On Digit-Recurrence Division Implementations for Field
Programmable Gate Arrays

Marianne E. Louie and Milo§ D. Ercegovac
Computer Science Department
University of California, Los Angeles, CA 90024

Abstract

The flezibility of Field Programmable Gate Arrays
(FPGAs) can provide arithmetic-intensive programs
with the benefits of custom hardware but without the
high cost of custom silicon implementations. Efficient
mappings are key to fast arithmetic implementations
on FPGAs. This paper ezplores a process for devel-
oping such mappings with lookup table based FPGAs.
The development process is illustrated with SRT divi-
sion and the Xilinz XC4§010 FPGA. With this map-
ping process we create a linear sequential array design
that avoids the common problem of large fanout delay
in the critical path. This approach has a cycle time
independent of precision while requiring approzimately
the same number of logic blocks as a conventional im-
plementation.

1 Introduction

Use of application specific integrated circuits
(ASICs) enhances the processing speed of almost ev-
ery arithmetic intensive application. Unfortunately,
high development costs and the long time to fabrica-
tion often prevents their creation. Such applications
have thus been forced to rely on slower performance
combinations of software and off-the-shelf components
of standard precisions. Now, the flexibility of field
programmable gate arrays (FPGAs) allows the rapid
development of high performance custom hardware.
FPGAs trade area and some processing speed for flexi-
bility. By selecting arithmetic algorithms suited to the
FPGA technology and subsequently applying optimal
mapping strategies, high performance FPGA imple-
mentations can be developed.

Some existing work in the area of arithmetic proces-
sors and FPGAs includes the Flexible Processor Cell
(16] and Programmable Active Memories (PAM) [1][2].
Performance estimates for some mathematical appli-
cations are given in [2] and an arithmetic processor
is proposed 1n [16], but neither describes the process
of mapping specific algorithms. In general there are
few results on arithmetic implementations with FP-
GAs [15].

Current logic synthesis and technology mapping
tools (e.g., MIS [1212 optimize and implement the
boolean expressions defining a given algorithm. The
individual expressions precisely explain the computa-
tion of individual bits, but do not provide informa-
tion about the algorithm as a whole. As a result,

1063-6889/93 $03.00 © 1993 IEEE

202

these tools cannot identify bits that are unnecessary
to implement nor can they make further optimizations
based on global information about the algorithm. This
paper thus explores the process of developing efficient
implementation variations based on information at the
algorithm level. Specifically, this study focuses on im-
plementing digit-recurrence division [6] on lookup ta-
ble based FPGAs. Division is one of the more difficult
of the primitive arithmetic operations due to the con-
straints imposed by iterative steps of quotient digit
selection and computations based on that selection.
We propose bit reduction as a fundamental element of
our mapping strategy. Bit reduction lowers the num-
ber of binary inputs to combinational logic to permit
designs of smaller area and logic depth.

We also create a linear sequential array design in
which segments of residuals of successive iterations
are computed in parallel. The original concept for
the linear sequential array was proposed in [4] with-
out implementation details. By using bit reduction,
the implementation becomes simple.

2 Division Overview

In digit-recurrence type division l16][13], the quo-
tient is obtained digit-by-digit in redundant form so
that (1) each iteration is processed fast, (2) the quo-
tient digit selection is simplified, and (3) the total er-
ror is reduced to less than 277 at each step j. In this
paper we use the SRT division [13, 6] specified below.

Recurrence:
wlj + 1] = 2ulj] — dgjs

where
w(j] = residual at step j; w[0] = dividend
d =divisor; 0<|w[0]]<d; 1/2<d<1
q= E:';l q:27"

Quotient digit selection function:
1 if0<2af]<2
-1 if =3 <29]< -1

where w[j] is a 4-bit estimate of w[j].

Configuration Delay (ns)
Table F or G to Output X or Y 7.0
Tables F and/or G through H 9.8
to Output X or Y
Flip Flop Input to Output 5.6
(Setup and Clock-to-Q)

Table 1: Throughput Delay of a CLB

3 FPGA Overview

In this study, the division algorithms are mapped to
the lookup table based FPGAs of the Xilinx XC4010
[18]. This overview presents the configuration and
some of the timing details of the XC4010 speed grade
-7 [17]. The faster and more recent speed grade -5
timings are not presented in this overview, but a later
section provides both the division timings at speed
grade -7 as well as an extrapolated speed grade -5
performance derived with the XACT4000 Design Soft-
ware.

