n x n Carry-Save Multipliers without Final Addition

Paolo Montuschi

Luigi Ciminiera

Dipartimento di Automatica e Informatica,

Politecnico di Torino, corso Duca degli Abruzzi 24,
10129 Torino (Italy)

Abstract

Carry-save multipliers require an adder at the last step
to convert the carry-sum representation of the most
significant half of the result into an irredundant form.
This paper presents a multiplication scheme where this
conversion is performed with a circuit operating in par-
allel with the carry-save array.

The resulting implementation, when a radix-2 adder
array is used, produces a result on 2n bits with a delay
comparable to the multiplier proposed by Ercegovac
and Lang in [13]. When a radix-4 array is employed,
the proposed unit is almost twice as faster as the units
proposed by Nakamura in [18] and Jullien et al. in [27).

Keywords: carry-save addition, multiplication, on-
the-fly conversion, redundant number representations.

1 Introduction

The design of high speed multipliers has always played
a primary role in computer arithmetic. In the litera-
ture, interestin multlpllca.tlon schemes have been pre-
sented in [4], FS [10], [17], [21], [26], and more
recently in 3] ] [13], {16], [19], [22], [23], [24],
25].

Many of the proposed multipliers use, internally, a
carry-sum representation of the partial accumulated
products. The carry-sum is one of the early types of
redundant representation introduced in order to conve-
niently address the problem of carry propagation. The
signed digit redundant representation is ideal for rep-
resenting results produced both by iterative algorithms
for SRT [20] division and square root [14] and by on-line
algorithms [12]. On the other hand, the carry-sum form
is more popular than signed digit and well suited for
the representation of results coming from successive ac-
cumulations, (such as the partial results during a mul-
tiplication) and, in general, is easy to implement when
the operands are in non redundant form. The main rea-
son of this, is that a carry save adder is simpler than
a signed digit adder [2], [3], [16]. However, the former
accepts operands in irredundant form, while the latter
uses redundant operands. Therefore, once the prod-
uct of negative numbers has been transformed into a
sequence of additions, (like the Baugh and Wooley al-
gorithm [4], or by encoding of the partial products [24]
or by means of other techniques [19], [23]), the carry-
sum representation of the partial accumulated products
is cheaper to handle.

1063-6889/93 $03.00 © 1993 IEEE

Multipliers based on the signed digit representation of
the products have been presented in [13]. By carrying
out an on-the-fly conversion procedure based on the
scheme presented in [11], Ercegovac and Lang present
in [13] a n X n multiplier not requiring the carry prop-
agated addition in the last step of the “classical” mul-
tipliers, but providing a result only on the most signif-
icant n bits.

On the other hand, our proposal consists in two
schemes of carry-sum-adder-based n x n multipliers, for
either binary or two’s complement numbers, one with
radix-2 and the other with radix-4 adder array. The
proposed multipliers can be considered as variations of
the “classical” carry-save solution g15], [22], and they
feature all the 2n bits of the result. Actually, they
produce the least significant n' bits of the result in ir-
redundant form, and the most significant n’ = 2n — n"”
digits in carry-sum form, but the latter are produced
starting with the most significant one. The digits in
redundant form are converted in parallel with the com-
putation of the least significant ones, so that, when
the last redundant digit is produced, the whole prod-
uct value in irredundant form can be obtained after a
constant (i.e. independent of n) delay.

The design of n x n two’s complement and binary mul-
tipliers is presented in section 2, where we discuss also
the problem of on-the-fly converting the result in ir-
redundant form. The proposed multipliers are then
evaluated in section 3, considering both their hardware
requirements and their speed of operation.

2 Design of binary and two’s comple-
ment multipliers

We propose a multiplier which produces a result not re-
quiring the carry propagate addition in the last step of
some conventional schemes [15], {22], and with respect
to the multiplier proposed by Ercegovac and Lang in
[13] (which is based on a signed representation), pro-
viding all the 2n bits of the result. It performs the
multiplication producing the least significant n” bits
in carry assimilated representation and the most sig-
nificant »’ = 2n — n” in carry-sum form, which are
on-the-fly (and in parallel) converted in non-redundant
representation.

