed above 64Kbps. Both of these designs em-
ploy the standard method of modular reduction.

This paper is organized as follows: In Section 2
modular exponentiation is first discussed, followed by
some general considerations on the internal organiza-
tion of the modular multipliers. Two computational
schemes are identified, differing in the way in which
the partial products are accumulated, with implica-
tions on the choice of radix for the multiplier within
given area constraints, and the possibilities for paral-
lelism and internal pipelining.

Section 3 then analyzes the standard algorithm for
modular multiplication, where reduction steps are in-
terleaved with the accumulation of partial products.
Bounds on the quotients used for the reductions are
derived, based on some parameters of the algorithm,
and implications of these bounds are discussed.

In Section 4 an equivalent algorithm is analyszed,
however based on the alternative residue system pro-
posed by Peter Montgomery [2]. In this system the
quotient determination is based on the least signifi-
cant digits of the accumulated partial products, and
is thus simplified.

Finally, in Section 5, the two algorithms are com-
pared and discussed in the context of the two compu-
tational schemes introduced in Section 2.

2 Modular Exponentiation

A standard way of performing the modular expo-
nentiation #° mod m is by repeated modular multipli-
cations and squarings, scanning the exponent e from
the least-significant end, as described below:

Algorithm 2.1 (Modular Ezponentiation)

Stimulus: A modulus m > 2, and integers z and
e, where 0 < z < mande > 0, e =

Yiso e’
Response: An integer y, such that y = ¢ mod m.

Method: i:=0; y:=1; 2 :=z;

while : < n do
if e; = 1 then y := (y * z) mod m;
z:= (2 *z) mod m;
1:=i+1;

end

Each cycle of the loop potentially requires two mul-
tiplications (noting that one factor is in common),
which may be executed in parallel or pipelined through
a single multiplier. In this case the product y * z may
just be inhibited if it is not needed, thus the execution
time will be constant, which is advantageous if used
in cryptosystems for communication. Since the word-
size of the operands is very large (500 — 1000 bits)
each multiplication must be composed of a number
of smaller multiplications, realized by a rectangular
aspect-ratio multiplier, forming a partial product of
the multiplicand by a digit of the multiplier. After
addition of each partial product the accumulator con-
tents has to be reduced modulo m, to keep its value as
small as possible. This requires that a suitable mul-
tiple of the modulus has to be determined and sub-
tracted each time a partial product has been added.

Due to the large wordsize and the large number of
multiplications needed, it is essential that accumula-
tion takes place in a redundant representation, and
that the resulting products in redundant representa-
tion can be used directly as factors in subsequent mul-
tiplications. It is also essential to notice that it is not
possible to perform “perfect” modulo reductions when
the operands are in redundant representations. But as
we shall show in the following two sections, it is possi-
ble to compute products § = AB (mod m) such that
—m < § < m, even when —m < A4, B < m, while 4,
B and S are in redundant representations. Thus only
at the very end of the exponentiation is it necessary to
convert into a non-redundant representation, and pos-
sibly to add m to obtain the correct result. To save
space on chip, a final conversion into non-redundant
representation, and into the interval 0 < § < m, can
be realized by shifting S and S+ m through two serial
adders, least significant digit first, directly transmit-
ting the two results off-chip, while serially inputting
another operand. The decision which result to use can
then rest on the environment.

We have chosen here and in the subsequent analysis
of two different methods for modular multiplication
to assume that a signed digit base 2 representation
(e.g. “borrow-save”) is used for the accumulation of
partial products, which is the reason for the symmet-
ric intervals of operands and results mentioned above.
An equivalent analysis could be performed, assuming
“carry-save” representations of A, B and S, satisfying
0 < 4, B, S < 2m,; but there are advantages in using a

278

balanced digit set, due to the smaller absolute values
of digits.

