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Abstract

We deal with the parallel and on-line (i.e. digit
serial, most significant digit first) evaluation of poly-
nomials and inverses of polynomials. We propose new
algorithms and architectures for such evaluations. A
3-D implementation model is proposed.

1 Introduction

Fast and accurate evaluation of polynomials is a
major goal in computer arithmetic, since any continu-
ous function can be approximated by a polynomial as
accurately as desired fl] As a matter of fact, polyno-
mial approximations have been widely used for soft-
ware implementation of elementary functions [2, 3].
Due to the advances in VLSI technology, fast circuits
evaluating polynomials can now be implemented. The
most common approach for evaluating polynomials in
hardware is based on the use of MA (Multiply-Add)
cells [4]: Horner’s scheme using a linear array of MA
cells, ”divide-and-conquer” using a tree structure of
MA cells [5]. Thus, many researchers have focused
on the design of efficient MA circuits [6, 7, 5, 8, 9]
including digit-serial (or, bit-serial) ones [10, 11, 12].

In this paper, it is assumed that all the coefficients
of a polynomial are known in advance, so they can be
“prepared” (for instance, multiplied by a small inte-
ger) for the computation. We present algorithms for
evaluating a polynomial P(z) when the value of z is
received either in parallel at the beginning of the com-
putation, or serially, starting from the most significant
digit (i.e. on-line [13]). Besides it is explained how the
inverse of polynomials can be computed in parallel or
in on-line mode using the same architecture.

Throughout this paper, we suppose that the num-
bers are represented in a fixed-point radix-2 redundant
number system, with digits equal to -1,00r 1. Such a
signed-digit number system makes it possible to per-
form additions in parallel, without carry propagations,
within a time independent of the length of operands
(i.e. their precision [14]). Without loss of generality,
we suppose in this paper that the image of polyno-
mials for ¢ € [—1,1] is also in the interval [-1,1].
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Extending our approach to higher radices signed-digit
number systems or simply to carry-save representa-
tions will be straightforward (except for the case of
on-line evaluation of inverses of polynomials), and is
left to the reader.

2 Parallel evaluation of polynomials

Before giving our method for polynomials of degree
n, let us study the case of degree-3 polynomials. As-
sume that we want to evaluate at point z € [~1,1]
a polynomial P(z) = a3z® + a32® + a12 + ag. Let
us denote: z = 3 72, d;27% (d; -1, 0, 1) and
T = Zf:],dﬂ—i‘ Ti+1 is equal to 2 + digq2751
therefore, since P is equal to its order-3 Taylor expan-
sion:

P(zr41) = P(xk)+dk+12_k—1-p'(l‘k)
1
+§d§+12'2’°-2P"(zk)

1
+6d%+12—3k—3P111(zk)

The polynomials P’ and P” also satisfy similar rela-
tions:

Plzx41) = Pl(zx) + degr 2771 P (24)
+%d12c+12_2k_zpm("’k)
P'(zrn) = P'(e) + desn27 7 P (2

Therefore, since P"'(z) = 6as, if we note P, =
P(z), P{ = P'(zx) and P!’ = P"(z}), we obtain

Peyr = Pe4dey2751P
+di 2723y
a3, 273k -3, 1
Plyy = Pl+dgp,2-5-1pr ()
+d} 127" %(3a3)
Py = P din2 1 (6ay)
Relation (1) makes it possible to compute Py, P,
Ps, ... successively, starting from Py = ag, P{ = a1



and PJ = 2a;. Since P goes to P(z) as k goes
to infinity, we have obtained an iterative method
for evaluating P at point z. Assuming that 3a3 is
stored, the computation of (Pe41, Py, P{y;) from
(Px, P{, P{") only needs additions and shifts, and can
be performed in a constant time (independent of the
length of operands) if we use the carry-free-addition
ability of signed-digit (or, carry-save) arithmetic. And
yet, it is possible to simplify relation (1), in order to
suppress the variable shifts. Let us denote

" =p,
) =2-kp]
Qiz) — %%;;Pl’z, - 2‘2"_1}’"

Q?) = %;:—P,:" = 9-3kg,

Then, we obtain

&), 1 Bp QF iéﬂ' LY
o | [0} am oda || od
e 0 0 1 3w &)
¥ 00 0 } o

Therefore, the variable-sized shifts in (1) are sup-
pressed.