The XC4010 consists of a 20x20 grid of configurable
logic blocks (CLBs) interconnected horizontally and
vertically by programmable routing lines. Several long
lines provide a reduced delay of large fanouts for each
row and column of interconnects. The minimum inter-
connect delay, 1.9ns, occurs between adjacent CLBs.
Interconnection delays increase with increasing fanout
and routing distance. In a simplified diagram, the con-
figuration of each CLB is shown in Figure 1. The delay
[17] of each CLB is shown in Table I.

TR

Table F Table G

Y

Figure 1: Simplified Diagram of an XC4010 CLB

4 Division and FPGAs

The proper selection of radix and algorithm are crit-
ical factors in efficiently matching division to a given
set of FPGA characteristics. A higher radix will have
greater combinational logic depth but fewer required

203

iterations. Each of the digit-recurrence division algo-
rithms differs primarily in the number of bits required
to compute the following basic steps:

(1) select a quotient digit, g;41,
(2) form a multiple of the divisor, dg;j4+1, and
(3) compute the next residual, w[j + 1].

A choice of the best radix for a lookup table based
FPGA is determined by comparing the maximum
function size of the division algorithm (based on num-
ber of input bits) with the function size of a single logic
block. A composition of switching functions maps
most efficiently into k-input lookup tables when each
function has no more than k inputs. With more than
k inputs a function requires at least two lookup ta-
bles, and a composition of n such functions may re-
quire more than 2n logic blocks. By this rationale,
the best division algorithm for k-input logic blocks is
the one with the largest radix having steps of a max-
imum of k input bits. SRT (radix 2) division is the
best choice for the XC4010 under this criteria. SRT
requires only four bits for the quotient digit selection
function whereas higher radices need at least six bits
Lﬁ]. SRT also uses three bits for the generation of each

it of the divisor multiple while higher radices use at
least five. The computation of rw[j] for all radices re-
quires more input bits than the general 5-input lookup
table of an XC4010 CLB, but this computation has the
fewest number of input bits with radix 2.

The long FPGA interconnection delay for large
fanouts also affects the division algorithm. For fanouts
of 20 bits, this delay is equivalent to that of a lookup
table, and the delay grows dramatically as the fanouts
increase. If the implementation performs the basic
steps in the given order, the long fanout delay of
¢;j+1 will always lie in the critical path. This can be
avoided by implementing the division algorithm with
quotient digit prediction [5] to produce g;4+2 during
step j. Thus, for small precisions (up to 24 bits on the
XC4010), the fanout delay of g;1 is removed from the
critical path. As the fanout grows for larger precisions,
the scheme presented in Section 5.4 is also needed to
prevent the larger fanout delay from entering the crit-
ical path.

5 Efficient Arithmetic Mappings

The process of mapping a given algorithm involves
developing efficient variations of the logic in the crit-
ical path. The proposed mapping process consists of
(1) a reduction in the number of bits input to the
combinational logic, 32 a decomposition of the logic
into subfunctions, and (3) a synthesis into expressions
suited to the characteristics of the target FPGA. Since
each of the division steps applies to the most signifi-
cant bits of the residual (those involved in computing
a residual estimate), the mapping process focuses on
these bits.

5.1 Bit Reduction

Generally, functions that depend on many input
bits require more logic blocks in their implementation

and hence have a larger logic depth. A reduction in the
number of input bits creates new smaller functions for
the original algorithm, permitting a mapping to fewer
blocks and reducing the overall logic depth.