Our unit generates all the elementary product terms
by operating radix-2 and, in the case of two’s comple-
ment multiplier, implements the algorithm by Baugh
and Wooley [4] with the extension by Blankenship [5].



Figure 1: Proposed array of adders for n =5

As with many other parallel multiplying arrays, the
multiplication can be considered as being performed in
2 phases:

1. all the elementary products are generated;

2. the bits obtained in the phase 1 are added by a
suitable array.

The first phase requires a constant time, and it is not
of interest in our case, because, once the radix has been
selected, its complexity and delay are common to dif-
ferent algorithms. Extension to higher radices of the
multiplier for the phase when all the elementary prod-
ucts are generated, can be performed by using algo-
rithms based on the encoding of partial products [24]
or on other techniques [19], [23], in order to eliminate
the need for sign extension for the negative terms.

Several solutions have been proposed in the literature
for the array assimilating the bits produced in the first
phase. Of particular interest are the “classical” radix-2
assimilation array [15], and the radix-4 array proposed
by Nakamura in [18] and by Jullien et al. in [27]. The
“classical” array for radix-2 assimilation considers the
full adder as the basic assimilating element. On the
other hand, Nakamura uses for his radix-4 assimilation
a % 3) counter as the basic assimilating element, while
Jullien et al. employ a 2-bit full adder. We start by
considering the radix-2 and then we present the radix-
4 assimilation array.

55

2.1

Our attention is focused only on the second phase; the
array used for two’s complement numbers is shown in
Fig. 1 for n = 5. Globally, the whole unit is basically a
carry save multiplier, where some additions are antici-
pated in order to obtain the digits in redundant form as
soon as possible. This also implies the introduction of
a diagonal line of full adders (the one below the dashed
line in Fig. 1). In Fig. 1 we have denoted with

Radix-2 adder array

3
X=-24-24+) 2.2
t—0

3
Y:—y4-24+2y,--2i

=0
8 .
Z:X-YI—ZQ'ZQ-{—ZA"Z,
:=—=0

the two operands and the result, respectively.

In Fig. 1 the (n + 1) least significant bits of the prod-
uct have been denoted with the symbols z; (with i =
0,---,n), since they are produced in irredundant form
and they are equal to the (n + 1) least significant bits
of the result. Therefore, in such a case the subscript
i of 2; is related to the weight of the bit of the final
result. On the other hand, the (n — 1) most signifi-
cant digits of the result are produced as carry and sum



5!

MULTIPLYING
ARRAY

Figure 2: On-the-fly conversion hardware for n = 5

pairs, i.e. in non-assimilated carry-sum form. In Fig.
1 they have been denoted with the symbols p; Swith
i=1,-+-,n — 1), where the subscript i of p; is related
to the order of availability of the pair p;. Therefore,
p1 is the first available carry and sum pair, p; is the
second, and so on; each digit p; in effect comes from
the assimilation of one carry and one sum bit ¢; and
s, respectively. To summarize, in Fig. 1 the (n — 1)
most significant digits are labeled in the order they are
produced, while the (n+ 1) least significant bits are la-
beled with index corresponding to the bit weight inside
the final result.

The (n + 1) least significant bits are produced after a
delay of n full adders. The (n— 1) most significant dig-
its are also produced after a delay of n full adders. In
particular, it should be noted that the most significant
carry and sum pair of the final product p; is produced
after a delay of 2 full adders. The successive carry
and sum pairs follow thereafter, with delays of one full
adder between one and the next. In this computation,
the half adder used to sum the additional inputs re-
quired by the Baugh and Wooley algorithm does not
contribute to the total delay, as it operates in parallel
with the rest of the array.

A radix-2 multiplier for positive numbers can be im-
mediately obtained from the one of Fig. 1, by elimi-
nating all the additional inputs required by the Baugh
and Wooley algorithm, as well as the extra half adder,
while at the same time generating the appropriate ele-
mentary products.

