An Accurate LNS Arithmetic Unit Using
Interleaved Memory Function Interpolator

David M. Lewis

Department of Electrical Engineering
University of Toronto

Abstract

This paper describes a logarithmic number system
(LNS) arithmetic unit using a new method for polynomial
interpolation in hardware. The use of an interleaved
memory reduces storage requirements by allowing each
stored function value to be used in interpolation across
several segments. This strategy can be shown to always
use fewer words of memory than an optimized polynomial
with stored polynomial coefficients. Many accuracy
requirements for the LNS arithmetic unit are possible.
Although a round to nearest would be desirable, is cannot
be easily achieved. The goal suggested here is to insure
that the worst case LNS relative error is smaller than the
worst case FP relative error. Using the interleaved
memory interpolator, the detailed design of an LNS arith-
metic unit is performed using a second order polynomial
interpolator including approximately 91K bits of ROM.

1. Introduction

Logarithmic number system (LNS) arithmetic has
been the subject of considerable attention for low and
moderate precision hardware implementations, but has
met with less success in higher precision implementations.
This paper describes techniques used to design an LNS
arithmetic unit with worst case relative error better than
the worst case relative error of IEEE 754 single precision
arithmetic [12]. The analysis of the data path require-
ments will also show that this kind of accuracy requires
more accurate, and hence more expensive, approximation
of the LNS arithmetic functions than has previously been
provided by LNS arithmetic units.

Achieving this level of accuracy requires better
methods for approximation of the LNS arithmetic func-
tions, which is made possible by a new strategy for func-
tion interpolators. The principles of an interleaved
memory function interpolator are summarized in this
paper. This paper shows how to use a second order inter-
polator to perform LNS arithmetic with about 91K bits of

This work was supported by Defence Research Establishment
Atlantic.

1063-6889/93 $03.00 © 1993 IEEE

ROM and two multipliers.

The remainder of the paper is organized as follows.
Section 2 introduces terminology and reviews related
work. Section 3 introduces the interpolator using inter-
leaved memory, and section 4 provides the design
analysis for a 32-bit LNS arithmetic unit. Section 5 con-

cludes the paper.

2. Terminology and Previous Work

Before describing the details of this work, an introduc-
tion to LNS arithmetic will be provided and previous
implementations of LNS arithmetic will be reviewed.

2.1 LNS Representation and Arithmetic

Base-two LNS represents a number a by the pair
<$q.€,> , Where s, is a sign bit, and ¢, is an N-bit fixed
point number. The value represented is a = (-1)™ x 2.
Special representations, such as 0, are ignored.

FP and LNS representations have different error
characteristics. The representation error of an FP number
depends on the particular number, while for LNS the error
is independent of the number. Both systems have the
same average error, but LNS has a smaller worst-case
error. On the other hand, roughly half of the FP numbers
have smaller error than LNS. We use the worst case error
as the property of interest, since this is all that can be
guaranteed in any computation. The combination of the
constant error and better worst-case behaviour of LNS
make it attractive as an alternative to FP.

This paper uses relative error to consistently compare
different alternatives. Comparing a F fractional bit LNS
representation to a FP representation with an F bit
significand and hidden bit, we first observe that the FP
representation has relative error ranging from gqp = 27772,
to ggp =277, The latter represents the worst case error.
LNS represents e, to an absolute accuracy of 277!,
corresponding to a constant relative accuracy of
s =22 = 1= In(2) x 271 26931 x 2F - = 2F-15B

LNS B
about half a bit more precision than the worst case error in
FP.

An accurate representation is of little use unless the
arithmetic operations produce results with a similar level
of accuracy. Multiplication and division in LNS are exact
operations, as they require addition or subtraction of fixed
point numbers, but addition and subtraction can introduce
errors. Since FP performs rounding on all operations,
LNS arithmetic is potentially more accurate than FP (in
worst case) using the same number of bits, provided that
addition and subtraction are implemented accurately.

Addition and subtraction of a and b, represented
respectively by <s,,e,> and <sp,e,>, can be performed
without loss of generality by assuming that a and b are
both positive and e, > e,. The standard algorithm to
compute e, for LNS addition, such that ¢ =a + b and
subtraction where ¢ =a — b, where c is represented by
<Sc,e.> is shown in (2.1), using f,(r) as defined in (2.2),
and f,(r) for subtraction as defined in (2.3).