The basic structure of the modular multiplications
S := AB mod m to be analyzed in the following is

loop
{determine a reduction factor ¢;}
S = 2f(S —qim) + b;A
nezt(i)

end

where f is either k or —k and b; is a radix 2* digit of
B

As we shall see later the reduction factors ¢; will
belong to the same range as the digits b;, hence the
updating of S requires three multiplications g;m, b; A4
and b;A; where A = A; + A, is a redundant en-
coding of A. One possible way of implementing the
updating of S is then sequentially to perform three
fused multiply-add operations, using a single rectan-
gular aspect-ratio multiplier, whose shorter dimension
corresponds to the radix chosen for the digits b; and
¢i- This is the method used in [5], where the three se-
quential multiplications (in radix 32) are overlapped
with the determination of b; and ¢;, and furthermore
the multiplications and squarings of Algorithm 2.1
are pipelined utilizing the common factor in the two
products computed. Let us call this implementation
scheme the S-Scheme for the sequential execution of
the multiplications.

An alternative as often used (e.g. in {7, 8]) with a
small radix Se.g. 2 or 4) is to perform the multiplica-
tions in parallel, in the sense that ¢;m, b;4; and b; A,
are all accumulated in one single adder tree. In this
P-Scheme the determination of g; (and b;) cannot be
overlapped with the multiplications, but it is still pos-
sible to pipeline the multiplications and squarings of
Algorithm 2.1.

In the following sections we shall analyze two meth-
ods for modular multiplications, to provide a back-
ground for further architectural considerations.

3 Interleaved Modular Multiplication

The basic idea of this and the following algorithm
is to interleave the accumulation steps of the multipli-
cation with steps of a division operation. Based on an
estimate of a quotient digit, a multiple of the modulus
is subtracted from the value in the accumulator, and a
new partial product is added in. To avoid the gradu-
ally increasing number of digits needed when adding a
shifted version of the multiplicand if (as usual? start-
ing with the least significant digit of the multiplier,
it is essential here to start with the most significant
digit.

To reduce the number of cycles we will use tech-
niques known from high-radix multiplication and di-
vision, e.g. we will assume the multiplier is given in
a radix 8 = 2* and quotient digits are determined
in that base also. The system modulus m satisfies
2K(n-1) < m < 2" (cases where m is a power of 2 are
much simpler), and the algorithm will proceed through
n + 2 cycles.

Algorithm 8.1 (Interleaved Modular Multiplication)

Stimulus: A modulus m > 2, and integers n >
1,k > 1 such that 286(n—1) <y < 2kn,
Integers A and B, -m < A < m,
~m < B < m where B = Y71, bi(2*)Y,

ba=b_1=0and b € D={-0,---,0}

for0<i<n—1,2%"1<qg <2k

A real parameter o, 1 <a < 1.

An integer parameter r, r € {0, k}.

Response: An integer S such that —m < S < m and

S = AB (mod m).

§:=0;i:=n-—1;
while i > —(1+r/k) do

Method:

L: {determine integer g; such that
IS = gi2"m| < a2"m};
S := 2%¥(5 — ¢;2"m) + b; 4;
1i=1—1;
end;
S := § div 2&+;

Note that we allow A and B to be negative, —m <
A, B < m, and assume B is represented in a redundant
digit set. Since we shall prove that the resulting S is
in the same interval, and may also be in redundant
representation, the algorithm is suitable for modular
exponentiation.

Theorem 3.2 Algorithm 3.1 correctly computes S
such thet S = AB (mod m) and —m < S < m. Fur-
thermore the quotients q; satisfy the bound
losl < [(«(2* +1) +0277] -1 1
in the parameters a,r and 0, } < o < 1, r € {0,k}
and 21 < o < 2,
Proof: Since the multiplier digits b; are being added
into successively shifted values of S, it is easy to see

that S satisfies the following invariant at the label L
during the loop:

n—1

I: S=4- Z b;280-1-1) (mod m).
=i+l
Hence when i = —1 we have S = AB (mod m)

d
at label L and at termination of the loop S
AB2*+7 (mod m) since b_; = b_1 = 0.

