The Gauss Machine: A Galois-Enhanced Quadratic Residue

Number System

Jonathon D. Mellott

Jeremy C. Smith

Systolic Array *

Fred J. Taylor

High Speed Digital Architecture Laboratory
University of Florida

Abstract

The Gauss machine is a SIMD systolic array archi-
tecture which takes advantage of the Galois-enhanced
residue number system (GEQRNS) to form reduced
complexity arithmetic elements. The Gauss machine
is targeted at front-end signal and image process-
ing applications. A discrete prototype has been con-
structed which achieves a peak rating of 320 million
arithmetic operations per second when performing
complex arithmetic while operating at 10 MHz. A
VLSI implementation of the Gauss machine’s proces-
sor cell has been created. The VLSI implementation
is implemented in 2.0 micron CMOS and achieves
greater than 20 MHz performance and uses less than
2.0mm? die area. It is also shown that techniques for
defect tolerance in RNS systolic arrays can result in
substantial yield enhancement, thereby making larger
than conventional (ULSI) systems possible.

[. INTRODUCTION

There exist a number of signal processing applica-
tions which demand high computational throughput
in combination with high reliability, small size, and
low power dissipation. In the past, high performance
has come at the expense of reliability, size, power, and
cost requirements. The prevalent arithmetic system
used in digital hardware is two’s complement. While
two’s complement is easy to use, it suffers from sev-
eral impediments to achieving high performance. The
speed of the adder in a two’s complement system de-
creases at least with the log of the word width of the
adder due to the propagation of the carry term across

*This work supported by Naval Air Warfare Center,
Army Research Office, and Florida High Technology Industry
Council

156
1063-6889/93 $03.00 © 1993 IEEE

the adder. The two’s complement multiplier suffers
not only from the “curse of carry,” but it also suffers
from geometric growth of the required die area as the
word width of the operands increases [1]. Multiplier
structures continue to occupy large die area on mod-
ern VLSI microprocessors. Since the RNS (Residue
Number System) is a carry-free arithmetic system,
word widths of arbitrary size may be produced with
no speed penalty in the adder. The size of the mul-
tiplier also grows linearly with respect to the word
width of the multiplicands, rather than geometrically
as in two’s complement schemes.

At the University of Florida High Speed Digital Ar-
chitecture Laboratory we have developed a high per-
formance multiprocessor architecture based upon the
RNS. Our first RNS processor, the Gauss machine [2]
is described. The Gauss machine is a hybrid systolic
array and vector processor of GEQRNS processing
elements which can achieve the peak equivalent of
320 million operations per second when performing
complex arithmetic. Besides high performance, the
RNS enables a high degree of fault-tolerance at the
architectural level {3, 4]. The RNS is also uniquely
positioned to realize the full promise of VLSI/ULSI
systolic arrays [5, 6] and the high levels of integra-
tion offered by MCM (multi-chip module) packaging
which may take advantage of the small size, modu-
larity, fault and defect tolerance which RNS features.

II. THEORY

A. The Chinese Remainder Theorem

There are two large penalties in performing arith-
metic in the two’s complement system: the carry
must propagate across the entire word for addition
operations, and the size of the multiplier grows as
the square of the width of the word. The Chinese

Remainder Theorem (CRT)[7, 8] suggests a means
of eliminating the carry propagation problem and of
producing a multiplier that grows linearly with the
width of the word. The CRT is presented below.

Theorem 1 (The Chinese Remainder Theorem)
Let M = H'.L=1p,-, where for i,j € {1,2,3,...,L},
ged(pi,p;) = 1 for all i # j, and each p; € Z+.
Then there exists an isomorphism ¢: Zpr — Zp, x
Z,, xZp, X - x Ly, described by the following.

Let m; = M/p;, and mym7* = 1 (mod p;) for
ali € {1,2,3,...,L}. If X € Zpy, let ¢(X) =
(z1,22,23,...,2L) where z; = X (mod p;) for all
i€{1,2,3,...,L} then X = ¢~ Y(zy(,22,23,...,2L)
is described by the following congruence

L
X = {Z mi(mi'lzi)p,} (mod M)
i=1

where (o), indicates the unary (mod p) operation.