€. =€, +fa(r)o r=ep—e, (21)
fa(r)=logy(1 +2") (2.2)
fs(ry=logy(1-2") 2.3)

The central problem in LNS arithmetic is finding a
low cost, accurate method of computing £,(r) and f£.(r).

2.2 Previous Related Work

Most previous approaches for LNS arithmetic use
polynomials to approximate the f,(r) and f£,(r), although
their descriptions are not usually stated in these terms.
Interpolation approximates some function f(x) by an
approximation f(x) . The range of x is divided into a set
of subintervals {x;,x;,;), with 4 = x;,; —x;. Within each
subinterval, a kpolynomxal f(x) is used to approxxmate fx)

using f(x) Za, xx/. A direct lookup table, storing f(x)

for every value of x is equivalent to a Oth order polyno-
mial with 2 =27F. 0-order approximation with variable
in different reglons has been used in the design of an LNS
arithmetic unit [2]. The value of # is chosen to be as large
as possible while still meeting the error constraint. Linear
approximation [3], and linear approximation with a differ-
ence correction array have also been used [4]. Another
approach has been to perform multiplication and division
using LNS, and addition and subtraction in FP, converting
between the two systems using a linear interpolator [5]. A
hardware architecture for general kth order polynomial
approximation of functions has also been described [6).
In this approach, a memory is used to store (k + 1) poly-
nomial coefficients a; for each of the polynomials in each
subinterval, and a datapath performs the polynomial
evaluation.

3. Interpolation Using Stored Function Values

To compare the approaches for interpolating functions
using polynomials, some background information on
polynomial interpolation will be presented here.

In function interpolators with multiple polynomials for
distinct intervals [x;,x;,;) it is common to perform the
translation x, = x-x;, which translates the interval [x;,x;,;)
to [0,h). This translation can be easily performed in
hardware by requiring that 4 be a integral power of 2, and
splitting the binary representation x into two parts; the
upTr its, appropriately shifted, produce the value of

i= % which is used for addressing the memory. The

remaining lower bits produce X,. The function f(x) is

now computed using x, as f(x) Za, x xi. Obviously
j=0
the coefficients a; must be altered wnh respect to those in

section 2.2 to compute the translated function. This form
of computation reduces the widths of the data paths for
performing the computation, since x, € [0,h) requires
fewer bits to represent than does x.

The stored function value interpolator uses a slightly
different approach for interpolation intervals. The inter-
leaved memory interpolator uses a ROM containing the
actual function values f(x;), rather than stored polynomial
coefficients ;. To develop the interleaved memory
approach, we will begin with a non-interleaved stored
function value interpolator, shown in Figure 1. In this

interpolator, the function values are stored in a % word

memory, with each memory word storing the k+1 data
words, each of which is a set of function values
S, -+ f(xis). In this case, i is chosen according to
(3.1),and x, € [0,k x h).

. X
l:[kthXk 3.D

It is convenient to consider the polynomial interpola-
tion with stored function values in terms of the translated

xl
function on u = e with g(u) = f(x). The interpolation is

performed using the standard Lagrange formulation [8],
which will be presented here in sufficient detail to
describe the alterations made to it later in this paper.

Lagrange interpolation determines the polynomial
coefficients that fit a kth order polynomial to a number of
points (u;,g(x;)), j=0,1,....k. This is expressed as the
system of equations (3.2)

Ap+ayXuj+ - +a ><uf=g(uj) , u;=0,1,..k

(3.2)
Using the translation above, u;=J, and the system of
equations can be defined using the Vandermonde matrix

xLSB’s x MSB’s
ROM
£(x;) [f(x ;01 X0k

-1

\'
3 4 a ag
E *

: Y =

+

'

Figure 1. Polynomial interpolator with stored function
values

Vi. Vi is a (k+1) x (k+1) matrix that can be used to
express (3.2) in matrix form, as given in (3.3).

