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Abstract

Floating-point underflow is ofien regarded as either
harmless or as an indication that the computational al-
gorithm is in need of scaling. A counterezample to this
view is given of a function for which contour plotting is
difficult due to floating-point underflow. The function
arose as an asymptotic solution to a model problem
in turbulent combustion in which two chemical species
(fuel and ozidizer) miz and react in a vortez field.
Scaling is not a viable option because of eztreme sensi-
tivity to a small physical parameter. Standard graphics
software packages produce erroneous contours without
any indication of difficully. This ezample provides
support for considering symmetric level-indez arith-
metic, a new form of computer arithmetic which is
immaune to underflow and overflow.

1 Introduction

In 1989, Rehm et. al. [24] derived an approxi-
mate solution to a model problem in the theory of
turbulent combustion. The problem is known as the
Marble problem after its originator, F. E. Marble [18].
Analyses, applications and generalizations are given in
2, 12, 13, 14, 15, 20, 21, 24, 25].

The problem involves two reacting chemical species
(fuel and oxidizer) which occupy two half-spaces ini-
tially. These are brought together at time ¢ = 0 and
a line vortex is imposed in the plane of the interface.
With the center line of the vortex identified as the
z-axis, cylindrical symmetry reduces the number of
independent spatial variables to two. Using polar co-
ordinates, the tangential velocity of the vortex is pre-
scribed as a function vg(r,t). The rotation of the vor-
tex stretches the interface by winding it around the
origin. This promotes combustion by increasing the
number of fuel and oxidizer molecules in contact with
each other.
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Among the simplifying assumptions made in [24]
are that the kinematic viscosity is constant, the dif-
fusion coefficients are constant and the same for both
reactants, and the reaction rate is infinite. Two key
model parameters are the Reynolds and Schmidt num-
bers. The former, defined as the ratio of the circula-
tion of the vortex to the kinematic viscosity, increases
with the speed of rotation. The latter is defined as the
ratio of the kinematic viscosity to the species diffusion
coefficient. The assumption of an infinite reaction rate
allows a flame sheet approximation to be made. The
location and shape of the flame sheet is of particular
interest in applications. For example, reactant con-
sumption and heat production are obtained by inte-
grating the normal derivative of the solution along the
flame sheet.

The flame sheet is a level curve, or contour, of the
solution. Therefore, it can be computed (in principle,
at least) by inverse interpolation from data on a grid.
The data are the computed values of the solution on
the grid. Graphics packages such as 3, 10, 19, 26] pro-
vide subroutine calls to compute and display contours
of data on two-dimensional grids. These subroutines
are quite powerful. They produce excellent graphics
output with a minimum of programming effort. They
hide the messy programming details needed to imple-
ment algorithms and drive display devices. But unfor-
tunately, as we shall sce in the case of the flame sheet,
they are susceptible to failure due to underflow.

Underflow and overflow are characteristics of finite-
wordlength floating-point arithmetic (FLP). The pur-
pose of this paper is to show that, if underflow is
avoided scrupulously, correct contours are generated
for the Marble problem. It is believed that other
problems exist for which underflow causes similar dif-
ficulties. It is important to emphasize that the avoid-
ance of underflow is not done by scaling or any other
modification of the algorithms. Rather, it is done by
using a computer arithmetic that is immune to un-
derflow (and overflow). Symmetric level-index arith-



metic (SLI) was introduced in 1984 by Clenshaw and
Olver [5]. A good general reference is the introduc-
tory survey by Clenshaw, Olver and Turner [7]. Proof
of closure, i.e. immunity to underflow and overflow,
and a precision comparison against FLP is given by
Lozier and Olver [16]. Other properties, algorithms
for arithmetic operations, and applications are given
in [4, 6, 8, 9, 17, 22, 23, 27, 28, 29).

In section 2 we start with a Fourier representation
of the model solution and state some of its mathe-
matical properties. The solution exhibits rather com-
plicated behavior, especially in a neighborhood of the
origin, but it also exhibits radial symmetry and this
symmetry is very helpful in assessing the contours that
are produced by graphics packages.

In section 3 we present flame sheet contours pro-
duced by the graphics package GCONTR [26] when
executed in FLP and SLI. We shall see that in FLP
the contours are falsified near the origin because all
function values sufficiently close to the origin under-
flow and are replaced by zero. Although GCONTR
produces a continuous contour that is plausible at
first sight, it lacks the radial symmetry that it must
have from its mathematical definition and from phys-
ical considerations. This same behavior is exhibited
by all the graphics packages cited. None of them is-
sued any warning or other indication that a region of
non-uniqueness had been encountered. In contrast, we
shall see that, up to limits imposed by the resolution
of the data grid, the contours computed in SLI are
correct. In particular, they exhibit radial symmetry.