From the updating of S we obtain

IS| < 2%|S—q:2"m|+om
< (a2%t 4 a)m, (2)

but for : = —1 and —2 a slightly sharper bound is

IS| < 2¥+Tam < 25t m,

(3)

279

Equation (3) assures —m < § < m after the final
division by 2%+, Note that for r = 0 the algorithm
stops at ¢ = —1, and by (3) the proper reduction has
then been obtained when a final division by 2* is per-

formed.
The bound (1) follows from (2) and the way g; is

determined: |37= — gi| < a, implying
lg:| < a(2* + 1) + 027" (4)
]

The parameter o specifies the “quality” of the quo-
tient determination, a = % requires an exact division
of S by 2"m, whereas larger values of « allow more im-
precise values of g;, e.g. as determined by table look-
up. The value r = 0 allows the algorithm to stop
at 4 = ~1, but the value of the bound (1) for ¢; is
lower for r = k. Hence we shall choose » = k in the
following.

The range of values of g; is crucial to an implemen-
tation of the algorithm, since g;m must be computed
or otherwise made available in each cycle. It would
then be convenient if ¢; belong to the same digit set

bi, i.e. |gi| < o. By ?4) |gi] < o+ 1 can be achieved

1
(1-2"%0+1
T¥r1r ®)

As in high radix multiplications with recoded mul-
tipliers and in SRT division, we here face the problem
of making multiples ¢;2*m and b; 4 available. One way
of doing this is to represent the digits b; and ¢; them-
selves in a smaller radix, e.g. base 4 using the digit set
{-2,-1,0,1,2}. A base 64 digit d, —42 < d < 42, can
thus be represented as:

a <

d=az42+014+ao, a; € {_2)"110;112}) (6)
implying that all multiples b; and ¢; can be generated
by shifts and two adds. For base 256 a tree-structure
of three adders is similarly sufficient to generate multi-
ples in the range [—170; 170]. Note that such hardware
corresponds to a “rectangular aspect-ratio multiplier”
producing the product of nk by k-bit operands, using
base 4 for the multiplier.

If in general we assume that k = 2p and represent
digits d as

r-1
d=) 4#a, a;€{-2,-1,0,1,2}
i=0
then —dipaz < d < dypaz Where dpgz = %(4” -1)=

22k —1).
We thus choose 0 = dpq. and find from (5) that it
is sufficient that o satisfies

2(2* —1)% 4 2

“< TR@E LD

< % (M

so some sample values of the bound for & are then:

k

(8)

which will assure that |g;] < o when also |b;| < o.
Note that for k = 2 the bound (7) requires a < 3,
which is obviously not possible.

Based on the value of « it is now possible to deter-
mine how many leading digits of S are needed to find
an estimate of ¢; in Algorithm 3.1. Assume that g; is
determined at label L in the algorithm as

— round (54
g; = roun m—

where A is the truncation error by considering only
some leading digits of S. Then from

S . S _S+A|l |S+a
Pm B = |2k, T 2k, %m &
Al 1

= |2km 2

we find that |52 — ¢;| < if |A| < (@~ 3)2*m.

Since by (2) and (7) we have |S| < 2(22% + 2*)m <
2nk+2k it ig sufficient to use an accumulator of width
(n + 2)k radix 2 signed digits, where all operands
are initially positioned such that m has precisely 2k
leading zeros. If p leading digits are extracted from
the accumulator containing S, then the truncation er-
ror A satisfies log, |A| < 2k — p + [log, m], hence
p=Fk+1— [logy(a — })] is sufficient to assure |A| <
(a— %)2"m. Since S is in signed-digit binary a subse-
quent conversion into sign-magnitude [4] is needed for
the table look-up. Note that only the magnitude part
is needed for the look-up since aign(q.-{) = sign(S{,
thus using the values of o from (8) we obtain the fol-
lowing sufficient table sizes:

k | Table size

(9)