For SRT division with carry save adders and quo-
tient digit prediction, the bits of the scaled residual
(2w[s]) that are involved in quotient digit selection
are:

s-1
Cc-1

So
€o

81
C1

82
Cc2

53

€3

Fourteen bits are used by the combinational logic to
form gj42 in the critical path; these consist of s;, ¢;
where —1 < i < 3, d, d3, ¢}, (sign bit of ¢j;,), and
g7%1 (magnitude bit of ¢j41). An implementation on
the XC4010 does not explicitly generate —g;41d be-
cause s; + ¢; — ¢j41d; can be computed in one logic

block. However, to simplify the explanations, symbol-
ically let:

di if gj41=-1
.D,' = (_) if Qj+1 =0
di ifgp=1

An implementation on the XC4010 (three logic levels
with delay of two 5-input tables and one 4-input table)
is shown 1n Figure 2 where:

(1) 2biy1+a; = s;+¢; + D;

0
(2) 2e_1+ e = (Z [(a; + b;)?"]) mod 4

i==1

2

(3) Afo+2fi+ £2)272 =) [(ai +b:)27]

i=1

(4) gi42= f(e-1,¢0, fo, f1, f2)

2w(il { S, 8o .5, S, 8,
4 €1 .6 S ¢ gy
95, D.; Dp.D; D; D3
Table Lookup
Stage 1: ;-1 ﬁo-zl ﬁz 3,
wlj+1] 1 D9.0p D2
Table Lookup e . e f f
Stage 2 1 fg 12
Q542

Figure 2: SRT Division with Carry Save Addition
and Quotient Digit Prediction

Bit reduction is applied to the implementation to
achieve a more efficient design. Bit reduction primar-
ily results from the strategic placement of the registers

204

such that a minimal number of bits either directly en-
ter or generate data used in the critical path. Repo-
sitioning the registers is similar to a retiming [9] but
at the algorithm level. With this strategy, a reduced
number of input bits can be obtained by placing the
registers after generating the more compact residual
estimate (the carry assimilation of 3"i__, (si + ¢;)2~*
of Figure 2) rather than storing all of the sum and
carry bits. With this variation, the implementation is
not forced to explicitly generate each individual sum
and carry bit. The resulting simplified logic not only
reduces the area by computing fewer output bits but
also reduces the delay by manipulating fewer input
bits to obtain the output. The stored residual bits for
selection after optimally placing the registers are:

wo1 'lf)o ’lDl L))

C2

53
c3

In this case the critical path utilizes a total of eleven
input bits, the above seven bits, da, d3, ¢, and ¢},
to form the estimate of the residual. This implemen-
tation consists of three logic levels with the delay of
one 5-input and two 4-input lookup tables.

Due to the shifting of the residual in a digit-
recurrence algorithm, some bits that are not in the
current iteration’s critical path will be in the next it-
eration’s critical path. Early processing of those bits
will not affect the selection operation in the current
step, but it will further reduce the number of bits in-
volved in the next iteration. The early computation

of 2, [(si+¢i)27] to form ¢, 8233 results in registers
for:

w-y

W 82

¢

’lf)o $3

The estimate of the residual thus becomes a function
of one fewer bits. This is enough to reduce the delay
on an XC4010 implementation by one logic level. In
this variation, the above six bits, ds, d3, 44 and 4

(for a total of ten bits) are needed to form the estimate
of the residual in the critical path.

Further bit reduction can be obtained by eliminat-
ing redundant bits. With quotient digit prediction,
the redundant bits are uniquely determined by the
quotient digit and some bits of the estimate. For SRT
the most significant bit, @_;, can be eliminated be-
cause it is deduced from g;;1, o, and w;. The re-
sulting reduced inputs are:

Wo

w; Sz 33

1
Although this variation does not further reduce the
delay of SRT, it does reduce the implementation area
because fewer bits are computed. The logic steps for

SRT with bit elimination when implemented on the
XC4010 is shown in Figure 3 where:

(1) m1 = (1 + ¢;1 + D;) mod 2

3
(2) (4k1 +2k2 + k)27 = Y [(si + Di)27"]
i=2

(3) 2p3+ ps=(sa+ca+ Ds)
(4) ua= I_(Ss +c5 + D5)2_1J
(6) (F1,F2) = el q}%1, Wo, U, ¢;) representing

an encoding as described in Section 5.3.