Qo [g(0)
a; g1

Vx| |=| (3.3
a| Letk)

The entries of Vi, v, are given by uizl, or for the
transformation given, (i—1)Y"". 0° is taken to be 1. The
interpolation uses a; determined by (3.4).

o 2(0)
a g(1)

Cl=vit x| (3.4
dk (k)

The purpose of transforming into u is to have a set of
u; which are constant regardless of & or i, so V, is also
constant regardless of the particular x. Since V; is con-
stant, so is V', and the a; can be calculated by datapaths
designed to perform multiplication by V'. This is much
less complicated than general matrix multiplication. Each
of the multiplications by integers in V;' can be performed
by a specialized constant multiplier, which is much less
complex than a general integer multiplier. For example,

multiplication by 6 would be performed using a single
adder with the multiplier shifted by one and two bits as its
respective inputs. For example, V, and V, are shown in
Figure 2, together with V3! and V.

o 130 ol
1 e e
Vz_l ‘1‘ 2=l 2
1, L
2 2
1 0 0 0 0
1000 0 _% _3%_%
rrr s 13 7 1
Ve=[12 4 8 16 vil=|35 1B 19 7 11
24 3 4 3 24
13927 81 s, >
1416 64 256 T 2 -2 iy
4 1t 11
L2 "6 3 6 24

Figure 2. Example matrices v, and v, with inverses

The memory values are prescaled to eliminate the
need for division by factors other than powers of 2 (by 1/3
in the case of V3') and a dedicated multiplier uses the
minimal number of adders for each multiplication. Multi-
plication by V3! requires 6 operations and multiplication
by 3 x V3! requires a total of 36 addition or subtraction
operations,

A minor change can further reduce hardware cost.
The complexity of (3.4) depends on the binary representa-
tion of the numbers in V;'. This in tum is due to the
range of integers in V,, which range from 0 to k*. The

xe .
transformation u = i d, for some specified 3, uses the

same set of points, but results in 4 having a smaller range.
u now has the range [-8,k—3), and the Vandermonde
matrix is redefined as Vg5, with entries
Vis,ij = ((—1-8)Y™D. The magnitude of the entries in V5
can be minimized and constrained to be integers by

choosing & = % . The matrices V,; and V4, and their

inverses are shown in Figure 3. Multiplication by V;},
requires 3 additions, and 3 x V3, requires 15 additions,
less hardware than a typical integer multiplier.

This structure can be modified to use interleaved
memory, which reduces the amount of ROM storage
required. Instead of using each distinct set of function
values f(x;) - - - f(xi4) for the interpolation of f(x) with
x€ [x;,x;,4), each distinct set of function values is used
only for interpolation for x€ [x;43,X;4a+1). The motivation
for this is the observation that the maximum error differs

between subintervals [x;,x;,;), where i<j<i+k.

Choosing A= % will always result in the selection of

1-11 01]‘1)
V21=100 V2‘1=——0—
' 2 2
111
1,1
2 T2
0 0 1 0 0
12 2 1
1-24-816 - 20 £ L
P lf 23 5; 112
Vaz=|1 0 L=l 2 .3 2 L
2 11(1)?(1) Var=1"24 3 4 3
11 11
1243816 5% ° % 1
1 11 1 1
l24 "6 4 "6 2

Figure 3. Sample values of V; 5 and inverses
the interval that minimizes interpolation error.

This modification on its own appears to increase the
amount of storage required, since each set of k£ + 1 func-
tion values is used now to span the interval an interval 4
wide instead of £ x A. This potential problem is avoided
by storing the function values in an interleaved memory.
The interleaved memory allows simultaneous access to
any k + 1 consecutive words, and reduces the amount of
memory required.

The hardware implementation of interleaved memory
replaces the ROM in Figure 1 with a collection of
P =2F >k + 1 ROMs, as shown in Figure 4. P is required
to be a power of 2 so that the computation of a value
modulo P is easy to perform. Each of the values f(x;)
through f(x;,,) are located in words % or % +1. An
incrementer is used to generate the latter value, and a col-
lection of multiplexers selects the appropriate address for
each ROM. This method reduces the total amount of
ROM by a factor of k +1.

A better approach in VLSI is to perform the interleav-
ing on a smaller collection of words. A single ROM, with
P + k function values stored in each word can be used, as
shown in Figure 5. A set of multiplexers can be used to
select the appropriate function values. This increases the

memory requirement by a factor of Pk

, but can reduce

area in a VLSI circuit because of the merging of multiple
ROMs into a single ROM.