Now, let us turn to the general case. Assume that
P has degree n, and let us denote P,E') the value of

the itB derivative of P at point zx. From Taylor’s
expansion of the derivatives of P, we deduce

n-g
: — 1 .
Pi=Y d2 ’(HI)WPS”) @
ji=o0 J):
If we define <I>f) = 2%k z;lﬁP,Ei) then
; noi P A
o), =Y di, 2~ it Mg g
k41 Jz:(:) k41 (1)|(])| k ()
Define the coefficients C;; = 2~ :TJ !!. These

values for i + j < 7 are shown in Table 1. It is noted
that relation (3) is very convenient for evaluating poly-
nomials of small degree, because the coefficients Cj;
are sums of a few number of powers of 2. For instance,
the coefficients appearing when evaluating a polyno-
mial of degree 5 (i.e. the coefficients C;;j such that
i+j < 5) are equal to g5, §; or 75, and a multiplication
by 5 reduces to an addition, since 5 = 224 1. For poly-
nomials of degree greater than 7, Table 1 shows that
our method cannot be efficiently used, since the coeffi-
cients C;; become too complex. However, this problem
partially vanishes using the architecture proposed in
section 6. In the following sections, we will represent
the parallel polynomial evaluator implementing (3) as
shown in Figure 1.
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lhifloJ1[2]3]af5]6]7]
1] 1 1 1 1 1 1
0l v]) 3| 3|5 {36 |35 |8 |728
1 1 1 3 1 5 |3 | T | -
21 2 | 8 | 3 |37 |3 |18
B R Y =
3| 8 | 8 | 16| 64 |i28
s it T (=~ <1<
8 4 i6 | 16 | 128
O T e e
16 | 32 | 64 | 128
P T O e e
33| 37 | 198
PO o I e
54 | 128
Table 1: The values of C;j fori +j <7
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Figure 1: A parallel polynomial evaluator

3 Parallel evaluation of inverses of
polynomials

Assume that z belongs to [-1,1]. Define a sequence
(zi) as:

zo=0
Tip1 = T + dry27F 1
. i <
withdyy ={ L, 252

Then, z; goes to z as k goes to infinity. The proof is

obvious: it suffices to show the relation |z; —z| < 2~F
by induction.

We assume that P is (strictly) monotonous in
[-1,1], without loss of generality, we can suppose
that P is increasing. Thus, z; < z, if and only if
Py = P(z;) < y. Then, we are able to compute
z = P~}(y) from y by:

Zo = 0
{ Tiy1 = zp + dp41 2751 )
. 1 if P, <
with diyy = { S1 PS>y
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Figure 2: The graph of y = P(z)

The terms Py = P(x;) are computed as in the pre-
vious section. As a matter of fact, the comparison be-
tween y and P is not convenient at all, since it may
require the examination of an arbitrarily large number
of digits of y and Py. Moreover, in the last section,
dedicated to the on-line evaluation of P~1, this com-
parison will not be possible, since y will not be exactly
known before the end of the computation.

We assume that &, = Y5, d;2' is an approxima-
tion of the value z and that P, = PS&;,) is computed
from Z; using (3). Let us define the largest integer, s
and the smallest integer, r such that 0 < 2* < P/(z) <
27, for all z € [—1,1]. Then,

|Pe =yl < |#k ~ 2| - max |P'(z)] < 2744
and, for y € [-1,1] N P([-1, 1)),

l#x —z| < |Pe—y| max|(P71)(y)|
. 1
< |-yl ——c
< B omEe)
< |Pi—yl 27

To simplify the comparison between Py and y, we
can rewrite the above algorithm as follows:

io =0
{ Er41 = Bk + dp42751 ®)
. 1 ifP<y
withdiyy =4 0 if [P —y| < 20751
-1 P>y

Let us show by induction that, for any &:

841 — 2| < 2741
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Initially, |20 — z] = |z| < 1 and let us assume that
|#p — 2| < 27%.
o if (ik“ =1, 131, — y < 0 implies that
27 <i-2<0

Therefore, —27% 4+ 278-1 < 2, 4+ 27%-1 _ 2 <
2_k—1) thus, |2k+1 - (DI S 2—k_1.

o if (ik“ =1, P, — y > 0 implies that
0<#—z<27k

Therefore, —27%"1 < &, —27F1_ 2 < 27% _
2-F=1 thus, |£x41 — 2| < 27%-1.

o if (ik+1 = 0 then obviously ﬁk+1 = P from (2).
Since | Py — y| < 2°—F-1,

|#k41— 2| < |Peyr—yl-27°
< |P-yl-27°
< 23—1:—1 .97 = 2—k—1

Let K be the integer obtained by truncating
(f:k -y)- 9—s+k+1
after the radix point. Then,
|K| < 27%.9r g-stb+l ] < grs+2

The comparison between P; and y 1s reduced to the
examination of r — s + 3 digits of K. Thus, the algo-
rithm becomes:

20=0 .
Epgp1 = Tk +dpp1275?