The size of the table entries depends on the encod-
ing of ¢; needed subsequently. An alternative is to
compute the estimate of ¢; as the product of the lead-
ing digits of § by a pre-computed approximate recip-
rocal of m. This reciprocal then has to be available
to at least the same number of bits as used for table
look-up. By a detailed analysis for the case k = r = 2
Takagi in (8] found 8 leading digits of S sufficient,
equivalent to a table size of 256. But the approach
there was to compare digits of S against bounds de-
rived from Robertson diagrams, a similar method was
also used in [5] for k=32.

280

4 Montgomery Modular Multiplica-
tion

By a clever change of residue system it is possible
to simplify the determination of g;. The trick is to
trade reduction modulo m with multiplications and
reduction modulo », where r is chosen such that the
latter operation is simple, e.g. where r is a power of the
base of the arithmetic. This method is based on [2],
for completeness we shall here repeat the background
on the residue system.

Given m choose r > m such that ged(m,r) = 1
and determine r~! as the multiplicative inverse of r
modulo m. Also determine m/,0 < m’ < r, such that:

(10)

which is equivalent to requiring that! | — mm’|, = 1,

so m' is the multiplicative inverse of (—m) modulo r.
We then define a new residue operator, mapping

integers into Z,, = {i € Z|0 < i < m} as follows:

-1

el —mm' =1

Definition 4.1 The mapping [lm : Z — Zy, is de-
fined by:
[alm =1 €2y fora€eZ

if and only if i = (ar) mod m, or equivalently a =
ir~1 (mod m).

We will denote [a],, the M-residue after Peter Mont-
gomery who suggested this residue system in [2].

At a first glance it looks like multiplication now has
become more complicated since both multiplicand and
multiplier contain the factor », whereas the product is
only supposed to contain a single factor ». But the
product of the two residues also has to be reduced,
and it turns out that this process is simplified in the
sense that now only reductions modulo r are needed
(and not modulo m).

Algorithm 4.2 M-reduce(t)

Stimulus: An integer t such that 0 <t < rm.
Integer constants m,r,m',r~1 such that
ged(m,r)=1,r>m > 2 and
rr~l —mm! = 1.

Response: An integer u, u = (tr~1) mod m.

Method: g := ((t mod 7)m’) mod r;
u:= (t+ gm) div r;

ifu>m then u:=u—m;

The simplification occurs when r is chosen as a
power of the radix of the arithmetic used, so that the
operations mod r and div r become trivial.

Theorem 4.3 Algorithm 4.2 correctly computes u =
(tr~!) mod m givent, 0 <t < rm.

!Define |a|r = a mod r.

Proof: Observing that ¢ = tm' (mod r) we have
gm = tm'm = —t (mod r) and hence that r divides
t+ gm. Also ur =t (mod m) so u = tr~! (mod m),
and finally 0 <t +gm < rm+rm, 50 0 < u < 2m
before the final adjustment. a

Now let z = [a]m and y = [b],, and compute z = M-
reduce(zy), then z = zyr—! mod m and

ab= (zr 1) (yr~!) = zr~! (mod m),

hence z = [ab],, since 0 < z < m.
The function M-reduce(-) can also be used to com-
pute M-residues [],, since

[a]m = M-reduce((a mod m)(r? mod m)),

where the constant r2 mod m can be pre-computed
for the system. By Definition 4.1 the function M-
reduce(-) directly maps M-residues back into the inte-
ger domain.

If many modular multiplications are to be per-
formed then the cost of mapping back and forth can be
amortized, and the multiplications then become sim-
pler, since only reductions modulo » will be needed.