It can be shown that the optimal choice for A is
exactly the same as the optimal choice for 8. This coin-
cidence can be exploited to redefine the interpolation
equations in a simpler manner as shown in (3.5) through
(3.7). This defines an interpolation on the interval
[xiXiyy) using f(x;p) through f(x;,.), which is
equivalent to the previous description. It is also clear

x MSB’s
+1
r 4
\ mux /1- kmuxg/c mux deco—ta~ ; | 5B
g der
[] [] []
ROM ROM ROM
rotator 1% ;LSB's

—

f(x;) f(xi+k)

Figure 4. Interleaved memory for coefficient storage

x MSB’s
ROM
¥ ¥ ¥
rotator 1% xLSB’s
f(x;) £xi0e)

Figure 5. Single ROM implementation of interleaved
memory

from (3.5) and (3.6) that u€[0,1), reducing the width of
the data paths compared to the previous interpolator.

i= [%J (3.5)

X .
u " i (3.6)

It can be shown that, for a given amount of memory,
interleaved memory function interpolators always achieve
higher accuracy than do stored coefficient interpolators,
even compared to stored coefficient interpolators that are
optimized to minimize interpolation error [7]. Further-
more, it is possible to optimize the stored function values
to reduce error further. The details of this are beyond the

fxiZy) T
fo=|visx| . x| 3.7)

ETYINY) .

scope of this paper.

4. Design of Accurate LNS Arithmetic Unit Using
Interleaved Memory Interpolator

Applying these techniques to the design of the LNS
arithmetic unit first requires the analysis of the allowable
error in the approximation of f,(r) and f,(r). While many
implementations of LNS arithmetic have been described,
we are unaware of a precise evaluation of the accuracy
requirements.

4.1 Accuracy Requirements in LNS Arithmetic

An important point is that LNS arithmetic algorithms
using approximations to f,(r) and f,(r) are cannot use an
error criteria with the same mathematical simplicity as FP
arithmetic. FP arithmetic can be implemented exactly,
computing an infinitely precise result, followed by a
rounding step to F bits, for a total relative error no greater
than 27F~1. An attractive error criteria for LNS would be
an absolute error in £,(r) and f,(r) of no more than 277,
achieving the full possible precision of LNS representa-
tion. Unfortunately, f,(r) and f,(r) are transcendental
functions, so any approximation of them in a finite
number of bits (other than a direct lookup table) intro-
duces some error. An approximation of f,(r) and f,(r)
will also incur a rounding error as this is rounded to F
bits. If the approximation of f,(r) and f,(r) has an error
of g4, (datapath error), then the total error in e, will be
€4 +277 1. The total relative error is then given by &.ys
in (4.1).

[edp +27F '1]

ELNs = -1=In(2) x {ad,, +2F -‘] @.1)

It is possible to choose any non-zero €,,, with increas-
ing cost as the error constraint is made smaller. This
means that an LNS arithmetic unit can be designed with
any given gy strictly larger, but not equal to, than
In(2) x 27771, One possible goal, used here, is to require
that for all possible inputs, the worst case error of LNS
arithmetic be no greater than the worst case error of FP
arithmetic. This requires that the relative error be less
than egp, as stated in (4.2). This can be used to derive a
constraint on &4, as done in (4.3), and approximately in

=1.771x 22,

(4.4), by noting that) "

in(2) x[eg + 27 <2 @2)

| —F -1
)]><2 @.3)

€4 S 1771 x27F 3 =0 F 218 4.4)

The final constraint, eqn. (4.4), is somewhat surpris-
ing. It indicates that approximation of f,(r) and f(r)
must be performed to almost three more bits of precision
than an FP arithmetic unit to achieve the above goal of
comparable worst case accuracy. This allowable error
includes all sources of error: interpolation error, ROM
word finite precision rounding error, and data path round-
ing or truncation errors. Previous LNS arithmetic units
have adopted weaker constraints.