2.2 On-the-fly conversion and output of
the result for the radix-2 adder array

By using the hardware of Fig. 2, the redundant digits
are produced by the array starting with the most signif-
icant one. The hardware of Fig. 2 is used to implement
a sort of on-the-fly conversion algorithm which is sim-
ilar to the methodology presented in [13]. However, in
[13] the most significant digits are in signed digit form,
while in the proposed algorithm they are in carry save

56

Table 1: Conversion control signals

Dy[7] | Decision at level ¢ about
value of product digit my
u undecided

g decided: no change

(M = Ax)

t decided: increment
modulo the operating base
((myx = Ax + 1) mod R)

representation. Observe that the hardware for the on-
the-fly conversion of Fig. 2 operates in parallel with the
computation of the following digits.

The carry-sum representation of the product is con-
verted into the corresponding conventional representa-
tion m. During the on-the-fly conversion, we produce
both the assimilations of the bits p; using the blocks
A and the control signals Dy [i] associated with each
bit Ax output from blocks A. This is done so as to
determine whether the final bit my is A or Ay (i.e.
(Ax + 1) mod 2). The meaning of the control signals
is given in Table 1. In Fig. 1 we observe that, in cor-
respondence with each stage of the array, one pair of
carry and sum bits is output from the array. By con-
sidering that p; has the value of the assimilation of the
bits ¢; and s;, a high level description of the process is:

0 if pi=2
A= 1 if p;=1 (1)
0 if pi=0

From (1) it follows that A; = c; @ s;, where the symbol
@ stands for the EXOR operator. At the beginning we
have D;[i] = u, and for k < 7 we have

u if Difil=uvandp; =1
Dy[i+1]=1< g if Dili)=uand p; =0o0r Dii]=g
t if Dilt)=uand p; =2o0r Dpli] =1t

2
It is interesting to note that the rules in Table 1 imp&e2
ment the same addition algorithm as carry-select [15];
however, this implementation differs from the previous
one, because it takes into account the different avail-
ability in time of the digits to be added.

We denote with v [i] and & [z] the most and least signif-
icant bits of D[i]. We choose to represent the condition
Dy [i] = g with the pair (yx[i] = 1,8:[i] = 0), the con-
dition Di[7] = t with the pair (yx[{] = 0,8[i] = 1), and
the condition Di[i] = u with the pair (yx[z] = 0, 8;[i] =
0). The boolean expressions used to obtain the bits of
Dy [i + 1] are derived from (2) and are

oi[icisi + me[d]
Yelileisi + 8[i]

e[t + 1]
St + 1]

)

From Table 1 we observe that at the final level, (i.e.
when ¢ = n—1), only when Dy [n—1] = ¢ it is necessary



to complement the value of Ay, that is my = A;. If
Dy[n—1] = wor Di[n— 1] = g, we will have m; = A;.
Therefore, at the final level only the signal é;[n — 1] is
necessary. The bit my is obtained as
mk:Akeaék[n—l]:ck@sk@ék[n—1] (4)
With reference to the general scheme which can be de-
rived from Figures 1 and 2, we observe that the “on-

the-fly-converted” bit m; corresponds to the bit za,_x
of the result, i.e. zo, _;x = my.

2.3 Radix-4 adder array

The scheme of the proposed radix-4 adder array used
for two’s complement numbers is shown in Fig. 3 for
n = 8, where we have denoted with

6
X=-27-2"4) z; -2
i=0

6
Y:—y7-27+2yi.2i

1=0
14
Z=X-Y=-25-24) 22
1=0

the two operands and the result, respectively.

In Fig. 3 have been used the blocks whose definition
is reported in Fig. 4. In particular: Fig. 4a depicts an
EXOR gate; Fig. 4b depicts a basic processing element
(BPE), where the inputs are given on «,3,7,6,¢ and
the outputs are on u,7,&, being 1 and ¢ the most and
least significant bits, respectively; Fig. 4c depicts a 2-
bit full adder (CLA;), where 2(a+8) +v+6+¢ =
224+ 21+ ¢; Fig. 4d depicts a full adder, where a+ 3+
v = 2p + n; Fig. 4¢ depicts a binary full adder (BFA),
where a + B+ -6 =2u+1.