4
(48 + 285 +53)27* = k32 3 + w24+ pp2*

(6)
k=3
(7) g = (m; + k) mod 2
(8) Wy = kg
(9) q;+2 = f(Fl;F27k1vk2)
(10) q;r:'-2 = f(FlyF2yklyk2)
2W[]] { W0":;1 SZ SS (8:4 sS q;u
e 4 Cs q
-q;,d Dy.D, D, D; Dy Dg +1
Table Lookup .m k, ky p, FF,
Stage 1 . kl P3 Uy
A A, A, A, s
wij+1] { . W ‘Z 3 83 Qo
. Cy q‘-“
j+2

Figure 3: SRT Division after Bit Reduction

5.2 Building the Dependency Graph

After completing bit reduction, mapping to a spe-
cific FPGA begins. Boolean minimization and tech-
nology mapping tools for lookup table based FPGAs
(e-g., MIS-PGA[12], Chortle[7], and Dagmap[3]) re-
quire a decomposition of the boolean expressions into
k-input (or smaller) functions where k is the number
of inputs to the CLBs. Typically, these tools prefer
and-or-not networks with gate fan-in of two because
(1) techniques for minimizing boolean algebra are well-
known, and (2) smaller functions allow greater possi-
bilities of grouping several expressions into a single
lookup table. A disadvantage of decomposition into
and, or, not logic is that common reconvergent oper-
ations may not be detected causing a design to be in-
efficient in area. Reconvergent operations decompose
into several parallel functions, the results of which are
reconverged into a single output. An example is zor
implemented as g(f1(a,b), f2(a,b)). Since the ror op-
eration is fundamental to arithmetic algorithms, cur-
rent minimization and mapping tools perform poorly
with arithmetic. Current minimization tools are de-
signed to handle random logic rather than the regular
loiic functions of arithmetic. Hence, the tools do not
take advantage of known reconvergent operations and
algorithmic structure.

205

Unlike typical mappers, the mapping methodology
that we use does not create a directed acyclic graph
(DAG) of two-input and-or-not gates. Rather, it cre-
ates a DAG describing the relationships among func-
tion variables. An example DAG of function variables
for a 3-bit carry propagate addition is shown in Fig-
ure 4. Each node in the graph represents a function
which may be any boolean expression. The node vari-
ables list the function inputs. The node’s output cor-
responds to the computed result after applying the
function to the inputs. The output variable is then
labeled and used as an input to its successor node.
This proposed DAG creates a more compact tree rep-
resentation and reveals the structure of the arithmetic
algorithm for an efficient mapping. Hence, a simple
reconvergent function is kept in the same logic block.

S
|
alblTl
ab, Ty
asb,
Figure 4: Directed graph for sum bit s; of
Zi:l(a" + b")2-.

A lookup table can accommodate in the same area
and delay either a complex switching function of
many nonminimizable minterms/maxterms or a sim-
ple boolean expression; the only limiting factor is the
number of inputs. The proposed dependency graph
more closely matches this feature of lookup tables in
that both complex and simple boolean expressions of
the same number of inputs can be represented with
the same simple graph structure. In arithmetic algo-
rithms, the relationships among small groups of vari-
ables tend to form complex expressions. Thus, the
simplified dependency graph quickly presents small
groups of variables that are already known to be in-
terrelated with a more complex function. With DAGs
of two-input and-or-not gates, the relationship within
these groups of variables would not be as obvious.

The details for generating the dependency graph
are presented in {10]. For the purpose of mapping di-
vision, the directed graph (without the corresponding
boolean expressions) for the magnitude bit of ;42 is
shown in Figure 5. This dependency graph is used
to determine the encoding scheme of Fi, Fy as shown
earlier in Figure 3.

5.3 Mapping the Dependency Graph

After the dependency graph is complete, the
node expressions are synthesized into new expressions
suited to the FPGA block. Our mapping strategy
treats the directed graph as an unbalanced tree. Map-
ping is performed from the bottom up, and tree bal-
ancing {creation of parallel functions, each of lesser
depth) is performed as needed.

m
qj+2

Aw An Ay Ay
Wa W) Wo W

(a) Top of the directed graph

v W, W, W defined similarly
! q,9p =sign & magnitude
T11T10T9 bits of q',»1
TS
DiWw, D% TT;Ts
Z 1 N /£ NT—
%9m 9%9m %9m D@, wc D TLT,
o™ \ SN N ——
%qn %%n]l)lc » l’)lsz T<T
%dm 949mdz Dos; Dys,

/ \
%dmd2 99mds
(b) Directed graph for .,

Figure 5: Graph for the Magnitude Bit of ¢j 42

We employ a combination of three techniques —
bin packing 8], Roth-Karp decomposition [14], and
multiplexing. Bin packing treats each expression as a
package, where the lookup table is viewed as a bin.
The maximum number of connected packages (subex-
pression nodes) are packed into the same bin (lookup
table). If several packages share variables, the vari-
able 1s counted as occupying only one input space in
the bin. Bin packing is especially efficient for arith-
metic because a single variable tends to affect only
local sets of interconnected nodes.

