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This paper discusses the notion of trivial computation,
Where the appearance of simple operands renders poten-
tially complex operations simple. An example of a triv-
ial operation is integer division, where the divisor is two;
the division becomes a simple shift operation. The pa-
per also discusses the concept of redundant computation,
where some operation repeatedly does the same function
because it repeatedly sees the same operands. Experiments
on two separate benchmark suites, the SPEC benchmarks
and the Perfect Club, find a surprising amount of trivial
and redundant operation. Various architectural means of
exploiting this knowledge to improve computational effi-
ciency include detection of trivial operands and the result
cache. Further experimentation shows significant speedup
Jrom these techniques, as measured on three different styles
of machine architecture.

1 Introduction

Computing machines execute tens of millions of oper-
ations every second. Consequently, each individual oper-
ation need not be complex. In fact, it should not be sur-
prising that much computation consists of highly redundant
sequences of simple instructions, and that many of these in-
structions perform trivial operations, such as multiplication
by zero.

This paper explores the trivial and redundant nature of
computing. The paper naturally divides in two sections.
The first section explores the degree of triviality in compu-
tation, focusing on long-latency arithmetic operations, and
proposes a means for exploiting this triviality to increase
execution speed. The second section discusses the redun-
dant side of computation and, building on the results of the
earlier section, attempts to derive further benefit.

Experimental data taken for each of three styles of ma-
chine architecture shows significant speedup using these
techniques.
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operation conditions for triviality
multiply zxy | (zrory)=(0,1,0r 1)
division z+y|(z=y,z=-y,orz=0)
squareroot  \/z (x=0o0rz=1)

Figure 1: Conditions for triviality.

2 The trivial nature of computation

What is trivial computation?

Complex operations such as multiplication and divi-
sion of fixed-width binary numbers involves a significant
amount of computation, such as adds, shifts, and combi-
natorial logic. However, certain operands that might be
presented to the operation can obviate much of this compu-
tation, thus trivializing the operation. Attempts to exploit
this phenomenon often involve such techniques as counting
the leading zeroes of an operand. An eight- or sixteen-bit
integer divide, for instance, would take less time to com-
plete than a full 32-bit division.

This paper uses a much stricter definition for triviality,
searching for operations so simple that they could complete
in one cycle on even the simplest of machines. Figure 1
displays more precisely the conditions for triviality.

Why is computation sometimes trivial?

For generality, a scientific algorithm might be de-
signed using three-dimensional rectangular coordinates,
although a large class of interesting problems may be
two-dimensional. For this class of problems, approxi-
mately one-third of the computation (that concerning the
z-component) will turn out to be operations on zero. For in-

stance, rectangular-to-spherical coordinate transformation
uses the formular = \/z2 + 32 + 22. For two-dimensional

problems, the equation becomes r = /z2 + 12 + 0.02.



Heat transfer problems may make heavy use of the equa-
tion for specific heat capacity AQ = cmAT, where AQ is
a quantity of heat that, applied to a substance of mass m
and heat capacity ¢, changes its temperature by an amount
AT. The equation is ofien set up such that for the most in-
teresting substance, water, the value of ¢ is 1.0. A program
for heat transfer, used to calculate cooling by water, would
thus wind up doing a fair amount of multiplication by 1.0.

Is it possible that a significant amount of computation
involves complex operations on trivial data? What about
non-scientific programs? Take the example of a typesetting
algorithm. To justify its margins, such a program must
calculate the width of each word within a line. Involved
in this computation might be the width of each character in
per-point units, its point size, and a magnification factor:

charwidth x pointsize x magnificationfactor.

Typically, the magnification factor will be 1.0 or 2.0, re-
sulting in a significant amount of trivial computation.

How can trivial computation speed program
execution?

If a sufficient amount of computation were indeed triv-
ial, some obvious changes in the style of computation could
make programs run faster. Consider the following algo-
rithm for multiplying two operands a and b to yield a re-
sult c:

OVERHEAD: if (Ja] == 1.0 or b == 0.0) then
¢ =sign(a) x b;
else if (}b] == 1.0 or a == 0.0) then

¢ =sign(b) X a;
else
gé)to MULTIPLY;
goto END;
MULTIPLY: ¢ = mult(a, b);
END:

A trivial multiply—multiplication by 1.0, 0.0, or -1.0—
will exit after passing through only the OVERHEAD por-
tion of the algorithm. All other multiply operations will
have the extra cost of the OVERHEAD portion added
to the regular MULTIPLY portion of the algorithm. Be-
cause the conditions for triviality are so specific, a scheme
for detecting them can add efficiency to generic “early-
out” schemes requiring a “count-leading-zeroes” and/or a
“count-leading-ones” type of operation.

Provided that the OVERHEAD cost is smaller than the
MULTIPLY cost, a sufficiently large ratio of trivial multiply
operations to nontrivial multiply operations will justify the
cost of adding the OVERHEAD.

Although not new, the idea of exploiting trivial compu-
tation has not seen wide dissemination, due in large part
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Not a trivial multiply;
compliler will optimize
to “Y = X.”