In Fig. 3 the basic processing element (BPE) used for
the “compression” of the product terms, is the (5,3)
counter of [18]. A similar array can be used with the
2-bit full adder CL A, introduced in [27] (which imple-
ments the addition of two 2-bit operands with a carry-
in). In fact, both the (5,3) counter and the 2-bit full
adder produce a result on the weights 22, 2! and 2°; as
for the inputs, 2 inputs of the same weight are used
in both cases to add 2 new elementary products, while
the remaining 3 inputs are used to add carries and par-
tial results from neighbor cells. Thus, the difference
between the use of the two types of cells is only in the
weights of the latter 3 inputs, that are the same as
those of elementary products in [18], and different as
in/ [27]. Observe that the number of rows of BPEs is
nj/2.

Surrounding the adder array, we can identify two dif-
ferent portions of hardware. In the lower right corner
(below the right dashed line) of Fig. 3, we have the
hardware which is dedicated to the determination of
the least significant digits of the result in non redun-
dant form. These circuits are based on the use of binary

57

full adders (BFA) and EXOR gates and do not substan-
tially differ from the solutions proposed by Nakamura
in [18] and Jullien et al. in [27], and hence will not be
discussed.

On the other hand, the hardware for the determination
of the most significant digits of the result, is identified
in the lower left corner of Fig. 3. As the radix-2 adder
array of Fig. 1, some additions are anticipated in order
to obtain the most significant digits in carry-sum form
as soon as possible, thanks to the introduction of a
diagonal line of full adders FA’s and other 2-bit full
adders CLAj’s (the one below the left dashed line in
Fig. 3). In order to achieve the maximum advantages
in terms of parallelism, it is implicitly assumed that the
“assimilation” operated by one C' LA, is carried out in
a time no longer than the delay for the “compression”
of some product terms operated by one line of BPEs.
This assumption implies that a (5,3) counter should
not be faster than a 2 bit full adder.

In Fig. 3 we have used a similar notation as what
adopted in Fig. 1, for the most and least significant dig-
its, respectively. In fact, in Fig. 3 too, the (n + 2) least
significant bits are labeled with index corresponding
to the bit weight inside the final result. On the other
hand, the (n — 2) most significant bits are produced
from (n/2 — 1) radix 4 units, and the corresponding
most significant (n/2—1) radix 4 (redundant) digits are
labeled in the order they are produced. The (n+2) least
significant bits are produced after a delay of (n/2 + 3)
BPEs. The (n/2 — 1) most significant digits are also
produced after a delay of (n/2+3) BPEs. In Fig. 3 the
most significant digits are produced in groups of three
bits, i.e. for the ¢ —th digit two of weight 22"~ 2+ and
one of weight 22*~%_ In particular, it should be noted
that the most significant $redundant) digit of the final
product p; is produced atter a delay of 5 BPEs. The
successive digits follow thereafter, with delays of one
BPE between them.

2.4 On-the-fly conversion and output of
the result for the radix-4 adder array

The on-the-fly conversion of the most significant digits
coming out from the array of Fig. 3 is based on similar
operating principles as these outlined in section 2.2 for
the radix-2 adder array. Again, we produce both the
assimilations of the bits p; using the blocks A and the
control signals Dy 7] associated with each digit Ay out-
put from blocks A, used to determine whether the final
radix-4 digit m; is Ag or (Ax + 1) mod 4 (see Table
1). The high level scheme of the on-the-fly conversion
hardware is again this of Fig. 2 where, however, the
digits Ar and m; are composed by 2 bits: Ag; and
Ago (most and least significant, respectively).

In Fig. 3 we observe that in correspondence with each
stage of the array, one (redundant) digit composed by
three bits is output from the array: the i-th digit p; has
two bits of weight 22”21 and one of weight 22" ~%.

