New Algorithms and VLSI Architectures for
SRT Division and Square Root

S.E. McQuillan, J.V. McCanny, R. Hamill

The Institute of Advanced Microelectronics
Department of Electrical and Electronic Engineering
The Queens University of Belfast
Belfast BT9 5AH, Northern Ireland

Abstract

In real time digital signal processing, high
performance modules for division and square root are
essential if many powerful algorithms are to be
implemented. In this paper, new radix 2 algorithms for
SRT division and square root are developed. For these
new schemes, the result digits and the residuals are
computed concurrently and the computations in adjacent
rows are overlapped. Consequently, their performance
should exceed that of the radix 2 SRT methods. VLSI
array architectures to implement the new division and
square root schemes are also presented.

1 Introduction

In general computation systems, the frequency of
division and square root operations tends to be
considerably lower than that of addition and
multiplication. Consequently, many arithmetic processors
do not include hardware support for these operations.
Software routines for division and square root can be up
to an order of magnitude slower than multiplication and
addition and, as a result, the time-weighted impact of
division and square root on processor utilisation can be
significant. By way of illustration, consider an application
requiring one division operation for every ten multiply-
add operations. Assuming that the division takes 50ns and
multiply-add 20ns then the percentage of the processor
time devoted to division can be as much as 20%! In
general computations, the speed of divide and square root
operations is not critical. However, in real time digital
signal processing, high performance division and square
root are essential if many powerful algorithms are to be
implemented.

In designing fast, hardware-oriented arithmetic
algorithms, VLSI architectural design issues such as

1063-6889/93 $03.00 © 1993 IEEE

80

regularity, modularity and locality of interconnections
must be addressed. This facilitates the mapping of the
algorithm on to an architecture which is amenable to a
VLSI implementation and assists in the test and
complexity management of designs. The purpose of this
paper is to describe the development of new radix 2
division and square root algorithms which are both fast
and suited to a VLSI implementation.

The paper is structured as follows. Section 2
outlines the characteristics of the SRT division method
and identifies the factors which inhibit performance. In
section 3, the SRT method is modified to give a faster
division algorithm and an array architecture to implement
the new algorithm is presented. Section 4 focuses on
square root while section 5 shows how the division and
square root algorithms can be combined. This is followed
by a discussion of the work in section 6.

2 The SRT Division Method

The well known SRT division method [1] is a
digit-recurrence algorithm which utilises arithmetic
redundancy [2] to reduce the required precision of
comparisons between the divisor and the residual. The
radix r recurrence for computing successive residuals is

)]

where Z; is the residual, DE[',1) is the normalised
divisor and q;E€{~p..p} is the jth quotient digit. Here,
upper case variables refer to a complete word while lower
case variables refer to individual digits of a word. A
convention is adopted whereby the subscript i of a digit
indicates a significance of r~\. The initial residual Z, is set
equal to the dividend and, to ensure convergence, the
residual at the jth step must satisfy |Z] <pD/(r-1).

The quotient is accumulated by appending
successive quotient digits to the partial quotient Q; i.e.,
Q=Q;.,+qr~. The representation of the quotient is

Zf'Zj—x —qJ-D ,J=1,2,3..

redundant and usually employs the radix r signed digit
number representation described by Avizienis [3]. One
consequence of the redundant representation is that the
quotient has alternative representations e.g., in the signed
binary number representation (SBNR) with the digit set
{—1,0,1}, the number 10110 is equivalent to 10010 where
1 denotes ‘—1°. Therefore, at each step, there may exist
a degree of choice in selecting a valid quotient digit from
the given digit set. Alternatively, quotient digits can be
determined by examining a low precision estimate of the
residual. For radix 2, this is typically the three most
significant digits (MSDs) [14]. Any error introduced into
the accumulating quotient can then be corrected on
subsequent iterations. This is in contrast to conventional
division where the full precision residual must be
examined in determining a quotient digit. The SRT square
root algorithm described by Majerski [4] is similar to SRT
division and will not be outlined here.

There are two main factors which limit the
performance of the SRT methods. Firstly, a serial
dependency exists among the iterations. This is
fundamental to the successive approximation method of
computing the quotient. Secondly, the computation of the
residual and the quotient digit are performed sequentially.
This can be attributed to the need to examine an estimate
of the residual in determining a quotient digit and is
compounded by the occurrence of redundancy overflow
when the residual is represented redundantly (redundancy
overflow is the false overflow associated with redundant
number systems and occurs when a n—digit operand
occupies more than n significant digits). The aim of the
work to be described has been to modify the radix 2 SRT
algorithms to overlap the computation of the residual and
the quotient digit whilst retaining the advantages of the
SRT methods.