In section 4 we examine the algorithmic require-
ments of contour graphing. We identify three pro-
cesses — search, continuation and inverse interpola-
tion — and observe that a heuristic component of each
is present. The heuristic component of inverse interpo-
lation arises from non-uniqueness in the data and we
ask whether this can be prevented. Non-uniqueness
can arise from either finite precision or finite range
with FLP but, with SLI, it can arise only due to fi-
nite precision. Also in section 4, we see why scaling
is only very weakly effective in attacking underflow in
the Marble problem.

Finally, in section 5 we state our conclusions from
this graphics example.

2 The Marble Solution Z(r, ¢)

The solution depends on the generalized exponen-
tial integrals

En(n)= [Cs e ™ds (n=0,1,2,...)

(1)
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where
n=r’

and also on the Reynolds and Schmidt numbers

R, >0,S.>0.

3)

The auxiliary functions

am) = LI 0) (4)
and R
b = 2] 5)

are defined in terms of

f(n) = n7%[1/3 — 2E4(n) + Ea(21)] (8)

and
g(n) =07 Ea(n) + n%[Es(n) - 1/2].  (7)
Then _
2(ri¢) =5 — -5(n.¢). (8)
where -
S(n ¢) = Z)O(—l)'"Tm(n,m (9)
and
e-(2m+1)%a(n)
Tn(n,¢) = ————cos(2m +1)[¢ — b(n)]. (10)

2m+1

Equation (8) is an asymptotic approximation to the
solution of the Navier-Stokes equations, valid for large
Schmidt number and uniform in any annulus 0 < r; <
r < r3 < o0o. Its derivation and physical interpretation
is discussed in detail in [24].

The behavior of the auxiliary functions can be ob-
tained from the properties of the generalized exponen-
tial functions [1, Chapter 5]. It can be shown that

a(n) ~ 5B (n—0), (11)
a(n) ~ @35 (n—o0), (12)

b(n)~ & (1+v+hn) (n—0,R. >0), (13)

b(n) ~ —38% (n— 00, R >0) (14)

where v = 0.57721... is Euler’s constant. Further-
more, it can be shown that a(n) is monotonically
decreasing and that 5(n) is monotonically increasing
(when R, > 0).

We conclude this section with the statement of sev-
eral properties of Z(r, ¢).



Property 1 The series (9) is convergent everywhere.
Furthermore, its convergence is increasingly rapid as
1 — 0 and its sum vanishes at the origin.

Property 2 When R, = 0, the Marble solution is
Z(r,¢) = gerfc(y/Scr cos ¢) ezactly.

Although the applications of scientific interest are
for R, > 0, this property is useful in confirming the
correctness of computer programs.

Property 3 If R, > 0, the series (9) oscillates with
unboundedly growing frequency within an ezponen-
tially vanishing envelope as n — 0.

Property 4 The numerical range of the Marble solu-
tion is the unit interval and

0 (0<|¢|<n/2),
1/2 (¢ ==£7/2),

lim Z(r,¢) =
e 1 (w/2<|¢|< 7).

(15)

Property 5 The Marble solution ezhibits radial sym-
metry, ti.e.

Z(r,¢txw)=1~2Z(r,¢). (18)
Property 6 (i) The level curve Z = 1/2+¢€,0< € <
1/2, is the radially symmetric image of Z = 1/2 —
€. (it) The level curve Z = 1/2 may be regarded as

having two branches, joined at the origin, of which
one ezhibits the behavior:

1. Asr — 0, the branch spirals into the origin, en-
circling it infinitely often

2. As r — oo the branch approaches the positive y-
azis

and the other is its radially symmetric image.
Part (i) is a restatement of Property 5. In part (ii),

the level curve Z = 1/2 corresponds to the contour on
which the series (9) vanishes. This occurs when

¢ =b(n) + % (17)

Taking the positive sign and using (13) and (14),

sy~ { BRE) =0 g
5- 4—;;:,—, (r — o0).