The CRT forms the basis for the RNS. In the RNS,
two’s complement integers are converted to their L-
tuple residue representation by the ring isomorphism
¢: Zpyy — Zp, x Ly, xZyp, x---xZy,, described by the
CRT. The numbers which are in their L-tuple repre-
sentation may be added and multiplied component-
wise and reconstructed via the CRT to form the cor-
rect result in Zys.

Generally, the moduli are chosen to be small
enough that the adders and multipliers may be imple-
mented in a reasonably small memory-based lookup
table. In a VLSI implementation advanced memory
technology might be leveraged and thereby achieve
greater speed and smaller die area.

B. Complex Residue Number

(CRNS)

The RNS may be used to perform computations with
complex numbers by using RNS arithmetic elements
to emulate the operations which would be performed
using two’s complement hardware. The use of RNS
arithmetic to perform complex operations is called
complex RNS or CRNS. Take the Gaussian integers
a+jb,c+jd € Zpmj]/(* + 1), and ¢ denotes the
isomorphism between the Gaussian integers and the
CRNS: ¢: Zpmlf)/ (2 +1) & Zp, xLp, X Zp, X - - X

System

2y, X Ly, X ZLp, x Ly, X Zp,. Then

(a+c)+ jb+d)

v {¥(a) + ¥(b)} +

7~ Hu(b) + ¥(d)}

(ac — bd) + j(ad + bc)

Y™ {y(a)¥(c) — p(b)¥(d)} +
7~ H{y(a)p(d) + $(b)¥(c)}-

While the complex addition takes only two addi-
tions, the complex multiplication takes four multipli-
cations and two additions: the CRNS requires the
same number of additions and multiplications as the
Gaussian integers.

(a+jb) + (c + jd)

(a + jb) x (¢ + jd)

C. Quadratic Residue Number

(QRNS)

The QRNS [4] is a variation upon the RNS which
allows complex additions to be performed with two
RNS additions and complex multiplications to be per-
formed with two RNS multiplications. This enhance-
ment is accomplished by encoding the real and imag-
inary components into two independent components.
Given a prime p of the form p = 4k + 1 where k € Z
then the congruence z> = —1 (mod p) has two so-
lutions in the ring Z, that are multiplicative and ad-
ditive inverses of one another. Let j and j=! denote
the two solutions to the above congruence. Define a
mapping 6: Zp[j]/(j2 + 1) — Zp x Zp by

(z,27)
(a+ 7b) (mod p)
(a — jb) (mod p).

System

6(a + jb)

z

Il

Furthermore, the inverse mapping 6~': Z, x Z, —
Zo[5)/(5% + 1) is given by

071 (z,27) = 27z + 7)) + (27157 (2 = 7))y

Suppose (z,2*),(w,w*) € Zp x Z,. Then the
addition and multiplication operations in the ring
(Zp x Zp,+,) are given by

(z,

4

)+ (w,w")

(z,2")(w, w")

(z +w, z* +w*)

(zw, z*w™).

The isomorphism @ is generally implemented via
arithmetic elements and table lookup. Since the z

157

and z* channels are independent, parallel hardware
may be constructed to perform operations on both
channels at the same time without any communica-
tion between the channels. This parallelism allows a
complex addition or multiplication to be performed
in one cycle. While parallel hardware would allow
a CRNS addition in one cycle, the multiplication in
the CRNS requires two additions and four multipli-
cations. Using the same amount of hardware as a
QRNS multiplier-accumulator, a CRNS multiplier-
accurmnulator would take twice as many cycles to com-
plete a single multiply-accumulate operation.

D. Galois Enhanced QRNS (GEQRNS)

The QRNS requires a multiplier which takes N bit
inputs and produces an N bit output. The multi-
plier could be implemented using either a direct im-
plementation with modular correction or a lookup ta-
ble. The primary disadvantage of this is that despite
the small size of the RNS adder, the multiplier is still
large. By taking advantage of the properties of Galois
fields [9], it is possible to simplify the implementation
of an RNS multiplier.