Roth-Karp decomposition [14] separates a single ex-
pression of many variables into a composition of ex-
pressions, each dependent on a subset of the original
variables as illustrated by:

f(ag,a1,a2,as,...,a,) = .
9(h1(ai, a5, ax), ha(ai, a5, a1),ar) 144,45,k

where f,g,h; and hy are function definitions. Many
logic synthesis and technology mapping tools such as
[12] and [3] use Roth-Karp decomposition.

Roth-Karp decomposition can be viewed as a cod-
ing of a subset of the input variables. In the mapping
of the dependency graph, Roth-Karp decomposition
is employed when the variables of one or more input
nodes are subsets of another input node. The decom-
position attempts to create a code for the inputs, thus
reducing the number of input nodes and the required
number of logic blocks. The path delay may also be
reduced due to the fewer number of inputs. The logic
to generate the coding scheme is accommodated in the
logic function of the involved nodes.

We propose multiplexing as an additional approach
towards reducing the graph depth. Multiplexing is pri-

206

marily useful for unbalanced directed graphs. This of-
ten occurs, for example, in carry-propagate addition.
In multiplexing, a single variable having one or more
ancestor nodes is separated from the graph. Two cases
then arise for the remaining skewed leg of the graph:
(1) the computation if the separated variable has a
value of 1 and (2) the computation if the separated
variable has a value of 0. Both cases are computed
simultaneously with the evaluation of the actual vari-
able, and a selection/multiplexing of the correct case
is performed afterward. The cost of implementation
is (1) logic repetition for the multiple cases and (2)
the extra logic step of multiplexing at the end. How-
ever, for some arithmetic functions that are very serial
in nature and for which reduced logic depth is a key
goal, multiplexing offers a solution.

The algorithm details for applying the three tech-
niques are presented in [10]. A summary of the map-
ping of ., (dependency graph of Fig. 5) is shown
in Figure 6. By bin packing, T3 is mapped to a
single CLB (Fig. 6a). Since T3 and Ty have identi-
cal input variables, we then attempt to map T3 and
T3 = f3(T2,T1) together. By Roth-Karp decompo-
sition, Ts = fe(Ts, fa(T4, T3)) where ky (of Fig. 3)
= fa(T4,Ts3) = T4 or T5. Again by Roth-Karp decom-
position, k; including T4 and T3 can be mapped to one
CLB (Fig. 6b). The remaining intermediate variables,
Ts through Ty, use only six different inputs among
which is k;. Hence multiplexing reduces the delay to

two CLBs (Fig. 6¢c). The mapping of W, Wy, and
zbll’ is performed similarly to that of 12):2.

T

$29,nd; 539,093
(a) Mapping T3 after bin packing

k,

S2 4 |qmd 2 834 lqmd3
(b) Mapping of f4, Ty, and T3 to a single CLB

A
W2

(case,"kl A=()) (caseAkl fl) (selector)
49 %o W€ 99V oWi€ k,

(c) Mapping ., after multiplexing

Figure 6: Mapping Process for %" , to the XC4010

Next consider the mapping of the magnituq’e bit gf
gj+2 where (1) g;j4+2 is a function of W_,, W_,, W,
~ N N N
and @, and (2) w_,, w_,, and W, are each func-
"o,
tions of g, W1, ¢s, gm, c1, and k;. Since each w; is

derived from the same input variables, Roth-Karp de-
composition can find a boolean expression to directly
code g;j4+2 from o, W1, ¢s, gm, €1, and k; instead
of computing . ,, W.,, and W,, and W, individu-
ally. The final mapping of the magnitude bit of g¢;42
is shown in Figure 7. The resulting expression uses
a conditional encoding of w_,, W_,, and @, where
k; and ky = u?lll provide the value of the condition.
The coding scheme, where (h_1, ho, h1) corresponds

to 127+ 3o (i — gj41di)277), is:

FIFZ = f(q;-{-l)q;':}.l)wﬂlwlycl) =
00 if h_1hohy = 000 or 001

(where gj42=1;
h_lhohl # 010 or 011)

01 if h_ythohy =111
(where ¢j42=0ifk; =0, k2 = 1;
gj+2 = 1 lfkl = 1;
gj+2 = —1 otherwise)
10 if h_jhohy = 110
(where gj42=01ifky =1,k = 1;
¢j+2 = —1 otherwise)
11 if h_jhohy = 100 or 101
(where gj42 = —1)
)
E)
wwe W Wwe

0 "1%1
9 9m

07171

% (k,,1CLB) (k,,1CLB)
— S

sz qlqm ‘l,qm q|qm qlqm
53d3 5,d; 5,4

Figure 7: Mapping of the Magnitude Bit of gj42
to the XC4010 in 2 logic levels

5.4 A Linear Sequential Array (LSA) De-
sign

As the precision of the division implementation
grows, the fanout delay of ¢;4, also grows and even-
tually becomes part of the critical path. For the SRT
division variation on the XC4010, the fanout delay of
g¢;j+1 enters the critical path with precisions that are
larger than 24 bits. A linear sequential array (LSA)
1[4] (Fig. 8) provides pipelining rather than the large

anout broadcasting of g;j4+1. The LSA requires a com-

parable amount of hardware as a non-array implemen-
tation. For our division variation, it actually reduces
the area by 5% for the lower weighted bits that are
not involved in quotient digit selection.

Each module of the LSA design encompasses a seg-
ment of four weights in the bits of the residual. The
modules may be attached to the division design at any
point where the sum and carry bits of the residual are

207

< <

Selection

i+l
Fundtion !

> >

941 q;

q;2

q;1
9j41

Figure 8: The Linear Sequential Array Organiza-
tion

computed and latched. Hence, the LSA implemen-
tation serves as an extension and/or replacement of
the lower weighted residual bits of the existing design.
Figure 9 shows the existing design described in terms
of conventional 4-bit modules while Figure 10 illus-
trates their replacement with LSA modules.

Bit reduction in the form of strategic register po-
sitioning easily derives the LSA implementation. In
this case, progressively delaying the computation of
successive residual bits enables the pipelined distribu-
tion of the quotient digit. We begin the new design by
repositioning the least significant bits of the existing
residual. The objective is to maximally delay the gen-
eration of these bits while allowing the registers for the
more significant bits to remain the same. The variable
¢i—1 is delayed along with s; and ¢; because ¢;—; and
s; are generated from the same input variables. The
precision of the LSA is then gradually extended by
strategically positioning the inputs used for comput-
ing each of the delayed bits. Again the objective is to
find the maximally delayed time of computation with-
out altering the generation of the existing bits. This
process continues until the desired extended precision
1s obtained. The resulting configuration for the LSA
is shown in Figure 11 where the superscript on each
variable denotes its computational step. The LSA also
explicitly computes each D; in Fig. 11.

941

Al
4-bit

Madul

$i{»Ci.1-Ci_YYYY)

>y
<
-

444

f(q_'"l)

Figure 9: Conventional Modules

An implementation of the linear sequential array re-
quires two logic levels, each of a 4-input lookup table
delay. Fanout of data between stages of the pipeline is
also small and locally distributed to achieve low inter-
connection times. As a result, the delay of the LSA is
always less than the computation delay of the most sig-
nificant bits of the residual (which requires two logic
levels — one 5-input and one 4-input lookup table).
Therefore, due to its pipelined nature, LSA stages and
hence precision may be added freely without increas-
ing the overall throughput delay of the division design.

qj+1 q;
>} > -
YYYY SiCinCi_ YYYY
- » —
il < le— ---
- < —
JL J
f (qi+1) f(Qj)
Figure 10: LSA Modules
Interface
j j j IR N 0 B B |
(atch) |55 Siy Sis S5 Sise Sir
i TR
Cin Cia Cias Ciss
J J j1 il
i+l Ti+2 Di+5 Di-fé
Stage 1
j+1 j F1
§; Siva Sig
g i 11
G G Cus Cina Cur Chg e*
i i i il
Dis Diy Di\7Dig
Stage 2 1 _jHl i
G i G
(atch) | s;%) 835 Sis Sis Sive iy
a1 i
G G2 Cus Ciss
1l j J
1 Disa Dis Dis

Figure 11: The LSA Design

Thus high precision implementations will experience
the same cycle time as lower precision designs. The
LSA is also applicable to other technologies and has
an iteration delay of approximately two full adders.