) 1 ifK<-1
withdpqr =4 0 HK=0
-1 fK>1

4 On-line evaluation of polynomials

Our algorithm makes it possible to evaluate poly-
nomials in on-line mode, by using a digitization pro-
cess. At step k, we suppose that we have computed
an approximation Py of the value y from z; using
(3). Let us define the smallest integer, r such that
2" > max|P'(z)|, ¢ € [-1,1]. Then,

|Pe =yl < lax — 2| - max|P'(a)] < 275+
From P, we want to deduce a new digit (as a mat-

ter of fact, the digit of weight 2~%¥+7+2) of the on-line
result of the computation, y = P(z). The algorithm
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Figure 3: A parallel inverse evaluator

presented below will generate in on-line mode the suc-
cessive digits of y in the radix-2 signed-digit number
system.

Assume that we are at step k + 2 of our algorithm.
We have computed a value Py satisfying | Py 2—y| <
2-k=24r_ From Py, Py, - -+, Piy1, we have deduced c;,
€2, -**, Ck—1—r. The number Yji2 is defined as the
number obtained by truncating Py, after the (k +
2 — r) position satisfying

|Yi42 — Piyo| + |Pey2 — 9l
2—k—2+r +2—k—2+r

[Yet2 — yl

IAIA A

2—k-1+r

(6)

Let us denote ¥ = 0.cyjcg---ck—1-r. The interval
I_, of the numbers representable if we choose ¢x_, =
—1is [¥ —2-F+r+1 ] the interval Iy of the numbers
representable with cg_, = 0is [¥ — 2~k Wy 4 2-F+r]
and the interval I; of the numbers representable wit
Ck—r = 1 is [¥, ¥ 4 27%+7+1] From that we deduce:

o If Yiy2 < W—27%"147 then, from (6), y < ¥ thus
y € I_y: we choose ¢cp_, = —1.

o IfW—27F-14" <V} 1y < W427F=147 then from
(6), ¥ =274 <y < W+ 27%+" thus y € Ip: we
choose ¢, =0
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o If Yo > W427%-14" then, from (6), y > ¥ thus
y € I;: we choose ¢g—, = 1.

This algorithm is easily implementable since it
needs the examination of only 5 digits of Yx4+2. Let
us call K the integer 2¥+2-7(® — Y;.42). From (6) and
the obvious relation [¥ — y| < 2-F+1+7,

[ — Yiyol (¥ —y| + [Yigz — 9l

<
< 2—k+1+r + 2—Ic—l+r =5. 2-k—1+r.

Thus, |K| < 10. The algorithm becomes:

-1 if K <-3

—lor0 iIf K=-2
ck—r=1¢ 0 f-1<K<1

Oor1l if K =2

1 if K>3

And, the on-line delay is (r + 2).

dit2

¢

Polynomial Evaluator

Pk+2 = P(ﬂ’?kn)

Digit Generator

L

Ck—r

Figure 4: An on-line polynomial evaluator

5 On-line evaluation of inverses of
polynomials

To explain the algorithm, we assume that P is an
increasing function: 0 < 2* < P'(z) < 27, for all
z € [-1,1]. Let us denote yx = Zle ¢i27 (¢ =
-1, 0, 1). At step k, we assume that we have com-
puted Py_s_; from £;_s_, using (3). The integer 6
will be the on-line delay. Then, from y; and Pp_s_1,

we want to deduce a new digit, di._s to obtain £;_s.
Our purpose is to show that the algorithm defined by:

N - 3 —k+6
Tkop = Ep—g-1 + dp—s2" "



A 1 if Pesoy Sy —27F
with dy_; = 0 if I!Jk_5_1 — | < 9-k+1
-1 fPes1 >y +27%
where 2; = 0,7 <0, and § = —s+2 gives |45 —z| <