The two conclusions follow. Taking the opposite sign
in (17) produces the opposite branch.
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3 Contours of the Marble Solution

One of the main purposes of the papers [24] and
[25] is to present graphical depictions of the Marble
solution, particularly contour plots showing the possi-
ble positions of the flame sheets. The contour Z = 1/2
(equivalently, S = 0; cf. Eq. (8)) is particularly im-
portant because it corresponds to the stoichiometric
ratio of fuel and oxidizer in which exactly the right
concentration of each species is present for 100% con-
sumption. The contours Z = 1/2 + € (equivalently,
S = =+¢) for small € are equally important because per-
fect stoichiometry is an ideal state unlikely to be real-
ized in nature. This application of computer graphics
is typical of many attempted by scientists who seek to
increase their understanding of the passage of a phys-
ical system into some ideal but singular state.

3.1 Contours in FLP Arithmetic

The complicated behavior described by Property 6
suggests that generating the contours of the Marble
solution may be a difficult challenge for a graphics al-
gorithm. This suspicion is justified by the graphical re-
sults shown in Fig. 1. Nine plots are shown, three each
for R, = 10,100,400 (top row, middle row and bottom
row, respectively) and three each for € = 10-2,10-%,0
(left column, middle column and right column, respec-
tively). The square region of zy-space is the same for
all plots. The square is centered at the origin and the
coordinate axes are drawn. All calculations were done
with 32-bit IEEE standard arithmetic [11] on a square
grid of (151)? points with S, = 10.

The contours divide the squares in the left column
into three regions, a left region in which Z < 0.49,
a central region in which 049 < Z < 0.51, and
a right region in which Z > 0.51. Similarly, the
squares in the middle column are divided into a left
region in which Z < 0.4449, a central region in which
0.4449 < Z < 0.5001, and a right region in which
Z > 0.5001. The contours themselves in the left and
middle columns are seen to exhibit the radial symme-
try that is required by part (i) of Property 6. But the
subdivision of the squares in the right column is very
different. First, there are only two regions although it
appears as if there should be a central region which is
not fully delineated. Second, the radially symmetric
spiral behavior required by part (ii) of Property 6 is
absent.

The central region in the plots in the left and mid-
dle columns, within which the Marble solution does
not change very much, expands as the Reynolds num-
ber increases (down the columns) and shrinks as € de-
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Figure 1: Contours of the function Z (r, ) computed
in 32-bit IEEE arithmetic. The approach to per-
fect stoichiometry for three different Reynolds num-
bers (row 1: R, = 10; row 2: R, = 100; row 3:
R, = 400) and three different stoichiometric ratios
(col. 1: € = 10-2; col. 2: € = 10~%; col. 3: € = 0)
is depicted. The asymmetric shapes in col. 3 are not
consistent with the established mathematical proper-
ties or physical interpretations of the function.
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creases (across the columns). However, the central
region should vanish (to the resolution of the grid, at
least) when € = 0. Since the plots in the right column
exhibit an apparent central region with a radius much
larger than the mesh resolution, we conclude that the
plotting software has lost critical information in the
right column ~ due, it is reasonable to suspect, to un-
derflow. Examination of the data on the grid showed
that indeed underflow is the culprit — a central disclike
area containing nothing but zeros corresponds exactly
to the partly delineated central region of all three plots
in the right column. In contrast, the only zero in the
data for the left and middle columns is at the origin
where, in fact, Z = 1/2.

When € = 0, the boundary of the underflow region
is approached by the stoichiometric contour, then the
plotting algorithm rather arbitrarily chose to draw a
path around part of the boundary. The plots in Fig. 1
were produced using GCONTR [26] but exactly the
same behavior was obtained with the graphics pack-
ages [3, 10, 19]. In fact, [19) was used in [24] in an un-
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Figure 2: Contours of the function Z(r,¢) computed
in 32-bit SLI arithmetic. The approach to perfect sto-
ichiometry for three different Reynolds numbers (row
1: R, = 10; row 2: R, = 100; row 3: R, = 400) and
three different stoichiometric ratios (col. 1: € = 10-2;
col. 2: € = 1074 col. 3: € = 0) is depicted. The
symmetric shapes in col. 3 are consistent with the
established mathematical properties and physical in-
terpretations of the function.

successful attempt to produce the stoichiometric con-
tour and so Eq. (17) was used instead. In another
depiction of the stoichiometric contour in [24], the cen-
tral region is blacked in by a draftsman.

None of the plotting packages cited produced any
error message or diagnostic warning. Repeating the
GCONTR computation in 64-bit IEEE arithmetic
produced results that were not much better. Its ex-
tra precision is not needed and its additional exponent
range is not adequate to avoid the falsification of the
stoichiometric contour.