For any prime modulus p there exists some a €
Z, that generates all non-zero elements of the field
GF(p). That is to say {0’ | i =10,1,2,...,p— 2} =
GF(p)\ {0}. Thus, all non-zero elements of Z, may
be uniquely represented by their exponents. These
number theoretic logarithms may be added modulo
p—1 to produce multiplication: al+i}»-1 = (aiad),.
Note that since zero is not an element of GF(p)\ {0}
the zero must be handled as an exception. Practi-
cally, this means that the inputs must be checked
before the number theoretic logarithm to determine
whether either one is a zero, and if one of the inputs
is a zero, then the output of the multiplier should be
set to zero.

The architecture of a GEQRNS multiplier is illus-
trated in Figure 1 without the zero detection and han-
dling indicated. The multiplier requires two duplicate
2N_entry memories to perform the number theoretic
logarithm, an adder to add the logarithms, and an
2N+1_entry table to perform the modulo p—1 correc-
tion and number theoretic exponentiation. Note that
while the modulo p — 1 correction and number the-
oretic exponentiation represent two separate steps,
they may be integrated into a single table. Alterna-
tively, if a modular adder is used the 2N+!_entry ta-
ble may be replaced with a 2V_entry table. Typically,

158

the multiplicands will be converted to the GEQRNS
number theoretic logarithm form by the conversion
engine which computes the residues of the integer in-
puts.

{ i
[togn | [togy |

<ab>,

Figure 1: Block Diagram of a GEQRNS Multiplier

III. MOTIVATION

Historically, RNS has been used primarily when con-
ventional arithmetic technology could not fulfill de-
sign requirements. Typically, this has led to the de-
velopment of application specific solutions which were
not portable to other problems. The benefits of RNS
computing could be realized in more applications if
standard RNS parts are available, either in the form
of VLSI standard cells, or in the form of standard
processor components.

The advantages of RNS are numerous. Since carry
does not have to propagate across the full width of
arithmetic elements, speed is significantly enhanced.
A multiplier of arbitrary word width is built by repli-
cation of small multipliers so that the sum of the
word widths of the small multipliers is the target
word width: thus, the size of the RNS multiplier
grows only linearly with word width, rather than ge-
ometrically as in conventional VLSI multipliers [1].
RNS multipliers are smaller than their conventional
counterparts. For example, an eight by eight parallel
multiplier from the University of South Florida cell
library[10] is 2.956mmx 0.834mm while the developed
GEQRNS multiplier-accumulator is 2.0 mm x 1.0 mm
(both in 2.0 micron CMOS). Since RNS is substan-
tially smaller, it also realizes substantial power sav-
ings when compared with conventional technologies.
The RNS has been shown to be capable of real time
fault tolerance [3, 4]. Additionally, since the devel-
oped technology is largely memory based, well under-

stood techniques for yield enhancement{l11] may be
applied to the implementation thus creating the pos-
sibility for construction of larger than conventional
(e.g., ULSI) systems using the RNS. Finally, the ad-
vantages of RNS may be combined to give substantial
cost advantages over conventional arithmetic tech-
nologies with similar performance characteristics. In
particular, the integration, power, fault and defect
tolerance characteristics of the RNS can lead to sub-
stantial system cost reductions.

Systolic arrays have been shown to offer many de-
sirable traits for signal processing systems [5, 6]. In
particular, they are highly parallel and potentially
may realize significant savings in control logic over-
head. An additional promise of systolic arrays which,
for the most part has not been realized yet, is speedup
associated with the elimination of interpackage de-
lays. In particular, elimination of interpackage delay
was one of the original motivations for systolic arrays,
yet placement of many processors on a single die has,
for the most part!, have not been realized [5, 12].

The combination of the developed RNS proces-
sor technology and systolic arrays promises to yield
substantial advantages. First, because the RNS
processor technology is substantially smaller than
its conventional counterpart (e.g., an eight-bit RNS
multiplier-accumulator implemented in 2.0 micron
CMOS occupies less than 2 mm? of die area), many
RNS processors may be arrayed on a conventional
sized die. Secondly, because the RNS is memory
based, conventional yield enhancement technologies
may be applied to make larger than conventional sin-
gle chip architectures manufacturable. Finally, the
fault tolerant properties of the RNS may be used to
further enhance the manufacturing yield of a highly
integrated RNS systolic array. Therefore, large pro-
cessor arrays may be realized without the speed, cost,
or reliability penalties associated with large quanti-
ties of interpackage connection.