2-k+¢ TInitially, |:co —z| = |#| £ 1, and let us assume
that
|k-5-1 — | < 27F¥5+1 )

olfcl;c s =1, Pk -1 — Y < =27 "a,ndyk—y<
2-%, Thus, Pp_s_ 1 — y < 0 implies that

f:k_5_1 - T S 0

From (7), =2 F++1 < &, s 1 — 2 <0, thus

—27kH < g s 2R g
= T _p45—2
< 2—k+6

o ifdis=—1,y¢ —Pis_1 < -2"F and y — gy <
2%, Thus, y -~ Pr_s_, <0 implies that

T—%r_5-1<0
From (7),

0< &5 —x <2 F+oHL

thus
_2~k+6 S i'k—&—l _ 2—k+6 —2
= Z_j4s—2
< 2-k+6

o ifdis=0, x5 = Ep_s_1.
Since [Pr_s—1 — yg| < 27F+1,

|#k—5 — z| |2k-5-1— z]

|Pesoy~yl-27°
(1Pe—s—1—ye| + lye —9|) - 27°
(2-k+1 + 2—k) . 2——5

3.7k~
2-—k s+2 __

INIA IA IA A

2—k+6

Let us call K the integer obtained by truncating
(Peys_s — &) - 2 after the radix point. Since

|Prvs—s—vk] < [Pegsos—yl+ |y — ul
< 2~k—s+3 9T +2—k
we obtain

IKI S 2r—:+3 + 1 S 2r—:+4

The comparison between Pp_s_1 and y is reduced to
the examination of r — s + 4 dlglts of K. Thus, the
algorithm becomes

$ro5 = Eg_s-1 + dy_s27 %S
. 1 ifK<-2
withdy_s={ 0 if-1<K<1
-1 ifK>2

And, the on-line delay is (—s + 2).
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L
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]

P g1 = P(ép_s-1)
dy_s

Figure 5: An on-line inverse evaluator

6 Implementation and complexity
analysis
L " parallel I on-line —|
the on-line input on-line input
polynomials || parallel output | on-line output

the inverse of || parallel input | on-line input

polynomials || on-line output

on-line output

Table 2: Summary of parallel/on-line evaluations

Now, we propose an architecture which computes
the sequences <I> of equation (3). Simplifying the



term %, this equation can be rewritten :

@) N~ gi-igmi_ @D o)
Pt = 2 AN o

j=s
The multiplication by Fﬁ%éﬁ can be avoided using
the properties of Pascal’s triangle. Let us denote N
the number of digits used for representing numbers.
The algorithm for computing ng_l becomes:

A[il:a,-,OSiSn;

C[ig}i]=0,0§i5nand03j§i;
fork=0toN -1
begin

for [ = 0 to n in parallel

begin

ClN[0] = Aoia[n — 1;
new|N — | = Uj

en

form=0to N

begin

for all 0 < i < n and 0 < j < i in parallel
begin in parallel
Crew[illi] = §(Cotali = 1][j ~ 1] + Caali — 1][j]);
Al1] = Afi] + d° 7 Cota[n][i];
end in parallel
end
end

u v

\,

clo] [;k

1Y,

cl2)

-

v

vie {)(ﬂ
=
e
+ <<

o+

-

D N-digit register

[

N
EARARY
LR

Al)  A[2]  A[B]  Al]  A[5)

Note that C[{]{j]=0ifi<0,j < 0orj>i Itis
easy to show that at the beginning of the m*” iteration
of step &,

Clnlli] = (mTh’i)mz-'"@y")

and that at the end of step (N — 1),
Ali] = o)

This algorithm can be implemented with a cir-
cuit using "—L"#l N-digit registers and O(n?) N-digit
adders to compute a degree-n polynomial. For in-
stance, an architecture for evaluating a degree-5 poly-
nomial is described in Figure 6 and has a very regu-
lar form, as desired. The time needed to compute a
degree-n polynomials is O(nN). The circuit area is

O(n?N).

7 Conclusion

We have proposed new algorithms and architectures
for evaluating small degree (say, lower than 10) poly-
nomials both in parallel and in on-line mode. In par-
ticular, we have treated the polynomial itself as an op-
eration, not a combination of MA cells. The proposed

Figure 6: Architecture for the evaluation of a degree-5
polynomial

circuit implementation is very regular, and could be
used to approximate most elementary functions (expo-
nentials, logarithms, trigonometric functions). Addi-
tionally, the same implementation model can be used
to compute the inverse of polynomials.
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