3.2 Contours in SLI Arithmetic

To confirm the conclusion that the falsification of
the stoichiometric contour exhibited in the right col-
umn of Fig. 1 is due solely to underflow, GCONTR
and the program used to generate S were modified to
execute in SLI arithmetic. The results are shown in
Fig. 2. There is, as expected, no difference in the left
and middle columns. However, in marked contrast
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Figure 3: Contours of the function Z(r,¢) computed
in 32-bit SLI arithmetic. The approach to perfect sto-
ichiometry for Reynolds number R, = 100 and three
different stoichiometric ratios (col. 1: € = 10~4%; col.
2: € = 107%%; col. 3: € = 10~%000) i5 depicted; com-
pare Fig. (3d,e,f). The development of the spiral is
consistent with the established mathematical proper-
ties and physical interpretations of the function.

to Fig. 1, the right column exhibits very clearly the
development of the radially symmetric stoichiometric
contour as R, increases.

The center of Fig. (2i) displays a dense pattern that
is not a spiral. The reason can be seen by considering
the frequency of oscillation of the cosine factor in the
leading term of Eq. (9). The equation

b(r + h(r)) = b(r) + =. (19)

is easily solved for small r by using Eq. (13) and we

can write

ro__ 1
h(r)  ezp(2xS. R -1’ (20)

If r is the radial step size and r/h(r) > 1, then the
leading cosine factor is poorly resolved at least up to
r/h(r) radial steps. We have r/h(r) = 0.0019,1.14,5.9
for S./R. = 1,1/10,1/40, estimates that are in rea-
sonable agreement with Figs. (2¢,f,i).

To demonstrate the development of the spiral more
fully in the case R, = 100, say, it is necessary to take
smaller values of €. Figure 3 fills in the gap between
Figs. (2e) and (2f) with ¢ = 10~%0,10~400 19~%000
The spiral is just beginning to be apparent in Fig. (3a)
and Fig. (3b) with e slightly below the underflow limit
of 32-bit and 64-bit IEEE arithmetic, respectively. It
is quite apparent in Fig. (3c) with € near the underflow
limit of the widest available exponent range in a com-
mercial FLP arithmetic. The spiral shown in Fig. (2f)
results from numbers as small as 10~428%0 well beyond
the range of any commercial FLP arithmetic.

4 Contouring Algorithms

According to Snyder [26], there are two approaches
to calculating contours. In the cellular approach, each
grid cell is visited once and all contours that intersect
it are drawn before proceeding to the next cell. This
approach is valuable when the grid is so large that
the data exceeds available memory. In the contour
following approach, each contour is drawn completely
before the next contour is processed. Snyder states
that contour following is more economical of plotter
pen movements and it is the approach he takes in his
GCONTR subroutine. It is also the approach taken
by the graphics packages [3, 10, 19] and it is the only
approach considered here.

Three algorithms are used in contour following.
These are search, continuation and inverse interpola-
tion.

search The data matrix is searched to find a cell
edge that contains a point on the contour line.
This search, like all searches, is heuristic. That
is, there is no way to minimize the search time
according to an objective criterion that is univer-
sally applicable. Snyder uses a spiral search strat-
egy starting in whatever cell happens to contain
the pen when the search begins.

continuation In the simplest case, the contour inter-
sects the cell boundary in exactly two points and a
straight line is used to join them. All other cases
are more complicated and some require heuris-
tic choice. For example, if the contour intersects
an entire edge plus a single point of the oppo-
site edge, a unique mathematical determination
of where to continue the contour from the point
is impossible. Snyder states and justifies an algo-
rithm that avoids contour crossings and produces
unique contours when the contour and cell bound-
ary intersect at exactly three or four points.

inverse interpolation This is used in search and
continuation to identify points of intersection.
Heuristics are introduced when the algorithm fails
and so, in the interest of keeping heuristics to a
minimum, we examine it in some detail.

4.1 Inverse Interpolation

Let X = f(z) be a real function of a real variable,
and let

A= f(a), B = f(b) (21)



where a # b. If C is any point lying between A and
B, we approximate f~1(C) by
o= a(B—-C)+b(C - A)

B-A

(22)

provided B # A.

Now suppose A and B are hardware (or software)
FLP approximations of A and B. Let p be the relative
error bound of the FLP system, and o the underflow
threshold. ‘Then it can happen that B = A when
B#Aif

| B—Al<pmax(]Al,|B ) (23)

max(| 4, B|) <o. (29)

If (23) or (24) is true, we regard it as a failure of the
floating-point system; either its precision or its range
is deficient.