3 Modified SRT Division

3.1 The Algorithm
The key to this new radix 2 method of division is
the reformulation of the recurrence in (1) as

. [D if gel-1,0}
Zy =27 ra, “‘{-D if q,€(0,1}
zj={ Z/ if g=-1 or 1

221 ¥ 470

where DE[D,;,,D,,,) and q; is chosen from the SBNR
digit set. Clearly, the computation of the tentative
residual, Z°, can proceed before the full quotient digit has
been computed. All that is required is that the quotient
digit to be located to either the {0,1} or {—1,0} subsets.

@)

81

The quotient digit can then be computed concurrently and
in a separate path to that of the tentative residual. To
facilitate this, it must be possible to compute « as quickly
as possible. Therefore, « should be dependent upon the
MSD only of the residual and redundancy overflow in the
residual should be avoided. This can be achieved by
introducing a more stringent bound on the residual,
namely |Z;| <D,

!

27,

Dmin+Dmex 4

2Dmin 4-

Dimin .

0

=Dmin T

~2Dmin

~ Dinin—Dmex L

Figure 1 Selection Regions for Division

The analysis of the proposed algorithm follows the
general method for on-line arithmetic described by
Ercegovac and Lang [6]. The general quotient digit
selection function can be written as:

a7k if L<2Z_<U, , ke(-1,0,1} @

where L, and U, denote the lower and upper bounds
respectively of selection region k, a region in which the
choice ¢;=k represents a valid selection. On substituting
the residual bound into (1), the upper and lower bounds
of the quotient digit selection regions are determined as:

U=D,,; +kD

4
L,=-D_,+kD @

for k=-—1,0,1. The selection regions are illustrated in
Figure 1. Note that adjacent selection regions overlap —
the manifestation of the redundancy in the representation
of the quotient - and within the overlap regions, a degree
of choice exists in selecting the quotient digit. In practice,
a simple selection function based on examining a low
precision estimate of the residual only is required. This
simplified selection function, which must also facilitate the
computation of «, is described by:

g7k if hsasu, , ke(-1,0,1) 5

where I, and u, define the lower and upper bounds
respectively of the new, non-overlapping selection regions
and 2 is the scaled residual truncated to t fractional digits.
The residual and its estimate are related by:

(6

where A, >0 and A, >0 are the truncation errors. Valid
result digit selection is achieved by ensuring that if
L<2<u, then L,<2Z_,<U, More formally, this is
written as:

—AWSZZJ_l -isAm

lkz(L,,)m*eAm
S (U =B
where the subscripts max and min denote maximum and

minimum. The selection thresholds, u, and 1_,, are special
cases which must satisfy:

M

ul<2 |Zj|mnx+Aneg

11> =212 | gy~ o

@®

This ensures that, for each residual value, it is possible to
select a quotient digit from the signed binary digit set.
The usable overlap of adjacent selection regions A is
given by:

A=(U;_Duin~Ly)pex =2D - Dy 9)

for k=0,1 and noting that l,=u,_,+2* (since the new
selection regions are disjoint and both u, and 1, are integer
multiples of 27*), then from (7) it follows that:

A24,,+4,,.-2" (10)
For a given number representation of the residual, the
corresponding values of u,, 1, and t can be determined by
solving (7), (8) and (10).

2 q als | restore compress 2—q.D,
0 X 1 0 00
o1 | o «x 1 0 o1
01 0 X 1 0 01
10 1 0 0 x 00
11 1 0 0 x 01
11 0 X 1 1 01
10| 11 0 x 00
unlol x 1 1 o1
11 1 1 0 X 01

x=Don’t Care

Table 1 Quotient Digit and Signal Generation
for Modified SRT Division

Assuming a signed binary residual and a residual
estimate with t fractional digits, then the truncation errors

82

are A, ,<27'and A_, <27" and, therefore, from (10), the
overlap must satisfy A=227". If D_,, and D, are chosen
as '4 and % respectively and the dividend is in the range
[%,%) —to avoid quotient overflow — then |2Z;| <1 and
A=%. WithD_, ="' and D, =1, the overlap is reduced
to zero necessitating full precision comparisons between
the divisor and the residual. The divisor range [%,1)
results in a more complex selection function and is
dismissed at this stage. Consequently, t=2 i.e., the
residual estimate is 2=0.z,z,. The corresponding selection
thresholds are 1,=%k—'% and u,_,=%k—'% for k=0,1.
Also, u;=1 and 1_;=—1. Equivalently, the selection
function can be written as: ’