The precision of FP arithmetic is conventionally con-
strained to be a fixed relative error compared to the
infinite precision result. This has the virtue of mathemati-
cal simplicity, but leads to excessive cost for LNS arith-
metic units. In particular, f(r) > — e as r — 0, making
approximation difficult. This corresponds to subtracting
two nearly equal numbers. While FP incurs no extra costs
for infinitely precise computations in this region, the non-
linearity of f,(r) requires small # and makes the memory
cost excessive. Since the phenomenon of catastrophic
cancellation makes the result progressively less meaning-
ful as it approaches 0, we use a "weak" error approach
such that the result for subtraction of two nearly equal
numbers is only be computed to a given relative accuracy
of the larger operand (also suggested in [9].) Here,
"nearly equal” means two numbers such that r > -1, i.e.,
the numbers differ in magnitude by a factor of two or less.

For such numbers, the absolute error allowable in the
result of @ — b , assuming a > b is a x 2“1 “1, or an allow-
able relative error in the result of $. We define

a-b

Epeak = E X where ¢ is the relative error in the com-

a
putation of a — b.
4.2 Design of Datapaths for LNS Adder/Subtractor

The most complex part of the design is the analysis of
the data path requirements for performing LNS addition
and subtraction. For an F =23 data path, comparable to
IEEE 754 single precision FP [12], the total error must be
less than 1.771x 2726, This error budget must be allo-
cated to the various sources of error in the hardware,
while minimizing total cost. Following [10], it is possible
to allocate some fraction to each source of error and form
a set of equations constraining 4 and the widths of the
datapaths. While this offers an explicit design procedure,
it is complicated to perform. It also does not directly
yield the minimal cost design, since the use of worst case
error estimates often lead to a pessimistic result and
excessive hardware cost. Various error sources may be

smaller than the worst case bound, but and some may be
anti-correlated, having smaller worst case total error than
the sum of individual worst case errors. This suggests a
first-order mathematical approach, followed by iterative
improvements to the design.

The first design decision is the order of the interpola-
tor. Based on previous designs [10], a linear (k = 1) inter-
polator is capable of meeting the requirements with
approximately 2MB of ROM. The use of a second order
interpolator can reduce this memory requirement with the
inclusion of two multipliers, which can be expected to
occupy less area than the ROM. Further increasing the
order of the interpolator can reduce the amount of ROM,
but requires more multipliers. For this application, an
approximate estimate of implementation complexity sug-
gested that a second order, k =2, interpolator minimizes
total circuit cost, including both ROMs and multipliers.

The calculation for second order interpolation, which
uses A= 1 and & = 1, appear in (4.5) through (4.8)

a0 = fx) @.5)
1
a1 = 3 x[fta) - ftxi) 6)

ar=3x [f(x.-+,> -2)+ S @)

}(x)=a0+u><(a1 +uxay) 4.8)

The data paths for this interpolator are shown in Fig-
ure 6. The design details consist of selecting the value of
h for the functions f,(r) and f,(r), the sizes of the multi-
pliers, the accuracy of representation of f(x;) in the ROM,
and the widths of the data paths. The multipliers are not
necessarily capable of handling the full precision data that
occurs in the interpolation calculation. Instead, shifters
are placed on the inputs and outputs of each multiplier to
select as many significant bits as possible. The sizes of
the multipliers must be selected to keep total error within
bounds. The design parameters are shown in Table 1.

After initial studies, it was found that m1h and m2h
were similar, so detailed hardware design was simplified
by constraining the height of all multipliers to be the
same.

Because of the highly non-linear nature of f,(r) and
f5(r), the domain of these functions is divided into a set of
intervals, as in [10], and 4 is chosen independently for
each of these intervals. The intervals are defined as
shown in Table 2. Note that the singularity of f,(r) at
r = 0 requires progressively smaller intervals near 0. For
this reason, the domain of the function f;(r) is split into
two regions, introducing f; and f, ; for r near 0. Table
2 also shows the number of distinct points in each inter-
val. Intervals f,;; and f, ; are identical; the difference
will be that we use the exact error model for f,,; and the
weak accuracy error model for f,;. Either fi; or fi;

e, e,

-

compute 1, partition

€, romaddr i mod u
ROM
rotate [

J f(xi)

f(xli-1]) | fetiep

210

sum,diff

Figure 6. Datapaths for 32 bit LNS arithmetic unit

h h for interpolation

From precision of ROM

Fpp precision of data paths

mlw,mlh | width and height of m1 multiplier
m2w,m2h | width and height of m2 multiplier

TABLE 1. Data Path Design Parameters
must be used in an arithmetic unit, but not both.

