Efficient Multiprecision Floating Point Multiplication with Optimal
Directional Rounding

Werner Krandick*

Research Institute for Symbolic Computation

Johannes Kepler University
A-4040 Linz, Austria

krandick@risc.uni-linz.ac.at

Abstract

An algorithm is described for multiplying mul-
tiprecision floating point numbers. The algorithm
can produce either the smallest floating point num-
ber greater than or equal to the true product or the
greatest floating point number smaller than or equal
to the true product. Software implementations of mul-
tiprecision precision floating point multiplication can
reduce the computing time by a factor of two if they
do not compute the low order digits of the product of
the two mantissas. However, these algorithms do not
necessartly provide optimally rounded results. The al-
gorithm described in this paper is guaranteed to pro-
duce optimally rounded results and typically obtains
the same savings.

1 Introduction

We present an algorithm for multiplying multipreci-
sion floating point numbers. The algorithm is in-
tended to support an arbitrary precision interval arith-
metic package [5]. As such it has to produce re-
sults rounded in the appropriate direction. Qur algo-
rithm returns either the smallest floating point num-
ber greater than or equal to the true product or the
greatest floating point number smaller than or equal to
the true product. A rounding operation which satis-
fies this requirement is called an optimal directional
rounding. Optimal directional rounding provides a
well defined, implementation independent, semantics
for floating point arithmetic. For this reason, float-
ing point arithmetic with optimal directional rounding

*Supported by the Austrian Science Foundation (Grant
MO022-PHY).
tSupported by NSF-grant CCR-9211016.

1063-6889/93 $03.00 © 1993 IEEE

228

Jeremy R. Johnson'

Mathematics and Computer Science
Drexel University

Philadelphia, PA 19104
jjohnson@king.mcs.drexel.edu

has been advocated even if it is more costly than al-
gorithms which do not produce optimally rounded re-
sults [6]. The IEEE standard 754 for hardware binary
floating point arithmetic supports optimal directional
rounding [4]. Optimal directional rounding can easily
be accomplished for floating point multiplication if the
full product of the mantissas is computed. Floating
point multiplication with directional rounding can be
made more efficient if optimal rounding is not used.
Our algorithm produces optimal roundings yet typi-
cally requires only half as much computing time as
the full product.

We use the “short product”, outlined in Exercise
15 in Section 4.3.1 of Knuth [6], which uses classical
multiplication but suppresses the computation of low
order digits when the two mantissas are multiplied.
This method will asymptotically save about half of
the computing time if both operands and the result
have the same precision. The short product can also
be used in conjunction with Karatsuba’s algorithm for
fast integer multiplication. Other multiprecision pack-
ages either use the full product (Maple V [2], Reduce
[8]), or they use the short product (MPFUN [1]) but
do not provide the accuracy specified above.

The short product computes M +2 digits, where M
is the precision of the result. Qur algorithm is based
on an efficient test to determine if the result obtained
by rounding the short product is the same as that
obtained by rounding the full product. If the test suc-
ceeds then we can return the optimally rounded result
using the short product instead of the full product.
If the test fails we must resort to the full product to
compute the optimal directional rounding. We show
that if the radix used to represent the mantissas is
sufficiently large, the test will almost always succeed.
The radix will be sufficiently large in a software imple-
mentation of multiprecision floating point arithmetic

where the radix is typically chosen to be as close to
the largest single precision integer as possible.

The test first determines if the significant digits of
the short product are the same as those that would
have been supplied by the full product. This test
is performed using the trailing digits supplied by the
short product and can be done in constant time. In
almost all cases the test will be able to indicate an
affirmative answer. If this part of the test succeeds,
we need to determine if the true product is exactly
representable as a floating point number with the de-
sired precision. This will be the case if the trailing
two digits of the short product were zero and all of
the suppressed digit products were also zero. Thus
we need to determine if the suppressed digits were
all zero without actually computing the full product.
This can be done by counting the number of trailing
zeros in the input operands. This part of the test is
similar to an algorithm proposed by Santoro, Berwick,
and Horowitz in [7] for computing the sticky bit.

Section 2 reviews basic notation that is used in
the paper. Section 3 gives a concise presentation of
the main idea. Section 4 supplies rigorous definitions
and proofs for the claims made in Section 3. Finally,
Section 5 presents an empirical comparison of floating
point multiplication with and without the use of the
short product.

2 Notation

Let a be a non-zero integer; let § be an integer
> 1. The representation of a with respect to base g
has B-length

Lg(a) = |logg [al| + 1.

In the sequel B will be assumed to be a power of 2,
namely
B =2¢ with ¢ > 3. 1)

Typically ¢ depends on the wordsize of the computer.
Our algorithm requires ¢ > 3. For all non-zero integers

a
Lg(a) = [La(a)/C]-
Definition 1 An integer a # 0 is called normalized
if
Lg(a) = La(a)/C.