Let us denote with ¢;; and s;; the two bits of weight
22n=%+1 and with ¢; 0 the bit of weight 22"~ 2 of the

i-th most significant (redundant) digit output from
the array. By considering that p; has the value of



Figure 3: Proposed radix-4 array of adders for n = 8

Y 5 c
/ / 2

a) b)

o By 5 o B Y
b €

n 3 i n

¢ d)

o B

the assimilation of the bits ¢; 1,51 and ¢; o (i.e. p; =

2(ci,1 + 8i,1) +¢i0), a high level description of the pro-
cess is:

Ai = (5)

WK =O
e
S

g

|

[3%]

From (5) it follows that A; 1 = ¢; 1®s;1 and A; o = ¢; 0.
At the beginning we have D;[i{]| = u, and for k < i we
have

u if Di[i] = vand p; =3
Dili+1) =< g if Dili] = u and p; < 2 or Dyi[i]
t if Dili| = w and p; > 4 or Dyi]

Again, we denote with [:] and 6;[i] the most and least
significant bits of Dy [i], and we use the same coding
introduced in section 2.2 to represent the conditions
Dy[i] = g,t, u. The boolean expressions used to obtain
the bits of Di[i + 1] are derived from (6) and are

br [i](c;lc{o +c¢i18i1 + S‘;_,lc,‘_'o) + i [Z]
(7)

Y [dlei,1861 + 6x[d]

At the final level, (i.e. when ¢ = n/2 — 1), only when
Dy[n/2 — 1] =t it is necessary to add 1 to the value
of Ag, that is my = (A + 1) mod 4. Therefore, at the
final level only the signal 6;[n/2 — 1] is necessary. With
reference to the general scheme which can be derived
from Figures 2 and 3 we observe that the “on-the-fly-
converted” bit m; corresponds to the pair 2z,_2141,
Zan 3k of the result, i.e. my = 2Zon—2k+1 + Zon—2k.

e[t + 1]
6k[i+ 1]

58

Figure 4: Proposed radix-4 array of adders for n = 8



3 Evaluation

There are two possible parameters to compute for eval-
uating the proposed multipliers: execution time and
hardware requirements. In particular we will compare
our unit featuring the radix-2 adder array on both as-
pects with the multiplier proposed by Ercegovac and
Lang [13] since these multipliers use similar schemes.
On the other hand, we will compare only the perfor-
mances of the unit employing the radix-4 assimilation
array with the units by Nakamura [18] and Jullien et
al. [27], since the latter architectures do not require any
supplementary hardware for the on-the-fly conversion
of the most significant part of the result as it is done
in [13].

3.1 Execution time of the unit with radix-

2 assimilation

We assume that the blocks D of Fig. 2 which gener-
ate control signals Dy [i]’s, operate in parallel with the
lines of the carry save adder array. Our assumption is
realistic, since the complexity of the boolean functions
£3) is comparable with the complexity of the boolean
unctions of a stage of the carry save adder array (i.e.
a full adder). As can be observed in Figures 1 and 2,
the critical path passes through the generation of the
elementary product terms, through the n stages of the
carry save adder array, through the last line of blocks
D generating the function éx[n — 1], and through the
blocks G for the generation of the bits my of the result.
It is important to note that the bottom rows of the con-
version array (see Fig. 2) require a large fanout for the
signals produced by the multiplying array. This may
impose an execution time dependent on n; however,
this problem can be overcame by using larger drivers,
whose additional cost is negligible with respect to the
complexity of the whole array.

Let us denote with tz4 the delay of a full adder; the
delay of the proposed unit becomes

(8)

where with tgen,pritsy[n—1] and t,, we have indicated
the delay in generating the elementary product terms,
and in generating 6x[n — 1] and m;, respectively.

We assume that the generation of the function & [n—1]
according to (3) requires a delay of one full adder, and
that the last EXOR required to determine the generic
bit my according to (4) has also a delay of one full
adder. In such a case equation (8) becomes

Tpr = tgc-n,pr + ntFA + t&;.[n—l] + tmk

Tyr = (n + Z)tFA + tgen,pr (9)
Since we implement a similar on-the-fly conversion
mechanism, we compare our unit with the left-to-right
multiplier proposed by Ercegovac and Lang in [13].
The multiplier of [13] implements the radix-4 modified
Booth algorithm, and uses a signed digit adder array
consisting of [[(n 2) — 1] stages of signed digit adders.
According to [13], the delay of the multiplier is

TEL = trec,mul + tyen,EL + [(n/2) - l]tSDA +

+trec,add + tctrl + tinc (10)