To reduce the complexity of the design procedure, a
hybrid approach was used. Each source of error was
modeled, but the design was optimized with an empirical
analysis. The initial design was made conservatively, and
meets the error specification. The accuracy of various
data paths were then reduced as much as possible without

interval function and interval points per
name interval

fai fu(r), —i-1<r<-i 9F

fs.i i), —i-1<r<—i,i21 | 2F

fsifssmi | filr), =27 <r <271 oF=i-1

TABLE 2. Intervals for Approximating Functions

violating the error specification. Because it is essential
that the design meet the error specification for every value
of r, a functional model of the design has been con-
structed to test the algorithm. This model is a C language
program that provides an exact functional model of the
hardware design of Figure 6, and computes the relative
error of the hardware for any given addition or subtrac-
tion. The program uses integers to represent all values in
the datapath, truncated to the appropriate widths at each
stage, and compares the result to that computed using
double precision IEEE FP arithmetic. It is parameterized
so that the key design parameters in Table 1 can be
specified. The program is fast enough that all possible
input values of r for both addition and subtraction (a total
of 2x24x2B=4x10® cases) can be exhaustively
verified in about 6 CPU hours on a 20-MIP machine. A
quick verification of 1/249 of the cases can be performed
in two minutes, and the exhaustive verification performed
if the short one does not produce any errors. The final
design meets the error specification for every input value
of r.

Detailed design took place by calculating the value of
h required for each interval. As an initial design
specification, we allowed the interpolation error to be up
to 27%, allowing .771x2728 for the rest of the data path
errors. The simplest approach is to choose successively
smaller powers of 2 for values of 4, until the computed
interpolation error meets the bound. We also assumed
that the error of interpolating each function is monotonic
in each interval, so used the smaller / of the two end-
points. Detailed data path design took place by using
mathematical analysis of the maximum values of the g;
and determining allowable error at each stage. Tradeoffs
were made to minimized expected VLSI implementation
area.

Total table space is 2218 words or 68758 bits for the
weak error model, and 9284 words or 287804 bits for the
precise error model. As speculated above, there is a
dramatic increase in table size by using the exact error
model, which we do not regard as worth the minimal
increase in accuracy. These numbers must be increased
by 25% to account for the P = 8-way interleaving of the
memory, with k=2 extra words in each ROM word.
After rounding each table segment up to a multiple of 8
words, then adding 25%, a total of 95680 bits of ROM are
required.

i Table Words for Interval

fa,i f:r,i fs:.l' fsst,i
128 - 128 512
128 | 256 | 128 512
128 | 128 64 512

64 | 128 64 512

WN=O

% | 2| 2| 2] &
total | 770 | 834 | 614 | 7680

TABLE 3. Numbers of words, 1/h for LNS arithmetic
unit

Table 5 shows the minimum and maximum relative
errors found across all of the intervals, together with aver-
age error and average absolute error. The error for f,; is
stated in terms of the weak error €,,.,;, while all others are
relative error. These errors, in terms of least significant
bits, show that the arithmetic unit outperforms FP arith-
metic, which would have an error range of -.5 to .5, and
average absolute error of .25. The average absolute error
for f,; and f;; is about log(2)x.25, which would be
expected for a precise LNS arithmetic unit. The average
absolute error for f;; is much smaller. This is because
fs(r) is highly non-linear in each f;, ;, and most values of r
result in an error much smaller than the worst case. On
the other hand, the average absolute error is roughly
log(2)x.5 for f; because larger absolute error in f(r)
occurs where the result is larger, keeping the relative error
roughly constant. The error has a slight bias, due to
design for minimum absolute error instead of minimum
bias, and due to the use of truncation in the datapaths.