{ 1 if V2<ix1
q,={ 0 if ~VasisVa
-1 if -1si<s-%2
In order to avoid redundancy overflow, 2=1 and 2=—1
should not occur i.e. 2 should have no integer component.
This requires the residual estimate to be compressed when
a zero is selected as a valid quotient digit e.g. 0.11 is
compressed to 0.01.

Table 1 details the necessary control signals
required by the algorithm for each digit-pair comprising
the residual estimate. The restore signal is required when
a zero is selected as a quotient digit in order to select the
previous residual, rather than the tentative residual, as the
new residual. The compress signal is required when the
quotient digit is a zero and the MSD of the residual is
non-zero i.e. when 2=0.11 or 2=0.11. The signal which
determines whether the divisor multiple is D or —D is the
add/subtract signal, a/s for brevity, and can be determined
from the MSD of the residual as required. It is important
to note that the first digit of the term 2—q.D,, where D,
is the two MSDs of the divisor, is always zero such that,
when the new residual is scaled, no redundancy overflow
occurs. This is due to both the particular divisor range
and the value of the selection thresholds u, and 1, and is
an important property of the algorithm. Failure to avoid
redundancy overflow would complicate the computation of
a.

amn

3.2 Division Array Architecture

An architecture to implement the modified SRT
division algorithm is illustrated in Figure 2. The circuit
comprises a regular array of type 1 and type 2 cells with
quotient digits and control signals being determined by the
S cells on the periphery of the array. The functional and
gate level descriptions of the basic cells are given in
Figure 3. The divisor digits d,dd,... and the dividend
N=0.0n,n,... enter the array in a bit-parallel manner as
shown. Since the two MSDs of the divisor are known

Figure 2 Radix 2 Division Array

implicitly, they are not input to the array. Each signed
binary digit, z, comprising the residual is composed of
two digits namely, z* € {0,1}and z~ € {—1,0}, which are
encoded as shown in Table 2 [13]. This coding enables
conventional full-adders to be employed in
adding/subtracting a signed binary operand and a binary
operand. The four interpretations of a full adder
employing this coding scheme are illustrated in Figure 4
where ¢+’ denotes a positively weighted input i.e. {0,1}
and ‘—’ denotes a negatively weighted inputi.e. {—1,0}.

z* Code z” Code
0 0 ~1 0
1 1 0 1

Table 2 Coding of z* and z~ digits

Each row of the architecture implements one
iteration of the algorithm as follows. The first signal
generated by the S cell is a/s. This is available as soon as
z;, the MSD of the scaled residual from the preceding
row, becomes available. The a/s signal is then broadcast
to all cells in the row to form the quotient digit extractor.
When a/s=1, the quotient digit extractor is simply the
divisor D. When a/s=0, the divisor must be negated. This
is achieved by bit complementing the divisor, each digir
being assigned a negative weight. The carry into the
rightmost full adder is always interpreted as zero. The
new tentative residual, Zj', and the previous residual enter
a multiplexer controlled by the restore signal. The
previous residual is selected or "restored” only when the
restore signal is set otherwise the tentative residual is
selected.

The two bits comprising the second MSD, z,, of
the previous residual are inverted in the type 2 cell when
the compress signal is set. This effectively compresses the

83

»/2

a/n
tintoo}
resiore restore

dio.t

Py H
if a/s=1
if a/3=0
2lon+8=2Zn+p
2*=a+in

?zh if restore=]

Zouwt™{z+ if restore=0 g

/s @ /3
compress
resiore restore

v o)

0 if a/s=1
"',1 if a/3=0
2t o+ 9=2+p
z* =3+l ton=0
. _; 24y if compress=0
Zout=)z, if compress=1
2 _%z.‘,,. if restore=1
ost=1z* " if restore=0

p={3

Lin
Festore

2 2

2y % - -
HE z72] 73 %3

“%r::' ;

q=Sel(z,.22)
=1 if z€j0.-1¢
8/5={0 if z € jo.1f
1 z4l=1
°"""""'§0 if zy=0
v e
f q=0 T 9
f qef-1.1}

e—a/s

compress

reslore

renore= 1 1
0 i
Figure 3 Description of the Basic Cells

bit strings 0.11 and 0.11 to 0.01 and 0.01 respectively
ensuring no redundancy overflow. Concurrently, the S cell
computes the quotient digit by examining the two MSDs
of the previous residual.