59

where t,¢c mui is the delay for the recoding of the multi-
plier, tgen g1 is the delay in generating the elementary
product terms, tsp 4 is the delay of a signed digit adder,
trec,add is the delay in recoding and adding one digit
which is output from the adder array, t.:; is the delay
of the generation of the last control signals, and t;,. is
the delay in incrementing a radix-4 digit. Reasonable
assumptions for these delays are:

® treemu > 05

® tgen BL > tgenpr; in fact, in the proposed archi-
tecture, the delay in generating the elementary
product terms approximately equals the delay of
an AND gate; on the other hand, in the architec-
ture of [13] the generation is slightly more com-
plex since it is necessary to make a selection of the
+2,+1, and 0 multiples of the multiplicand;

tspa = 2tF4; because a radix-4 signed digit adder
requires the propagation of the carry through one
bit weight (2], [3], [16];

® trec,add > 2tpa; because the recoding of the digit
has the delay of tr4 and the addition requires at
least tpy4;

® teerl = tra;

® t;,. > tpa; because the last increment of a radix-4

digit has a delay of at least one full adder.
Therefore, from (10) we obtain

TEL 2 (TL + z)tFA + tgen,pr (ll)
A comparison of (9) and (11) shows that under the
previous assumptions regarding the delays, our archi-
tecture provides a multiplication scheme comparable
to the one of [13]. However, our multiplier computes
a result on 2n bits, while the multiplier proposed by
Ercegovac and Lang in [13] provides only the most sig-
nificant n bits.

3.2 Hardware requirements of the unit
with radix-2 assimilation

It is not possible to reduce the size of the adder array as
in the case of [13], and as in the Cray X-MP processor
[1], since the final product is provided on all the 2n
bits. From Fig. 1, we observe that the adder array
requires (n — 1)2 full adders, 1 half adder, 1 OR gate
(to perform the inclusive OR between the signs of the
two multiplicands X and Y), and n* AND gates (to
generate the elementary product terms). Therefore,
the complexity of the adder array is approximately

(12)

where with Kp, and K snp we have denoted the area
of a full adder, and of an AND gate, respectively. The
hardware used to determine the most significant n’ =
n — 1 bits of the result has a complexity of

Karray % (n = 1)’Kpa + n*Kanp

— (l;l)M.KD+(n—1)KFA+(n—1)KG

Kms,pr 2



where with Kp and K¢ we have denoted the complex-
ity of the hardware required to implement the blocks D
and G (to generate the my’s according to (4)), respec-
tively. Reasonable assumptions are that Kp ~ 2Kp4
(because of relations (3)), and K¢ =~ Kp, (because of
relation (4)). In such a case, the complexity of the the
hardware used to determine the most significant n bits

is
(13)
On the other hand, the complexity of the hardware

used by the unit of [13] to convert the most significant
n bits 1s

Kspr & (n2 —n)-Kpa = O(n?)

Kms,EL = n/2 . Krec,a.dd + n/2 Kspa +
n/2(n/2 -1
% : Kctrl

where K,¢c qad, Kctri and Kspa express the complexity
of the module for recoding and adding one digit output
from the adder array, of the module for generating the
control signals, and of a signed digit adder, respectively.
If we assume that K, ecqdd ~ 2Kpa, Ketri = Kpa and
KSDA ~ ZKFA [2], [3], [16], we get

n?+Tn

3 - Kpa = O(nz)

Kms,EL ~

(14)

Finally, the classical carry save multiplier [15] requires a
carry propagate adder so that the most significant bits
can be obtained, and this multiplier has the complexity
of O(nlog(n)), with a delay of O(log(n)), as against to
constant addition time in our algorithm. A comparison
between (13), (14) and the complexity of the classical
carry save multiplier, shows that the hardware in the
proposed architecture to determine the most significant
n bits is of the same order of complexity as the hard-
ware required by the unit proposed by Ercegovac and
Lang in {13], but is more complex than the carry prop-
agate adder used in the classical carry save multiplier.

The extra hardware required by the proposed multiplier
with respect to the classical solution [15] is the price
paid for a faster multiplication scheme which avoids
the final addition, but still provides all the 2n bits of
the result in non redundant form.