Regarding area, every 4 bits of added precision in
the LSA requires 9.5 CLBs for implementation. This
includes overhead for the operand registers as well as
initialization logic. For the SRT variation without the
linear sequential array, the lower weighted bits of the
residual require 10 CLBs for every 4 bits of precision,
including initialization overhead and operand regis-
ters.

5.5 Implementation Results

The SRT division variation of Figure 3 is imple-
mented with the XC4010 speed grade -5 and -7 (pre-
liminary notes). The speed grade -7 implementations
have been simulated with the Xilinx software and
Viewlogic’s Workview while the speed grade -5 tim-
ings were extrapolated with the Xilinx software. Ta-

208

Division No. Speed Speed
Variation of Grade -5 Grade -7
CLBs | Cycle Time | Cycle Time

With Bit

Reduction 52 19.0 ns 28.5 ns
With Fast

CPA [11] 48 26.6 ns 39.6 ns
Baseline

Fetme 42 36.0 ns 54.8 ns

Table 2: SRT Variations for Single Precision Mantissas

ble 2 shows the area and timing details of a single
precision (24 bit mantissa only) implementation and
compares these results to a baseline estimate and an
earlier SRT division design [11] that uses the XC4010
fast carry propagate adder (CPA) hardware [18]. Nei-
ther implementation incorporates the LSA technique
because the fanout delay of gj4+; does not enter the
critical path for 24-bit mantissas. The division design
using the XC4010 fast CPA also incorporates some
bit reduction optimizations. However, this implemen-
tation explicitly computes 2w[j+1] with the fast CPA.
In comparing the two division designs, the timing of
the new variation represents a 28% reduction in delay
over the previous SRT design. Although a standalone
CPA has the fastest implementation with the special
CPA feature, allowing the CPA algorithm step to be
mapped with other logic steps into lookup tables can
result in a more efficient design.

The baseline estimate represents an approximate
design with quotient digit prediction but no further
optimizations. The logic steps include:

(1) computation of g;41d,
(2) carry save addition to form w[j + 1],

(3) generation of 21[j+1] with a 4-bit CPA using the
XC4010 fast carry propagate adder hardware, and

(4) quotient digit selection.

Comparing the baseline estimate with the our new
variation shows that bit reduction optimizations can
improve a design’s performance by almost twice.

The LSA scheme allows the designs to be extended
to any precision while maintaining the same cycle
time. This was verified in the SRT variation with bit
reduction where the original design was extended from
20 to 32 bits of precision. The new design was sim-
ulated with both the Xilinx software and Viewlogic’s
Workview.

6 Summary and Conclusion

Generating an efficient lookup table based FPGA
implementation for arithmetic requires (1) the selec-
tion of an algorithm suited to the target technology,

(2) the creation of a suitable variation of that algo-
rithm for the target characteristics, and (3) an effi-
cient mapping approach. A well-matched algorithm is
recognized by the simple decomposition of its inter-
mediate steps into expressions of k variables or less,
where k is the number of inputs in the lookup tables.
Bit reduction then enables a more efficiently mapped
variation of that algorithm. We describe the arith-
metic structure in terms of a dependency graph to pro-
vide a clear and simple description of the relationships
among variables. For technology mapping, we utilize
a combination of bin packing, Roth-Karp decompo-
sition, and multiplexing. Additionally, use of bit re-
duction techniques allows the simple development of
a linear sequential array so that the large fanout of
the quotient digit is removed from the critical path.
Our design method has been used to obtain an im-
provement of about 28% in step delay compared to an
earlier design that utilizes some optimizations. It is
estimated that our optimizations can create a design
having almost twice the performance as a baseline de-
sign, where the baseline does not feature the proposed
bit count reductions and enhancements in technology
mapping.