By the mean value theorem, there exists m between
a and b such that

B— A= (b-a)f (m). (25)
Thus precision failure occurs when
[b—a|< My(a,b) (26)
where
e < E2UALIBY

| f'(m) |
Now | b — a | corresponds to the mesh spacing in a
contouring algorithm. The inequality (26) tells us that
precision failure will occur when the mesh spacing is
less than M, (a, b).

But the mesh spacing has to be small enough to
yield acceptable graphics quality. Suppose an accept-
able mesh spacing is 10~2, and suppose p = 107 and
o = 10739, These values of the rounding unit and
underflow threshold are consistent with 32-bit IEEE
arithmetic. From (27) with max(| 4 |,| B |) = 1, fail-
ure occurs in grid cells where the derivative is smaller
than 10-5. Extending precision so that p = 10-16,
which is consistent with 64-bit IEEE arithmetic, al-
lows acceptable graphics quality with derivatives as
small as 10-14,

Alternatively, it may be possible to translate the
data by computing f(z) — K where K is chosen so
that max(| A— K |,| B~ K |) < max(] 4 |,| B |).
Graphically this corresponds to moving the original
graph of f(z) up or down so that its very flat por-
tion (where the derivative is very small) is near the
z-axis. If there exists a zero, k say, of f'(z) near a
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and b, then f(k) would be a good choice for K. Sup-
pose that max(| A— K |,| B— K |) = 10~3%. Then
derivatives as small as 10=4° could be accommodated
without failure.

4.2 The Marble Solution

For R, = 100, the minimum of the data used in
producing Figs. (1d,e,f), (2d,e,f) and (3) was 1042800,
approximately. The mesh spacing was 0.04 and an
approximation to the derivative at this radius is 4 x
10-42802 Therefore

1
M, (0,p) = 3 X 1042795,

This suggests that obtaining the correct spiraling be-
havior down to the mesh resolution by scaling would
require a tremendous effort. Let us consider the rela-
tively simple task of scaling 32-bit IEEE just enough to
obtain the contour that would be produced by 64-bit
IEEE arithmetic. Since the 64-bit underflow threshold
is approximately the eighth power of the 32-bit thresh-
old, approximately eight scalings will be needed. Each
scaling will be effective in a thin annulus about the ori-
gin. The radius of the 64-bit underflow region turns
out to be approximately eight mesh spacings less than
the corresponding 32-bit radius. If all the annuli had
the same thickness — which of course they do not —
then the thickness would be only one mesh spacing.
In other words, scaling attacks the problem only very
weakly. Added to this weakness would be the difficul-
ties presented by the contouring software itself, which
is oriented toward work in rectangular regions. Ac-
cordingly, a complicated mosaic of subregions would
need to be combined to form the complete contour
plot.

5 Conclusions

The Marble example leads to several general con-
clusions. Although stated in terms of underflow, the
conclusions are equally valid for overflow.

First, there exist real-world scientific computing
applications in which underflow is a serious enough
problem that scaling by itself does not provide a com-
plete remedy. The Marble example generates mean-
ingful numbers far below the underflow threshold of
all commercially available FLP hardware. The graph-
ical depiction of computed solutions by contour plots
is a popular technique in scientific computing and
computer-aided design. Therefore, one might expect



to be able to find other examples of failures due to
underflow in computer graphics.

Second, the need to deal with underflow leads to
the use of heuristics that would be better avoided in
mathematical software. In contouring software, the
heuristic of circumnavigating part of the boundary
of an underflow region without informing the user of
a possible difficulty could have been replaced by the
equally valid heuristic of blacking in the entire under-
flow region. The difficulty is that no single heuristic
is appropriate to all cases.

Third, the twin phenomena of underflow and finite
precision complicate the process of attributing sus-
pected incorrect results to the computer arithmetic or
to algorithmic limitations. If instead of applying the
contouring software to the series (9) we had applied
it directly to the Marble solution (8), the resulting
stoichiometric contours would have been almost indis-
tinguishable from the curves shown in Figs. (1c,f)i),
no matter whether FLP or SLI arithmetic had been
used. The cause would have been finite precision in
both cases. The additional information that a dense

. non-spiral pattern is possible in the center of the stoi-
chiometric contours, and that this pattern is caused by
the algorithmic limitation of choosing a regular rect-
angular grid of data, is rather easily obtained from the
SLI results.

The author hopes that the Marble example pre-
sented in this paper will help convince more peo-
ple that computer arithmetic for scientific computing
should move toward being immune, or at least highly
resistant, to underflow and overflow.
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