3.3 Execution time of the unit with radix-
4 assimilation

We assume that the blocks D of Fig. 2 which generate
control signals Dy [i]’s, operate in parallel with the lines
of the adder array, since the complexity of the boolean
functions (7) is comparable with these implementing a
BPE. In this case the critical path passes through the
generation of the elementary product terms, through
the (n/2+ 3) stages of the adder array, through the last
line of blocks D generating the function é;[n /g 2—1],and
through the blocks G for the generation of the bits my,
of the result. The delay of the proposed unit becomes

Tpr,rudiz 4 = tge‘n,pr + (n/z + 3)tBPE + tﬁk[ﬂ/Z—ll + tm’t

(15)
where with tgppr we have indicated the delay of a BPE
(the other symbols have already been defined in section

60

3.1). We assume that the generation of the function
§;[n/2 — 1] according to (7) requires a delay of one full
adder, and that the last increment required to deter-
mine the generic bit my has a delay of two full adders.
In such a case equation (15) becomes

Tpr,radiz 4= (n/2 + 3)tBPE + tgen,pr +3tFa (16)
According to the schemes of the multipliers of of [18]
and [27], the delay is

(17)

where tgen N7 is the delay in generating the elementary
product terms, tpra is the delay of binary full adder,
and txog is the delay of an EXOR gate. Reasonable
assumptions for these delays are tgen 7 = tgen pr and
tBra =txor = tra. Therefore, from (17) we obtain

(18)

A comparison of (16) and (18) shows that under the
previous assumptions regarding the delays, our archi-
tecture provides a multiplication scheme almost twice
as faster as the units proposed in [18] and [27].

TNy =tgen, N7 +(n—1)tppE +tBFa + txoR

Tn; = (n—1)tppE +tgenpr + 2tFa

4 Conclusions

We have presented the design of both binary and two’s
complement n X n multipliers, where the addition re-
quired for the conversion of the result into conventional
representation is implemented in overlapping with the
elementary product reduction. In the proposed multi-
plication schemes, the computation of the least signifi-
cant bits is carried out in parallel with the determina-
tion of the most significant digits, where the latter are
represented in redundant (i.e. carry-sum) form. The
conversion from carry-sum to irredundant form is also
carried out in parallel with the generation of the other
digits of the product.

Therefore, the additional delay required to obtain all
the product digits in irredundant form once the carry-
save operation is completed, is short and independent
from n, while addition performed in cascade with ele-
mentary product reduction are larger with a delay de-
pendent on n. The resulting implementation when a
radix-2 adder array is used, produces a result on 2n
bits with a delay comparable to the multiplier proposed
by Ercegovac and Lang in [13] that produces only the
n most significant ones. When a radix-4 array is em-
ployed, the proposed unit is almost twice as faster as
the units proposed by Nakamura in [18] and Jullien et
al. in [27].

References

[1] Annon, “Cray X-MP Computer Systems,” Four-
Processor Mainframe Reference Manual, HR-0097,
Cray Research, Inc., 1985.

[2] A. AviZienis, “Signed-Digit Number Representa-
tion for Fast Parallel Arithmetic,” IRE Trans.
Electron. Comput., Vol.EC-10, September 1961,
pp-389-400.



(3]

(8}

E)

[10]

(11]

[12]

(13]

[14]

(15)

W. Balakrishnan and N. Burgess, “Very-High-
Speed VLSI 2s-Complement Multiplier Using
Signed Binary Digits,” IEE Proceedings, Part E,
Vol.139, No.1, January 1992, pp.29-34.

C. R. Baugh and B. A. Wooley, “A Two’s Com-
plement Parallel Array Multiplication Aigorithm,”
IEEE Trans. Comput., Vol.C-22, No.12, December
1973, pp.1045-1047.

P. E. Blankenship, “Comments on ‘A Two’s
Complement Parallel Array Multiplication Algo-
rithm’,” IEEE Trans. Comput., Vol.C-23, pp.1327,
1974.

A. D. Booth, A Signed Binary Multiplication
Technique,” Quart. J. Mech. Appl. Math., Vol.4,
Part 2, pp.236-240, 1951.

P. R. Cappello and K. Steiglitz, “A VLSI Layout
for a Pipelined Dadda Multiplier,” ACM Trans.
Comput. Systems, Vol.1, No.2, pp.157-174, May
1983.