Acknowledgements

This work has been supported in part by the State
of California MICRO Grant “Field-Programmable
Application-Specific Processor Arrays” and Xilinx,
Inc. We also thank Jason Cong for his comments on
technology mapping.

References

[1] P. Bertin, et. al., “Introduction to Programmable
Active Memories,” DEC Research Report No. 3,
Paris Research Laboratory, 1989.

{2] P. Bertin, et. al., “Programmable Active Mem-
ories: A Performance Assessment,” Proc. First
Int’l ACM/SIGDA Workshop on Field Pro-
grammable Gate Arrays, Feb. 16-18, 1992, Berke-
ley, CA.

[3] J. Cong, A. Kahng, K. Chen, P. Trajmar, “Graph
Based FPGA Technology Mapping for Delay
Optimization,” Proc. First Int’l ACM/SIGDA
Workshop on Field Programmable Gate Arrays,
Feb. 16-18, 1992, Berkeley, CA., pp. 77-82.

[4] M.D. Ercegovac, ”On-Line Arithmetic: An

Overview,” Proc. SPIE Vol. 495 — Real Time Sig-

nal Processing VII, 1984, pp.86-92.

[5] M.D. Ercegovac, T. Lang, “A Division Algo-

rithm with Prediction of Quotient Digits,” Proc.

7th IEEE Symposium on Computer Arithmetic,

1985, pp. 51-56.

[6] M.D. Ercegovac, T. Lang, Digit-Recurrence Al-

gorithms and Implementations for Division and

Square Root, to be published by Kluwer Academic

Publishers, 1993.

209

[7] R. Francis, J. Rose, K. Chung, “Chortle: A
Technology Mapping Program for Lookup Ta-
ble Based Field Programmable Gate Arrays,”
Proc. 27th ACM/IEEE Design Automation Con-
ference, 1990, pp. 613-619.

R. Francis, J. Rose, Z. Vranesic, “Chortle-crf:
Fast Technology Mapping for Lookup Table-
Based FPGAs,” Proc. 28th ACM/IEEE Design
Automation Conference, June 17-21, 1991, San
Francisco, CA, pp. 227-233.

C. Leiserson, F. Rose, J. Saxe, “Optimizing Syn-
chronous Circuitry by Retiming,” Third Caltech
Conference on VLSI, 1983.

[10] M.E. Louie, “Computer Arithmetic and Field
Programmable Gate Arrays,” Ph.D. Thesis in
progress.

(8]

(9]

[11] M.E. Louie, M.D. Ercegovac, “Mapping Division
Algorithms to Field Programmable Gate Arrays,”
Proc. 26th Asilomar Conference on Signals, Sys-
tems, and Computers, Oct. 26-28, 1992, Pacific

Grove, CA, pp. 371-375.

R. Murgai, N. Shenoy, R. Brayton, A.
Sangiovanni-Vincentelli, “Improved Logic Syn-
thesis Algorithms for Table Lookup Up Archi-
tectures,” Proc. 1991 IEEE Int’l Conference on
Computer-Aided Design, Nov. 11-14, 1991, Santa
Clara, CA, pp. 564-567.

J.E. Robertson,“A New Class of Digital Division
Methods,” IRE Trans. on Electronic Computers,
Sept. 1958, pp 88-92.

[14] J. Roth, R. Karp, “Minimization Over Boolean
Graphs,” IBM Journal, April 1962, pp. 227-238.

[15] M. Shand, P. Bertin, J. Vuillemin, “Hardware
Speedups in Long Integer Multiplication,” Com-
puter Architecture News, 19(1):106-114, 1991.

[16] A. Wolfe, J.P. Shen, “Flexible Processors: A
Promising Application-Specific Processor Design
Approach,” Proc. of the 21st Annual Work-
shop on Microprogramming and Microarchitec-
ture, Nov.30-Dec.2, 1988, San Diego, CA, pp.30-
39.

[17] Xilinx XACT4000 Design Implementation Soft-
ware.

(12]

(13]

[18] Xilinx, “XC4000 Logic Cell Array Family - Tech-
nical Data,” San Jose, 1990.