IV. DISCRETE IMPLEMENTATION

Most systolic arrays are designed to solve some
particular problem optimally: there is considerable
treatment of these problems in the literature. There
exist many problems which could benefit from a high
performance arithmetic accelerator which does not

1 There are examples of single chip systolic arrays, such as
the Martin Marietta GAPP processor.

159

necessarily have to achieve an optimal solution. In
particular, if a standard part is available to acceler-
ate arithmetic operations, then it is not necessary to
devote considerable engineering resources to develop-
ing an optimal processor. The advantages of mass
production will allow the optimization of the stan-
dard part thereby mitigating some of the cost of a
suboptimal solution.

A discrete prototype of the Gauss machine has
been designed and constructed. This prototype is
a 2 x 2 systolic array processor composed of three
seven-bit GEQRNS channels for a total of six seven-
bit RNS channels. The array of processors is ar-
ranged in a mesh-connected topology with unidirec-
tional dataflow. Each single channel 2 x 2 array is
implemented on a single card (see Figure 2) which is
plugged into a host processor. see Figure 3. A block
diagram of the implemented multiplier-accumulator
processing element in depicted in Figure 4. The
prototype was constructed with relatively pedestrian
CMOS technology and operates at 10 MHz. This pro-
totype serves as a testhed for algorithms and also as
a proof of concept.

Figure 2: Photograph of Single Channel Processor
Board

Figure 3: Photograph of Gauss Machine Prototype

The Gauss machine is designed to perform level 3
operations[13] very efficiently using the whole array,

Figure 4: Block Diagram of Discrete Processor Im-
plementation

and to perform level 2 and level 1 operations effi-
ciently using its vector processing subarray. These
types of operations are very commonplace in signal
processing and thus the Gauss machine can acceler-
ate many signal processing applications. Since the
Gauss machine is designed to perform certain high
level operations very well, these are generated in ad-
vance for the user who uses the array via a high level
programming interface.

The array mode of operation utilizes the whole ar-
ray to perform matrix multiplication. The array ac-
cumulates results in place, see Figure 5. This archi-
tecture allows the array to be used for larger matrix
multiplication problems by using the array to com-
pute 2 x 2 blocks of the result of a larger problem.

% & O ——)L(?Hzfz) |
0 a, a, —»L(I,Tn }——»L(LTzﬂ

b, 0
b, b,
0 by

Figure 5: Matrix Multiplication Example

Since sloped data fronts are presented to the ar-
ray, and results are accumulated in place necessitat-
ing shift out of the results, an analytic result for the
number of clock cycles required to perform a matrix
multiplication was developed. Suppose A € C™xn,
and B € C™**" then

O (AB) = [k/2][r/2] (n +6) cycles.

The vector mode of operation utilizes two of the
four processors to perform level 2 and level 1 oper-

160

ations, see Figure 6. The vector mode of operation
may be used to efficiently perform inner products,
vector accumulation, and pointwise vector addition
and multiplication.

Figure 6: Block Diagram of Array with Vector Pro-
cessor Indicated

Analytical results for the number of cycles required
to perform vector operations have been computed.
Using the vector mode of addition, K vectors of
length N may be added in KN + 3 clock cycles. Us-
ing vector mode to pointwise multiply two vectors of

“length N requires [N/2] clock cycles. A performance

summary is given in Table 1.

L Operation [Rate]
2 x 2 Cmplx. Mat. Mult. 1.25M /s
4 x 4 Cmplx. Mat. Mult. 250K /s
10 x 10 Cmplx. Mat. Mult. 26.7K /s
1000 point Cmplx. Ptws. Vect. Mult. | 20K/s
1000 point Cmplx. Ptws. Vect. Add. 10K/s

Table 1: Performance Results Based on 10 MHz Op-
eration

The array has very limited control needs. The ar-
ray controller is an Am29CPL154 single-chip microse-
quencer. The host interface processor is a Motorola
68030 which communicates with the host workstation
via SCSI bus or serial lines.