Lemma 1 The following conditions are equivalent for
non-zero integers a:

1. a is normalized.

2. The high-order bit in the high-order B-digit of a
s 1.

3. With n = Lg(a),

2t <ol <.

4. With n = Lg(a),

20n=1 < |a] < 24",

Definition 2 The S-order og(a) of an integer a is de-
fined as

0p(a) = max{k | *|a}

The B-order of an integer is the number of trailing
zeros in its representation with respect to base 3.

For convenience all integers occurring in this paper
will assumed to be positive. Of course, the results
carry over to arbitrarily signed integers. Furthermore,
A and B will always stand for positive integers con-
sisting of n; and ng B-digits, respectively:

ni 12
A=Y anf*! and B=) b/, A,B>0.
h=1 i=1

3 The main idea

This section outlines the main idea. For precise
definitions and proofs see Section 4. Let two floating
point numbers be given with normalized mantissas A
and B and with precisions Lg(A) = ny and Lg(B) =
ny. We want to compute the floating point product
to precision M = max(nj,ny). Let N = min(n,, ny).
The “short product”

h+j—-N
C= Y apb;ptti=n.
h+i2N

can be computed using just

N2 _3N

) +1)

ning — (
digit multiplications (Lemma 4). C will have M + 2
B-digits, where M = max(n;, ny) (Proposition 1).

M42

C= Z ckﬁk_ly

k=1

where the ci’s are f-digits and cpr4+2 # 0.

by by bn-_1 b
anN aN-—1 a)
byyiar bvar by-1a; | by_say bza; ba; biay
bva; by_i1a2 by_jaz | by_zaz b2ay biay
bv-1a3 bn_zas by_szaz | by_aa3 bia;
bsan_2 bzany_3 bian-2 | bran_»
byan_1 bsan_1 byan_y bian_;
byan by_ian baan bian
CM+2 CM+41 M c3 Cc2 C1
Resulting Mantissa

Figure 1: Tllustration of the short product for the case n; < ny with N = min(n;,n;) and M = max(ny, n,).

The short product can be visualized by looking at
the usual pencil and paper method for multiplying in-
tegers. Figure 1 illustrates the case n; < ng with
N = min(n1, ny) and M = max(n;, n;). The indices
of the digit products in each column sum to j, for
J=2,...,M+ N. The error obtained by suppressing
the low order digit products (those to the right of the
column with j = N) is < (N — 2)g¥~! (Lemma 2).
Therefore the M leading f-digits of the product are
the same as the M leading S-digits of the short prod-
uct if the error term added to ¢y does not produce
a carry, corrupting cs. Moreover, it will be shown
(Proposition 2) that the leading M(¢ binary digits of
the product are the same as the leading M(¢ binary
digits of the short product if the error term added to
¢z does not produce a carry into the two high order
bits of ¢;. More explicitly, let 7 be the number formed
by the ¢ — 2 low order bits of ¢3. Clearly, v < %. If

8
4
then the M(leading binary digits of C agree with the
M(¢ leading binary digits of AB, i.e. the M F-digits
obtained by normalizing C are the same as those that
would have been obtained by normalizing AB.

The above condition will not be satisfied if

76{%4,...,%—(1\/—2)}

T+ (N-2)<

Assuming that all g bit-combinations of length ¢ — 2
occur with equal likelihood as values of -y, the proba-
bility that the condition is not satisfied is
4N -2)
P=——g

In practice this number will be very small. For exam-
ple, if N = 50 and 3 = 22° then p < 10-6.

Assume now that the M(leading bits of C' have
been used to construct a normalized floating point
number ¢ of precision M. Let ¥/ be the number formed
by the remaining bits of C. For an explanation of the
rounding procedure assume that ¢ > 0 and that the
number to be returned is “the smallest floating point
number ¢’ of precision M which is greater than or
equal to the true result”. Clearly, the number ¢/ will
either be ¢ itself or c*, the neighboring floating point
number to the right of ¢. If ¥/ £ 0, ¢’ = ¢t. If y/ = 0,
¢’ will be ¢ if and only if the suppressed digit products
were all zero. The latter is the case if and only if

05(A) + 05(B) > N — 2

(Proposition 3). So the result returned is
+
d = { ¢
c

4 Definitions and proofs

if ¥ #0or og(A)+0s(B) < N —2
otherwise.

Definition 3 The short product of A and B with re-
spect to an integer N is defined as

C = AXNB
ChtioN apb; f*HN 2 < N <y +n,
= Ax,B ifN<2
0 if N >n;+ng

Remark 1 The short product is a generalization of
the ordinary product. It is obtained by suppressing cer-
tain digit products when multiplying A and B. Here
are some useful elementary properties of the short
product.