Fpp 30
mlw,mlh | 19,16
m2w,m2h | 12,16

TABLE 4. Data Path Parameters for Optimized Design

regions 8miﬂ Ernax E |TI
fai -495 | 464 | 0056 | .173
fui -459 | 440 | -0063 | .168
Sssi -285 | 456 | .0134 | .059
Sosxi -400 | 475 | 0103 | .174

TABLES. Relative Error Characteristics of LNS Arith-
metic Unit Design for all Possible Inputs in
Units of 272

Figure 7 shows a histogram of the relative error of the
processor for every possible input value of r. For f,; and
fs,i» the error distribution is relatively flat, while for f;;

5e+05.

fss

5e+06.

fa

-0. -03 -0.1 0.1 03 .5

relative error in units of 272

Figure 7. Histogram of relative error distribution of LNS
arithmetic processor

the distribution is concentrated towards the center. This is
due to the fact f,(r) is highly non-linear near r = 0 and the
error varies greatly across each interval, while the weak
error model compares the relative error to a constant input
value.

A detailed logic design of the arithmetic unit has been
constructed and simulated, and verifies the expected accu-
racy of the arithmetic unit.

4.3 Comparison to Previous Implementations

Table 6 compares the implementation of this paper to
some other implementations. It uses the number of bits of
ROM and multiplier cells as an estimate of complexity.
All other implementations have worse error relative
characteristics in terms of 27 than this implementation.
Reference [5] describes the only other implementation
with comparable precision and complexity, but has error
more than five times greater than this implementation.

reference | F | ROM(k) | mpy
[2] 12 154 0
[11] 20 251 166
(5] 23 198 432
this work | 23 91 496

TABLE 6. Comparison to other LNS implementations

5. Conclusions

This paper has introduced an architecture for polyno-
mial function interpolation, using interleaved memories
with stored function values. This architecture, which has

low hardware cost and interpolation error, can be applied
to LNS arithmetic units. A particular example of an arith-
metic unit with worst case relative error better than the
worst case relative error of single precision floating point
has been described. Design verification on the architec-
tural and logic design levels is complete, and shows no
errors. Using these algorithms, LNS arithmetic may soon
be seen to be competitive with FP arithmetic.

6. Acknowledgements

Mark Amold suggested a linear interleaved memory
interpolator as an improvement to the LNS unit described

in [11].

7. References

[1] M.G. Amold, T.A. Bailey, JR. Cowles, and M.D.
Winkel, "Applying Features of IEEE 754 to Sign Loga-
rithm Arithmetic”, in [EEE Trans. Comput., Aug 1992,
pp 1040-1050

[2] F.J. Taylor, R. Gill, J. Joseph, and J. Radke, "A 20 bit
Logarithmic Number System Processor" in IEEE Trans.
Comput., Feb. 1988, pp 190-200

[3] M. Combet, H. Van Zonneveld, and L. Verbeek, "Com-
putation of the Base Two Logarithm of Binary
Numbers", in IEEE Trans. Electron. Comp., Dec 1965,
pp 863-867

[4] H-Y Lo and Y. Aoki, "Generation of a Precise Binary
Logarithm with Difference Grouping Programmable
Logic Array", in IEEE Trans. Comput., Aug. 1985, pp
681-691

[5]1 F.s. Lai and C.-F.E. Wu, "A Hybrid Number System
Processor with Geometric and Complex Arithmetic
Capabilities”, in IEEE Trans. Comput., Aug. 1991, pp
952-962

[6] A.S. Noetzel, "An Interpolating memory Unit for Func-
tion Evaluation: Analysis and Design", in IEEE Trans.
Comput., Mar. 1989, pp 377-384

[7] L. Fox and I Parker, Chebyshev Polynomials in
Numerical Analysis, Oxford University Press, 1968

[8]) E.W. Cheney, Introduction to Approximation Theory,
McGraw-Hill, 1966

[91 M.G. Amold, T.A. Bailey, J.R. Cowles, and J.J Cupal,
"Redundant Logarithmic Arithmetic", in IEEE Trans.
Comput., Aug. 1990, pp 1077-1086

[10] D.M. Lewis, "An Architecture for Addition and Subtrac-
tion of Long Word Length Numbers in the Logarithmic
Number System", in IEEE Trans. Comput., Nov. 1990,
pp 1326-1336

[11] D.M. Lewis and L. K. Yu, Algorithm Design for a 30 bit
Integrated Logarithmic Processor, Proceedings of the 9th
IEEE Symposium on Computer Arithmetic, Sept, 1989,
pp 192-199

[12] IEEE Standard for Binary Floating Point Arithmetic,
ANSI/IEEE Std 754-198S, IEEE, 1985