V. VLSI IMPLEMENTATION

A. Description

Figure 7 depicts the architecture of the GEQRNS
multiplier accumulator cell. A die photograph is
shown in Figure 8. The 4k + 1 prime modulus
chosen for this chip was 113 and the generator of
GF(113) \ {0} was chosen to be « = 3. The ba-
sic operation of the cell is as follows: two seven bit
input operands z and y which are the exponents of
elements o®,a¥ € GF (p) \ {0}, are fed to a seven

proach (case I) relies upon having a defective proces-
sor switched out of the array (see Figure 9). Clearly
this only works well in certain types of systolic ar-
rays (such as the linear array pictured). The second
approach (case II) relies upon discarding all proces-
sors of one modulus if that single modulus array is
not a viable processing unit (see Figure 9). In or-
der to gauge the impact of these approaches to fault
tolerance a yield estimate is developed.

Assume a simple Poisson model for fatal defect dis-
tribution. Then the probability of having n faults per
cell is given by

e A"

P(N=n)= ",

(1)

where N is a random variable denoting the number of
faults and X is the average number of faults per pro-
cessing element{11]. Note that A = AD where A is
the processor element area and D is the average fatal
defect density. Assume that each individual process-
ing element cannot tolerate a single fault, then the
case for n = 0 results and Equation 1 simplifies to

(2)

A conservative value of D for a typical process is one
fatal defect per cm?, and substituting this value into
Equation 2 along with the processor element area
(A = 2.0 mm?) gives a survivability Spg = 0.9802
for individual processors. The survivability of an N
processor single modulus array is given by

Y=P(N=0)=e?=¢e4P.

Sa=SNg+NSHZ'(1-SpE),

when the case I scheme for defect tolerance is ap-
plied (take one processor element to be a spare), and
Sa = SN when the case I scheme is not applied.
The system survivability for an M modulus system
is given by

Ss =S¥ + MSY-1(1-5,4),

when the case II scheme for defect tolerance is applied
(discard one single modulus array), and Ss = S¥
when the case II scheme is not applied. Using the
above formulas and the computed Spg, yield pro-
Jections for mesh connected arrays and linear arrays
with four working moduli were generated, see Table 2,
and Table 3, respectively.

From Table 2, it is seen that a twenty-five per-
cent overhead in die area produces substantial yield

161

Single
Modulus
Array

Case Il

Defective Array

Figure 9: Case I: Linear Array with Defective Proces-
sor Bypassed, and Case II: Unused Defective Array

Defect Die
Size | Tolerance Area
(N) Scheme Sa Ss Overhead
2x2 — 923% [726 % 0%
2x2 11 92.3% | 94.9 % 25 %
4 x4 — 726% | 278 % 0%
4x4 IT 726 % | 58.3 % 25 %

Table 2: Yield Results for Mesh Connected Arrays:
M=4,or M =5in case Il

enhancement. Even more dramatic results are real-
ized by application of the case I approach to yield
enhancement, as noted in Table 3. Also note that it
is possible to incorporate defect tolerance at the pro-
cessor level (namely, in the GEQRNS exponentiation
ROM([11)), a feat which is not generally possible with
traditional arithmetic technologies.

VI. CONCLUSIONS

The Gauss machine represents a new class of proces-
sors using the RNS to perform front-end signal and
image processing operations. In the past the RNS
has been restricted to a limited set of applications
to which an RNS system would be hardwired. The
Gauss machine is more general purpose in scope; it
is able to perform a variety of operations which may
be expressed as level 1, level 2, or level 3 operations.