1. For N <2, Axy B=AB.

2. AX(n4n) B= an,bn,.

3. For2< M < N <njy+ny, f¥N2(Axy B) <
,BM_Z(A XM B).

4. IfA< A then Axy B< Axy B forallN.
5. Forall N, Axy B= B xy A.

Proposition 1 Let 2 < N < nj + ny. The length of
Axny B s

1. in general

ni+ny—N+1< Lp(AXNB) <ny+ny,—N+2,

2. for normalized A and B
Lg(Axny B)=n1+ny—N+2,
and

((ni+na—N+1)+((—2) < L(Axn B) <
¢{(n1+n2— N +2).

Proof. Using the statements of Remark 1 the first
inequality in statement 1 is obtained as follows:
B¥"2(Axy B) > P 2(A X(n,4ny) B)
ﬂﬂl+n2~2(ﬂﬂ1—l x(n.+n2) ﬂn,—l)

= ﬂ"‘+""2, 2
and so, Lg(A xy B) > (m1 +na—1)— (N -2) =
ny+ny—N+1.

The second inequality in statement 1 is proven sim-
ilarly:

BN-%A xn B)

1\

ﬂO(A X9 B)
AB
(™ =1 - 1)

ﬂn1+ﬂz,

I IA

<
<
and so, Lg(A xny B) < (ny +ng) — (N —2) =ny +
ny — N + 2.
If A and B are normalized, Inequality (2) can be
strengthened to

BN~2(A xn B) >

ﬁﬂl+n2—2(_§_ﬂﬂ1—1 X (ny+n3) gﬂna—l) = gﬂ"ﬁ-ﬂa-l.

This proves the first inequality in statement 2. O

231

Definition 4 The error €y of the short product Axn
B is defined as

0 if N <2
AB if N >ny+ng

{ AB—BN"2(Axy B) if2< N <nj+n;
EN =

Remark 2 The errorey s the accumulated contribu-
tion to AB of the digit products suppressed in Axy B.
For2< N <n;+n,y

EN = E ahbjﬂh+j—2. (3)

h+ji<N

Lemma 2 An error bound in case 2 < N < n;+n3
is given by
en < (N —2)pN-L

Proof. The bound is derived from Equation (3):
EN = Z a),bjﬂ“'j-z

h+j<N

N-1
< 3 Y -1

1=2 h+j=i

N-1
= Y a-1E-1-

Nos
= Y U+)@E -1

1=0

BN 21

< (N=2)(8-1) 51
= (N=-2)(B-1)(B"?-1)
< (N-2)pV o

Lemma 3 Let2< N < n; +ny. Then
BN-2(Axn B) < AB < BN "?(AxnB)+(N-2)gV .

Proof. The first inequality follows from combining
statement 1 of Remark 1 with statement 3 (letting
M = 2). The second inequality follows from Lemma 2
and Definition 4. O

Proposition 2 Let A and B be normalized, and
let ny,na > 2. Let N = min(ny,ny), let M =
max(n1,ny), and let

M+2

C=AxyB=) ap! 4
k=1

with B-digits cx. Let v be the number formed by the
(¢ — 2) low order bits of c5. If

T+ -9<f8)

then the M(leading binary digits of C agree with the
M(leading binary digits of AB.

Proof. According to Proposition 1 Lg(C) = M + 2.
Furthermore, Proposition 1 implies

L(C) 2 (M + 1)+ (¢ - 2),

hence at most two high order bits of CM42 are zero.
Thus, the M(leading bits of C are in the S-digits
€M+42,---,¢3 and possibly in the two high order bits
of cz. Inequality 5 thus implies that the M(leading
bits of C and C+(N —2)f are the same. Therefore the
M(leading bits of SN ~2C and ¥ -2C + (N —2)gN-1
are the same, and Lemma 3 implies the assertion. O

Proposition 3 Let 2 < N < ny + ny. Then
en =0 if and only if 0p(A) +0s(B) > N —2.

Proof. Due to Equation (3) the error ¢y vanishes if
and only if

(axbi £0=>k+1> N). (6)

It thus suffices to show that (6) is equivalent to og(A4)+
0p(B) > N —2.

1. Assume (6). Let £ = 0g(A), A = 0g(B). Then
art1 # 0 and byy1 # 0, hence acy1byyy #0, and
so, because of (6), k+A+2> N.

2. Assume 0g(A) + 0g(B) > N — 2. Assume further
that azb; # 0. Then k > o0g(A) +1 and | >
0s(B)+1, and hence k+1 > 0g(A)+0s(B)+2 >
N.O

Lemma 4 Computing the short product Ax y B using
Equation (2) requires

{ n1n2—(N’;3N+l) if2<N<n+n,
BN =

ni1ny ifN<2
0 tf N >ny+ny
(™

digit multiplications.