+4+4+ At - == —==
++ + - -+ -
Figure 4 Full Adder Interpretations

Comparison with radix 2 SRT dividers indicates
that this circuit should yield a higher performance for two
main reasons. Firstly, there is an obvious reduction in the
critical path due to the concurrent computation of the
quotient and the residual. Secondly, the computations in
adjacent rows are overlapped thereby reducing the average
critical path per row. This is explained by noting that the
MSD of the new residual is computed before the other

residual digits and, therefore, the computation of the
divisor multiple in the subsequent row can begin while the
other residual digits are being determined.

3.3 Pre-scaling of the Divisor and the Dividend
The pre-scaling of the operands is effected by a
simple shift-and-add operation. Assuming the divisor and
dividend are available in the ranges 4<D<1 and
Y% SN <'% respectively then the need to pre-scale the
operands can be ascertained by examining the second
MSD of the divisor, namely d,. If d,=0 then no pre-
scaling is necessary. If d;=1 then both N and D are pre-
scaled by multiplying by %. This is achieved by adding
1AD and %D and the resultant quotient is always in the
range [!%,1). Whereas the scaled dividend can be
computed in a signed binary format, the computation of
the scaled divisor must be fast and yield the scaled divisor
in a non-redundant form, as required by the array. Fast
adder schemes, e.g. carry look-ahead adders [12], can be
employed to do this. Pre-scaling of operands does not
reduce the accuracy of the quotient but, as with the
classical SRT scheme, the remainder does not conform to
the IEEE 754 standard [11].
3.4 Comparison with Other Methods
A radix 2 division algorithm, based on pre-scaling
the divisor into a suitable range and in which the quotient
digit is determined concurrently with the computation of
the residual at each step, has been proposed by Ercegovac
and Lang [10]. This algorithm is also a modified SRT
type scheme. However, the divisor is restricted to the
range 7/8 <D <9/8 and, consequently, the pre-scaling of
the operands is a little more complex than that required
for the new algorithm. As the performance, area, power
consumption etc of the circuits are highly technology
dependent, it is not possible, at present, to give an
absolute comparison of the relative merits of both
methods. Fully objective comparisons require full-custom
designs to be examined. Using gate equivalents as a
measure, the critical path per row of both circuits is
comparable while the gate count of the main cell of the
circuit in [10] is less than that of the new divider.
However, a greater throughput is expected with the new
divider due to the overlapping of successive computations
within adjacent rows. The objective of the approach
described in [10] is to match the delays of the residual
computation and the quotient digit selection and,
therefore, overlapping of the computations in adjacent
rows is not possible.

Recently, an array for implementing the radix 2

84

version of the Svoboda-Tung [7,8] division algorithm was
reported by Burgess [9]. The array is similar to that
illustrated in Figure 2 and should have a comparable
throughput and hardware cost. On closer examination, this
is not surprising since it can be shown that the SRT
division method and the Svoboda-Tung algorithm share
the same recurrence for computing successive residuals
[15]. Unlike the scheme presented by Burgess, the
division method described here can be extended to higher
radices and square root.

4 Modified SRT Square Root

4.1 The Algorithm
The application of the above modification to the
more demanding case of square root is described in this
section. The scaled residual at the jth step of the square
root algorithm is written as:
Zj=2j-l(R_SJZ) (12)
where R is the radicand and §; is the partial root
accumulated at the jth step. At each step, the radicand and
partial root are related by |VR—S,} <2 which requires
that the residual be bounded as:

J-1_ 41 e 13
2971-5<2<8+297 , j=1,2,3 (13)
It can be shown that if RE€[%4,'4) then the bound on the
residual can be replaced by {Z;}| <% for j=2,3,4... The
initial residual is then Z,=2R—-'%=0.0r,,... The
recurrence for computing successive residuals is given by:

. S._, if s,e(-1,0}
zZ/=2Z, +a-271, a={ et

J J-1 _sj-l l_fsje{o,ll (14)
#sj-—l orl

z={s Y
! {iZJ-l if 5=0
The general selection function in (3) applies where the

upper and lower bounds of the selection regions are
defined as:

U,=Y2+kS;_ +k*27
L,=-Va+kS, | +k*277!

for k=—1,0,1. The simplified selection function in (5)
also applies here together with the associated constraints
in (7), (8) and (10). As in the case of division, the
residual is assumed to be a signed binary operand.
Consequently, the truncation errors are A, <27 and
A, <27' where t is the precision of the residual estimate
2. The overlap of adjacent selection regions, independent
of j, is given by:

(15)

1
A=(U,_)...~(L =]~
k-1/min k)m f2_

(16)
This implies t=2. Choosing t=2, it is now possible to
determine the selection thresholds, 1, and .
Remembering that both 1, and u, are integer multiples of
27 thenl,=%k—'% and u,_,=%k—'% for k=0,1. This is
exactly the same as the selection function derived for the
redundant restoring division algorithm and, therefore, the
generation of the necessary control signals is the same as
that in Table 1.

Figure 5 Square Root Architecture

4.2 Square Root Architecture

An architecture to implement the modified radix 2
SRT square root algorithm is illustrated in Figure 5. The
circuit comprises a skewed triangular array of type 1 cells
bounded at the left hand edge by type 2 and type S cells.
The S cells generate the result digits and control signals
as specified by Table 1. Note that only the n—1 least
significant digits of the n-bit radicand R enter the array
since the initial residual is given by Z,=0.0r,r,... Note
also that the two MSDs of the square root are known
implicity due to the range restriction on the radicand, i.e.,
S,="4. The functional and gate level descriptions of the
type 1 cell is given in Figure 6 (see Figure 3 for cell
types 2 and S).

The jth row operates as follows. The a/s signal,
generated by the S cell, is broadcast to the row of type 1
and type 2 cells. This enables the square root digit
extractor multiple to be formed. The extractor is
composed of two parts, namely the partial root, §;_,, and
a subtractive term —273~', The subtraction of 27! is
achieved by directing a zero into the spare negatively
weighted input of the rightmost type 1 cell. Due to the
coding of the residual digits, this is correctly interpreted
as ‘—1’. The partial root, S;_,, has been converted to a
conventional representation, denoted by A;_;, and is
available at the jth step. When a/s=1, A; | is passed

85

fidl Zn
/8 /e
Baut

Zout Tout
f-1.011
8 if a/3=1
P=§i:: if a/s=0
2lout +8=2i,+p
z*=stty,

a/s

Lout

2ip if restore=1

z“"%z' if restore=0 restore

if £,,=1 or restore =0

{1
fout 50 if fi,=0. restore =1

Conversion /\/ fou

o -an i fin=1 or a/s=0 Circuitry

B, if 8/3=11,=0

@ if restore=(
Bout™} . if restore=]

Figure 6 Description of the Type 1 Cell

unchanged to the row of full-adders. When a/s=0, the bit-
complement of A;_, is passed to the adder. The adder then
computes the tentative residual Z" which is passed to the
multiplexer. If the restore signal is set, the previous
residual is selected otherwise the tentative residual is
selected as the new residual Z;,

The conventional binary representation A,_, of the
signed binary partial root S;_; is updated concurrently
with the computation of the square root digit and the new
residual. This is performed by the conversion circuitry in
the type 1 cells and uses a modified version of the
algorithm described in references [4,5]. The SBNR-to-
binary conversion algorithm is modified by the
introduction of a tentative conventional representation of
each digit, a*, and is described by the equations in Figure
6 (see reference [5]). The performance of this array is
comparable to that of the division array.

5 Combined Square Root and Divide

Similarities between the radix 2 division and square
root algorithms are apparent. It is possible to combine the
recurrences for division and square root as:

L if ve(-1,0}
-1 i ve(1,0)
Z_{Zj' ifv=-1or1

Z'=2Z, +oE , a={
7 a7

7 2zj L if Vfo
where v; is either the jth quotient digit q; or the (j+2)th
square root digit s;,, , as appropriate, and E is the result
digit extractor given by:

E= {2_,+sj.2"’" if square root

if division

(18)

Assuming a signed binary residual and |Z] <4 then the
generation of result digits and control signals is as
described in Table 1. The corresponding circuit is
straightforward to derive.

6 Discussion

The develépment of new SRT-type algorithms and
architectures for radix 2 division and square root has been
described. The premise of the approach has been that
concurrently computing the residual and the result digit at
each step leads to an increase in the performance of the
circuits compared to the SRT methods. The penalty of the
new methods appears in the reduced range of the
operands.