We shall now modify Algorithm 3.1 for interleaved
modular multiplication into an algorithm operating on
M-residues. As before we shall reduce the number of
c)krcles by assuming that the multiplier is given in radix
2%,

Algorithm 4.4 (Montgomery Modular Multiplica-
tion)

Stimulus: 4 modulus m > 2 with ged(m,2) = 1
and integers k > 2,n > 1 such that
m < 2kn-2,
With r = 2" integers r=! and m' are
given such that rr~! —mm' = 1.
Also integers A and B are given where
-m< A< mand -m < B < m with
B = Z?=0(2")'b.~, by =0 and b; € D =
{—0,---,0} for 0 < i < n—1, with
2%-1 < 5 < 2k,

Response: An integer S such that —-m < S < m and
S5 = ABr~! (mod m)
Method: S:=0; i:=0;
while : < n do
L: g¢;:=((S mod 2*)m’) mod* 2%;
§:= (S5 + gim) div 2% + b, 4;
1:=14 1;
end
Where: For all a, a mod* 2F = a (mod 2*) and

—2F=1 < g mod* 2% < 2k-1,

Observe that here the values of g; belong to a subset
of the digits of B, and that ¢; is determined directly
from the least significant k digits of S. For an imple-
mentation also note that only the least significant k

281

bits of m’ are needed (neither is »~! ever used), and
since m’ is a constant for the system, a table look-up
is feasible for moderate values of k. Also note that m
is always odd for cryptosystems, so here ged(m, 2) = 1
is fulfilled.

Theorem 4.5 Given two M-residues A = [a], and
B = [b]m, Algorithm 4.4 correctly computes S, such
that [ably, = S = ABr~!(mod m) with -m < S<m
fork > 2.

Proof: As in the proof of Theorem 4.3 we note that
gi = Sm’ (mod 2*) s0 g;m = —S (mod 2*) and hence
that 2% divides §+¢;m in the updating of S. Next we
want to establish that the invariant

i-1 i-2
I:2¢6-Yg— 4. ij2k‘i +m- quq.],zkj
3=0 3=0

holds at label L during the loop. The invariant holds
trivially for 2 = 0 ang for i = 1, defining the value
of a sum to be zero when the upper bound is smaller
than the lower, and noting that go = 0. Assuming
it holds for i = ¢, from the updating of S, 2%§’
S + qum + 2%by A, where §' is the new value, we then
obtain:

-1 L-2
2ktg! A b2 pme Y g2
=0 Jj=0
+ 2*=Ygm 4 2%, 4
/4) -1]
A b 4 m- Y gia2M,
3=0 3=0

hence the invariant holds for 7 = £ + 1. We then im-
mediately find that upon exit of the loop

n—-1

AB+m- Z qj+12kj

j=0

2kng (11)

80 § = ABr~! (mod m}.
Equation (11) also allows us to find a bound for S
since |g;} < 2%-1

kn __
|S| < 2——knm (2kn—2 + 2k—12 1)

2k — 1
1 2k—1
< m(z+—2k_1)

so that |S} < m for k > 2.
a

Algorithm 4.4 has been formulated such that the
multiplier B is assumed to be in redundant form, and
such that the computation of S can be performed in
redundant arithmetic. For & > 2 the result S can thus

gen. multiplier

| digits b;]
| S q L - - - - & - - 1
| gen. quotient I
i digits g; |
[I
l I
\ U = b A, U:= —biA; U:=-2'¢m : clock cycle
Lo - - - - - - B L - - - - - - - 9
| s=2ts+U 5:=85+U =s+v ||
L - - O . . - - - - - - __ _ _ - - - - J

Figure 1: S-Scheme, internal pipelining of modular multiplication.

be used as a new multiplier, as needed in modular
exponentiation, but it may have to be recoded into
another digit set.

In this method operands initially have to be con-
verted into the special residue system. This can be
achieved by Algorithm 4.4 by multiplication with the
pre-computed constant 7 mod m. The algorithm can
also be used for the final conversion back, since multi-
plication by the constant 1 maps S back into an ordi-
nary residue s, however such that —m < s < m, where
s still is in redundant representation.