The Gauss machine has been implemented as a 2 x
2 array of GEQRNS multiplier-accumulators which
may be operated in a systolic mode to perform level 3
operations, or may be operated in a vector mode to
perform level 1 and level 2 operations. The Gauss
machine is a six channel system based upon seven-
bit moduli and achieves a dynamic range of 20.2 bits

Defect Die
Length | Tolerance Area
(N) Scheme Sa Ss Overhead
4 — 923% | 7126 % 0%
4 11 923%[949% 25 %
5 1 99.6 % | 985 % 25 %
5 I,IT 99.6 % [99.9% 56 %
20 — 67.0% | 202 % 0%
20 11 67.0% | 46.8% 25 %
21 1 93.6% | 76.7% 5 %
21 LII 93.6 % | 96.3 % 31 %

Table 3: Yield Results for Linear Arrays: M = 4, or
M =35 in case II

or 122 dB in each of the real and imaginary compo-
nents while achieving a peak equivalent performance
of 320 million operations per second.

A custom VLSI implementation of the an eight bit
GEQRNS multiplier accumulator has been fabricated
using the MOSIS 2.0 micron CMOS process. The
multiplier-accumulator cell occupies approximately
2.0mm? and has been tested at 20 MHz.

Future directions of development for the Gauss ma-
chine include integrating a 2 x 2 array of four moduli
GEQRNS accumulators onto a single die, and inves-
tigating MSIMD architectures utilizing “Gauss ma-
chine on a chip” as the processing engine. It is hoped
that such an architecture may achieve high perfor-
mance at low cost in terms of hardware and software
development costs.

The Gauss machine offers high performance while
minimizing power dissipation, physical form factor,
and cost. It has been demonstrated that modest
increases in hardware complexity can produce sig-
nificant gains in fault and defect tolerance. Conse-
quently, this technology has the potential to scale to
ULSI proportions and provide low cost and high re-
liability in the same package. This technology has
benefits to technologies as diverse as RADAR, and
communications to medical diagnostic signal process-
ing.

References

[1] N. H. E. Weste and K. Eshraghian, Principles
of CMOS VLSI Design: A Systems Perspec-
tive. Reading, Mass.: Addison-Wesley Publish-
ing Company, 1985.

[2] F. J. Taylor, J. Mellott, J. Smith, and G. Zel-
niker, “The Gauss machine — a DSP processor
with high RNS content,” in Proc. IEEE Inter-
national Conf. on Acoustics, Speech, and Signal
Processing, 1991.

W. K. Jenkins, “The design of error checker for
self-checking residue number arithmetic,” IEEE
Trans. Computers, vol. 32, pp. 388-396, Apr.
1983.

J. V. Krogmeier and W. K. Jenkins, “Error de-
tection and correction in quadratic residue num-
ber systems,” in 26th Midwest Symposium on
Circuils and Systems, 1983.

(3]

(4]

H. T. Kung and others;, “iWarp: an inte-
grated solution to high-speed parallel comput-
ing,” IEEE Trans. Computers, vol. 38, pp. 330—
339, Sep. 1988.

S. Y. Kung, “VLSI array processors,” IEEE
ASSP Magazine, pp. 4-22, July 1985.

M. Griffin, F. J. Taylor, and M. Sousa, “New
scaling algorithms for the chinese remainder the-
orem,” in Proc. 22nd Asilomar Conf. on Signals,
Syst., and Computers, 1988.

M. Griffin, M. Sousa, and F. J. Taylor, “Efficient
scaling in the residue number system,” in Proc.
IEEE International Conf. on Acoustics, Speech,
and Signal Processing, 1989.

G. Zelniker and F. J. Taylor, “A reduced com-
plexity finite field alu,” IEEE Trans. on Circuits
and Systems, vol. 38, pp. 1571-1573, Dec. 1991.

H. A. Nienhaus and S. Alyea, “CMOS cell library
development project,” Tech. Rep., University of
South Florida, May 1987.

S. E. Schuster, “Multiple word/bit line redun-
dancy for semiconductor memories,” IEEE Jour-
nal of Solid-State Clircuits, vol. SC-13, pp. 698-
703, Oct. 1978.

R. Simar, “The TMS320C40: a DSP for par-
allel processing,” in Proc. IEEE International
Conf. on Acoustics, Speech, and Signal Process-
ing, pp. 1089-1092, 1991.

G. H. Golub and C. F. van Loan, Matriz Com-
putations. Baltimore: Johns Hopkins University
Press, 2nd ed., 1989.

[6]

[7]

(8]

(9]

(10]

(11]

(12]

(13]

162