L. Ciminiera and A. Serra, “Fast Iterative Mul-
tipliying Array,” Proc. 6th IEEE Symposium on
Computer Arithmetic, Aarhus, Denmark, pp.60-
66, June 1983.

L. Ciminiera and P. Montuschi, “Higher Radix
Square Rooting,” IEEE Trans. Comput., Vol.C-
39, No.10, October 1990, pp.1220-1231.

L. Dadda, “Some Schemes for Parallel Multipli-
ers,” Alta Frequenza, Vol.34, March 1965, pp.349-
356.

M. D. Ercegovac and T. Lang, “On-the-Fly Con-
version of Redundant into Conventional Represen-
tations,” IEEE Trans. Comput., Vol.C-36, pp.895-
897, July 1987.

M. D. Ercegovac and T. Lang, “On-Line Arith-
metic: A Design Methodology and Applications in
Digital Signal Processing” VLSI Signal Processing
I1I, pp.252-263, 1988.

M. D. Ercegovac and T. Lang, “Fast Multiplica-
tion Without Carry Propagate Addition,” IEEE
Trans. Comput., Vol.C-39, pp.1385-1390, Novem-
ber 1990.

J. Fandrianto, “Algorithm for High Speed Shared
Radix 8 Division and Radix 8 Square-Root,” Proc.
9th IEEE Symposium on Computer Arithmetic,
Santa Monica, CA, pp.68-75, September 1989.

K. Hwang, “Computer Arithmetic: Principles, Ar-
chitecture and Design,” John Wiley and Sons, New
York, 1978.

61

(16]

(17]

(18]

(19]

(20]

21]

22]

(23]

[26]

(27]

S. Kuninobu, T. Nishiyama, H. Edamatsu, T.
Taninguchi and N. Takagi, “Design of High Speed
MOS Multiplier and Divider Using Redundant Bi-
nary Representation,” Proc. 8th IEEE Symposium
on Computer Arithmetic, Como, Italy, pp.80-85,
May 1987.

A. R. Meo, “Arithmetic Networks and Their
Minimization Using a New Line of Elementary
Units,” IEEE Trans. Comput., Vol.C-24, pp.258-
280, March 1975.

S. Nakamura, “Algorithms for Iterative Array
Multiplication,” IEEE Trans. Comput., Vol.C-35,
pp-713-719, August 1986.

M. Putrino, S. Vassiliadis and E. M. Schwarz,
“Array Two’s Complement and Square Function,”
Electron. Lett., Vol.23, No.22, pp.1185-1187, Oc-
tober 1987.

J. E. Robertson, “A New Class of Digital Divi-
sion Methods,” IRE Trans. Electron. Comput.,
Vol.EC-7, pp.218-222, September 1958.

E. E. Swartzlander, “The Quasi-Serial Multi-
plier,” IEEE Trans. Comput., Vol.C-22, pp.317-
321, April 1973.

M. Uya, K. Kaneko and J. Yasui, “A CMOS
Floating-Point Multiplier,” IEEE J. Solid-State
Circuits, Vol.SC-19, No.5, pp.697-701, October
1984.

S. Vassiliadis, M. Putrino and E. M. Schwarz,
“Parallel Encrypted Array Multiplier,” IBM Jour-
nal of Research and Development, Vol.32, No.4,
pp.536-551, July 1988.

S. Vassiliadis, E. M. Schwarz and B. M. Sung,
“Hard-Wired Multipliers with Encoded Partial
Products,” IEEE Trans. Comput., Vol.C-40,
pp-1181-1197, November 1991.

J. Vuillemin, “A Very Fast Multiplication Algo-
rithm for VLSI Implementation,” Integration: the
VLSI Journal, No.1, pp.39-52, 1983.

C. S. Wallace, “A Suggestion for a Fast Multi-
plier,” IEEE Trans. Electron. Comput., Vol.EC-
13, pp.14-17, February 1964.

Z. Wang, G. A. Jullien and W. C. Miller, “An
Architecture for Parallel Multipliers,” Proc. 25th
IEEE Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, pp.403-407,
November 1991.