There are several features which make the
algorithms interesting and should lead to an increase in
speed over other SRT methods, namely, the concurrent
computation of the residual and the quotient digit, the
overlapping of computations in adjacent rows and the
avoidance of redundancy overflow in the residual word.
A totally objective assessment of the new algorithms and
architectures and their benefits compared with others
requires detailed circuit designs to be undertaken. This is
necessary to examine practical VLSI design issues such as
buffering, broadcasting, fan-in, fan-out etc. This is
something which often appears to be ignored in the
development of arithmetic algorithms. However, this is a
key issue in systems which require the direct
implementation of such algorithms in silicon.

The algorithm for square root, while being of
theoretical interest, may have limited application in
practice. For floating point arithmetic, the normalized
range [%,':) introduces a post-scaling overhead when the
exponent is odd namely the multiplication of the computed
square root by V2. This problem does not arise in the
classical radix 2 SRT square root. If the range of the
radicand in the new square root algorithm was extended
to ['4,1) then the worst case overlap of adjacent selection
regions would be zero thereby requiring full precision
examination of the residual.

The arrays presented are very regular and require
only a small number of simple cells, each comprising 20
to 30 logic gate equivalents. Extending the arrays for any
operand precision is straightforward. Pipelining will
increase the throughput rate at the expense of circuit
latency. The throughput will, however, be independent of
the operand precision.

VLSI implementations of existing division circuits
and the division array described here are to be undertaken
to objectively assess the benefits of the new division
method. These will be reported at a later date.

86

Acknowledgements: This work has been supported by
DRA Malvern.

7 References

[1] J.E. Robertson, ‘A new class of digital division
methods’, IRE Trans. on Elect. Compt., vol.
EC-7, 1958, pp218-222.

D.E. Atkins, ‘Introduction to the Role of
Redundancy in Computer Arithmetic’, IEEE
Computer, 1975, pp74-71.

A.Avizienis, ‘Signed Digit Number
Representations for Fast Parallel Arithmetic’, IRE
Trans. on Compt, Vol. EC-10, 1961, pp389-400.
S.Majerski, ‘Square Rooting Algorithms for High
Speed Digital Circuits’, IEEE Trans. on Compt.,
Vol. C-34, 1985, pp724-733.

M.D. Ercegovac, T. Lang, ‘On-the-fly conversion
of redundant into conventional representations’,
IEEE Trans. on Compt., Vol. C-36, No. 7, 1987,
pp895-897.

M.D. Ercegovac, T. Lang, ‘On-line Arithmetic: A
Design Methodology and Applications’, VLSI
Signal Processing 111, 1988, pp252-263.

A. Svoboda, ‘An Algorithm for Division’,
Information Processing Machines, No.9, 1963,
pp25-34.

C. Tung, ‘A Division Algorithm for Signed-Digit
Arithmetic’, IEEE Trans. on Compts. (Short
Notes), Vol. c-17, 1968, pp887-889.

N. Burgess, ‘A Fast Division Algorithm for
VLST’, IEEE Intl. Conf. on Compt. Design, 1991,
ppS60-563.

M.D. Ercegovac, T. Lang, ‘Fast Radix-2 Division
With Quotient-Digit Prediction’, Journal of VLSI
Signal Processing, 1, 1989, pp169-180.

‘IEEE Standard for Floating Point Arithmetic’,
IEEE Standard 754, IEEE Computer Society,
1985.

K. Hwang, Computer Arithmetic: Principles and
Design, J. Wiley and Sons, 1979.

M. Lapointe, P. Fortier, H.T. Huynh, ‘A very
fast realization of a time-domain block LMS
filter’, Proc. IEEE Intl. Conf. on Acoustics,
Speech and Signal Processing, 1991, pp2101-2104.
S. Kuninobu, T. Nishiyama, T. Taniguchi, N.
Takagi, ‘Design of High Speed MOS Multiplier
and Divider using Redundant Binary
Representation’, Proc. 8th Symp. on Compt.
Arith., 1987, pp80-86.

S.E. McQuillan, ‘Algorithms and Architectures for
High Performance Arithmetic Processors’, Ph.D.
Thesis, The Queen’s University of Belfast, 1992.

[2]

(3]

4]

(31

(6]

G|

(8]

(9]

[10]

(11]

[12)

[13]

[14]

[15]