5 Comparison and Implementation

Considerations

The hardware requirements for implementations of
the two algorithms are basically the same, the ma-
jor component being a multiplier structure and a re-
dundant adder for the updating of S. Assuming that
the partial products g;m and b; A are to be computed
by a nk-by-k rectangular aspect-ratio multiplier as
discussed in Section 3, the radix 2* digits ¢; and
b; have to be available in radix 4 over the digit set
{-2,-1,0,1,2}. If g; is determined by table look-up,
it is easy to provide g; in the appropriate representa-
tion and encoding.

In general, the multiplier B is the result S of a
previous modular multiplication, hence B is assumed
to be in borrow-save (signed-digit, base 2) and needs
to be recoded. Grouping pairs of signed digits, radix
2, directly provides a representation in maximally
redundant radix 4, digit set {-3,-2,-1,0,1,2,3},
which can easily be converted into minimally redun-
dant radix 4, digit set {—2,—1,0,1,2} with limited
carry propagation (e.g. see [4]).

For the modular multiplication of Algorithm 3.1,
the determination of g; severely limits the size of k,
due to the number of leading digits of S needed ei-
ther for a table look-up (cf. (9)), or for multiplication
by a pre-computed reciprocal of m. However, in the
Montgomery method of Algorithm 4.4, k digits of S
are sufficient, and thus by exploiting symmetry a ta-
ble of size 2% entries will suffice. Hence this method
is feasible for larger values of k, but otherwise the two
algorithms are very comparable in complexity as sum-

marized in Table 1, where it is assumed that in the
exponentiation of Algorithm 2.1 both products y x 2
and z X z are computed, although y X z may not be
needed. Note that for RS A encryption e may be much
smaller than m, but for decryption e will then be of
the same magnitude as m.

System Cycles of mpy’s | Register

I Palyameter] /Sx(npy i#z’ m(? m msclisth |
Alg. 3.1 n= [ﬂfﬂ] n+2 | 2|log,e]+2 | (n+2)k
Alg. 44 | n=]'1—"—‘-1,:"—“1 n+1l | 2|log,el+4 | (n+1)k

282

Table 1: Complexity of ¢ mod m in radix 2.

Let us now return to the organization of the com-
putations in the individual cycles of the algorithms,
in particular the possibilities of pipelining. Since A is
assumed to be represented in redundant binary (here
assumed to be “borrow-save” encoding), 4 can be rep-
resented as the difference of two words, 4 = A; — A,.
The updating of S either requires three sequential
multiply-adds Sthe S-Scheme, from [5]2, or the three
parallel multiplies in the form of a single larger adder
tree (the P-Scheme), but the value of k could be chosen
about three times as large in the former case within
the same area constraints.

In the S-Scheme each “rectangular aspect-ratio”
multiplier must — within one clock cycle — be able
to compute and accumulate the product of an nk-bit
multiplicand by a k-digit (base 2, redundant) multi-
plier, where nk is of the order 500-1000 and k 1s of the
order 2-10. Due to the need for distributing control
over a very long word-size, the clock rate should not
be too high, which implies that k should be chosen as
large as possible to reduce the number of cycles. Note
that the determination of ¢; here can be overlapped
with one of the multiplies. Given a fixed word-size
nk, the area for the multiplier tree structure is es-
sentially proportional to k, hence the choice of k very
much depends on what is affordable and feasible in the
technology available. A radix 32 (k = 5) RSA imple-
mentation similar to the one described in 5], however
using the P-Scheme, has been realized on a single chip,
albeit fairly large (212 mm? in 1.2 micron).

generate multiplier
digits b;

set selectors

forb; - A

generate quotient
digits ¢;

set selectors
for g; -m

Time

clock cycle

Figure 2: P-Scheme, permitting pipelining of two modular multiplications

For the P-Scheme, the three parallel multiplies in
a single adder tree limits the value of k substantially
compared to the other scheme, which also implies that
the determination of g; becomes simpler. Here it is
not possible to overlap the q-determination with the
multiplies of a single modular multiplication, but if
the two multiplies of a modular exponentiation are
interleaved in a pipeline, then overlap is possible as
indicated in Figure 2.