Proof. It suffices to show that for 2 < N < n; + ny
the sum on the right hand side of Equation (3) consists
of %:1’1+1 terms. For each I € {2,..., N —1} there
are | — 1 pairs (h, j) such that h + j = [, hence the
sum in (3) consists of

N-1 _ 2 _ 9
E :(1_1)= u(N_1)= N -3N+2
2 2
1=2
terms. O

The following lemma is useful for implementations
of the short product calculation.

Lemma 5 Assume
2SNSTL1+1’!2 A 1S7l1 A lsnz.
Then the lowest index k such that ap contributes to
AxXy B is
k = max(N — ny, 1),
and the lowest indez | such that b; contributes to Ax y
B is
I = max(N — ny,1).

Proof. Due to statement 5 of Remark 1 only the first
statement needs to be proved. Clearly,

k=min{«k | 1 <& <nAIA(1 < A< naAk+A > N)}

Since IA(1 < A < na3 Ak + A > N) is equivalent to
1< N —-—k<ngy,

kE=min{k | 1<xK<n3 A1<N-k<ny}
Now let
K = max(N — ny,1).
It will be shown that K = k:
1LIfEN —ny < 1lthen K = 1,501 < K < ny,

N-—-K=N-1and, of course,]l < N —1< ny.
Obviously K is minimal with 1 < K,so K = k.

22IfN-ny>1then K=N-ny,s0l < K<m
and N — K = n;. But clearly 1 < ny < ns.
Obviously K is minimal with N — K < n,, so
K=k O

Table 1: Speed-up Due to Short Product.

P o

1 | 139% | 100% |
2 | 113% | 100%

3 | 104% | 89% |
4 | 98% 81%
5 | 92% 76%

10 | 74% | 64% |
20 | 63% | 57%
30 59% 55%

40 | 57% | 54% |

50 | 56% | 53% |

5 An experiment

The performance of two algorithms for floating
point multiplication was compared for various preci-
sions N of the operands. Both algorithms used the
classical multiplication technique. Algorithm 1 used
the full product, algorithm 2 used the short product
with respect to N in the way described. Both al-
gorithms were implemented in Portable C using the
saclib-library [3] of computer algebra programs, and
the radix used was @ = 22°. Table 1 lists the comput-
ing time ratios

T n
in percent. In this experiment mantissas were rep-
resented as saclib-integers, i.e. as lists. In an array
implementation one would expect to obtain timing ra-
tios which are closer to the ratios

_ BN
U—W

of the respective numbers of digit products required
by the algorithms. According to Lemma 4 the num-
ber un of digit products required by Algorithm 2 was
obtained from Equation (7) by letting ny = n, = N.

The table suggests that in our implementation the
full product should be used for precisions < 4; for
higher precisions it is more efficient to use the short
product. It is possible to use Karatsuba’s method in
order to compute the short product. For details of the
implementation see [5].

References

[1] David H. Bailey. A portable high preformance
multiprecision package. Technical report, NASA
Ames Research Center, 1992. RNR Technical Re-
port RNR-90-022.

[2] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L.
Leong, M. B. Monagan, and S. M. Watt. Maple
V Language Reference Manual. Springer-Verlag,
New York, 1991.

[3] George E. Collins et al. saclib user’s guide. Tech-
nical Report RISC-Linz Report Series Number 93-
19, Research Institute for Symbolic Computation,
RISC-Linz, Johannes Kepler University, A-4040
Linz, Austria, 1993.

[4) IEEE. IEEE Standard 754-1985 for binary
floating-point arithmetic, 1987. Reprinted in SIG-
PLAN 22,2,9-25.

[5] J. R. Johnson and W. Krandick. A multipreci-
sion floating point and interval arithmetic pack-
age for symbolic computation. Technical Report
RISC-Linz Report Series Number 93-20, Research
Institute for Symbolic Computation, RISC-Linz,
Johannes Kepler University, A-4040 Linz, Austria,
1993.

(6] D. E. Knuth. The Art of Computer Program-
ming, volume 2. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 2nd edition, 1981.
Seminumerical Algorithms.

[7] Mark R. Santoro, Gary Berwick, and Mark A.
Horowitz. Rounding algorithms for IEEE multipli-
ers. In Milos D. Ercegovac and Earl Swartzlander,
editors, Proceedings 9th Symposium on Computer
Arithmetic, pages 176-183. IEEE Computer Soci-
ety Press, 1989.

[8] T. Sasaki. An arbitrary precision real arith-
metic package in REDUCE. In E. W. Ng, ed-
itor, EUROSAM 79, Collogue International sur
les Méthodes de Calcul Symbolique et Algébrigue,
Marseille, France, number 72 in Lecture Notes
in Computer Science, pages 358-368, Berlin-
Heidelberg-New York, 1979. Springer-Verlag.