For a final comparison, compare an S-Scheme im-
plementation for k = 6 with a P-Scheme implementa-
tion with k = 2. The computation of U in Figure 1
requires a 3-to-2 redundant adder with latched out-
put, and the accumulation of S requires a 4-to-2 adder
operating in parallel with the other. The P-Scheme
requires for k = 2 a single 5-to-2 redundant adder
without internal latching necessary, hence requiring
the same amount of 3-to-2 adders as the S-Scheme
does for k = 6. The S-Scheme needs three clock cycles
to complete one cycle of the algorithm, on the other
hand it can potentially run at a higher clock rate. The
most likely bottlenecks are the g;-determination in the
S-Scheme, and the adder tree in the P-Scheme.

6 Conclusions

This paper has presented an analysis of two algo-
rithms, providing results needed in a careful study of
the implementation of modular exponentiation. There
is no doubt that the method of Montgomery, as de-
scribed in Algorithm 4.4, leads to a much simplified
selection of the reduction quotients g;. It also seems
reasonable to conclude that the S-Scheme for pipelin-
ing with a high radix is preferable to the P-Scheme
using the comparably lower radix realizable within the
same area, but final decisions for an actual VLSI im-
plementation requires a more detailed design, together
with timing simulations based on the available tech-
nology.

Acknowledgements

The author wants to thank Holger Orup for fruitful
discussions and the referees for very careful reviews
and constructive comments.

283

References

{1] Ernest F. Brickell. A Survey of Hardware Imple-
mentations of RSA. In Gilles Brassard, editor, Ad-
vances in Cryptology - CRYPTO ’89, pages 368—
370. Springer-Verlag, 1990.

Peter L. Montgomery. Modular Multiplication
Without Trial Division. Mathematics of Compu-
tation, 44(170):519-521, April 1985.

(2]

[3] A Proposed Federal Information Processing Stan-
dard for Digital Signature Standard (DSS). Tech.
Rep. FIPS PUB XX, National Institute for Stan-
dards and Technology, August 1991. Draft.

[4] Peter Kornerup. Digit-Set Conversions: General-
izations and Applications. Technical report, In-
stitut for Matematik og Datalogi, Odense Univer-
sitet, April 1992. Submitted.

Holger Orup and Peter Kornerup. A High-Radix
Hardware Algorithm for Calculating the Exponen-
tial M® Modulo N. In Proc. 10th IEEE Sympo-
sium on Computer Arithmetic, 1991, pages 51-66.

Ronald L. Rivest, Adi Shamir, and Leonard Adle-
man. A Method for Obtaining Digital Signatures
and Public-key Cryptosystems. Commaunications
of the ACM, 21(2):120-126, February 1978.

M. Shand, P. Bertin, and J. Vuillemin. Hard-
ware speedups in long integer multiplication. In
Proc. 2nd Annu. ACM Symp. Parallel Algorithms
and Architectures-SPAA ’90, pages 138-145, July
1990. Also in Computer Architecture News, Vol.
10, No. 1, pages 106-114, March, 1991.

Naofumi Takagi. A Radix-4 Modular Multiplica-
tion Hardware Algorithm for Modular Exponen-
tiation. IEEFE Transactions on Computers, C-
41(8):949-956, August 1992.

[9] André Vandemeulebroecke, Etienne Vanzieleghem,
Tony Denayer, and Paul G. A. Jespers. A
New Carry-Free Division Algorithm and its Ap-
plication to a Single-Chip 1024-b RSA Processor.
IEEE Journal of Solid-State Circuits, 25(3):748—
755, June 1990.