Trivial when

Figure 2: Trivial multiplication in FORTRAN,

to a lack of knowledge concerning its usefulness in typical
programs. This paper presents real data on the degree to
which real programs contain trivial computation, and the
potential benefit to be derived by current processors.

How much trivial computation in real programs?

A tool called shade [4] can help determine the ratio of
trivial to nontrivial operations in some benchmarks of cur-
rent interest. Shade analyzes programs on an instruction-
by-instruction basis as they execute. Each time shade sees
a targeted operation, it can note whether the operands ren-
der the operation trivial. The table in Figure 1 shows the
target operations, along with the conditions for triviality.
The experiment will not detect cases where one or more
of the operands is constant; the compiler optimizes these
away, as shown in Figure 2.

The data to be presented comes from two different
benchmark suites. The first, known as the SPEC floating-
point benchmark suite, is a group of large FORTRAN and
C programs. The second, called the Perfect Club, consists
of a set of statically large and dynamically very large nu-
meric FORTRAN programs. Appendices A and B provide
amore complete description of the SPEC and Perfect Club
benchmarks. The benchmarks NA, SM, and TF were omit-
ted from the Perfect Club results because of a difficulty in
attaining accurate results.

Figure 3 shows, for each of the SPEC benchmarks, what
percentage of targeted operations were found by the shade
analyzer to be trivial. Figure 4 shows data for the Perfect
Club benchmarks. The percentage of trivial operations per
program ranged from near zero to as high as 7.3 percent
for the Perfect Club benchmark “SD.” The relatively large
percentage of trivial operations in SD results from repeti-
tive matrix multiplication of sparse arrays such as diagonal
transformation matrices. By far, most of the trivial op-
erations were single- and double-precision floating-point
multiply operations.

The speedup achievable from detecting trivial opera-
tions can vary, depending on the cost of each operation in

J=0orJ==1
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Figure 4: Trivial operations in Perfect Club benchmarks.
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integer floating-point

multiply | divide | square-root

mul div|{sp dp|sp dp| sp dp

RS/6000 5 19| 2 2117 17 * *
HP720 12 20| 3 3110 12| 120 120
SS82 20 30| 4 6|16 26| 26 40
MC88100 4 38| 6 7130 59 * *
VR4000 10 69| 7 8123 36| 54 112
1486 13 24,14 14|73 73| 85 85
80960KB 18 37120 36|35 777|104 104

*Numbers not available.

Figure 5: Cycle times for long-latency ops on various sys-
tems.

integer floating-point
multiply | divide | square-root
mul div|sp dp|sp dp| sp dp
Aggressor 4 18| 2 2110 10| 25 40
Normol 10 24| 4 5115 20| 50 80
Wemp 20 70[20 4075 80|120 120

Figure 6: Cycle times for long-latency ops on test machines.

a given architecture. The next section explores this cost
versus speedup for various machine styles.

How much speedup?

The table in Figure 5 gives sample times for certain long-
latency operations on various implementations. Most of
the numbers were derived from data books and other litera-
ture [6,13,11, 12,9, 10]. Experimental data provided num-
bers for the SPARCStation 2 (SS2) and the HP9000/720.
The SPARCStation 2 contained a Cypress CYC602 integer
unit and a Texas Instruments TMS390C602A fioating-point
unit. Numbers in the table do not reflect anomalously long
latencies; for example, the HP machine required over three
hundred cycles to compute single- and double-precision
floating-point divides of the form 0/z.

Now posita set of three test machines: the Aggressor, an
aggressive design with latencies for the targeted operations
comparable to the shortest of those in Figure 5; the Normol,
with somewhat intermediate values for the latencies; and
the Wemp, a cost-effective machine with very long-latency
operations. The table in Figure 6 gives characteristics for
each machine. Assume that non-targeted operations have
no excess latency and execute at the rate of one per cycle.

The table in Figure 7 shows the overall performance im-




Benchmark Suite
Machine | Spec92 Perfect Club
Aggressor 2.1% 4.4%
Normol 4.0% 8.0%
Wemp 10.4% 22.0%

Figure 7: Geometric average of overall program speedup
as a result of trivial-operation detect.

provement for each test machine resulting from a hardware
implementation of a trivial-operand detect scheme. Each
performance improvement number represents the geomet-
ric average of the improvement of the individual bench-
marks in the set. The table assumes that detection of trivial
operands, and the subsequent emission of the appropri-
ate result, is a simple operation that should take no more
than a single cycle on even the crudest of implementations.
As one might expect, the long latency machine “Wemp”
showed greatest improvement: 10.4 percent on the SPEC
benchmark set and 22.0 percent on the Perfect Club. Even
the short-latency Aggressor benefitted, although to a lesser
degree: 2.1 percent and 4.4 percent, respectively, for the
two sets of benchmarks.

A subsequent study of operand distributions shows cer-
tain missed opportunities [16]. Specifically, the study
shows a significant number of floating-point divisions of the
form z/1.0 and z/2.0. Aside from a few trivial operands
such as 1 and 0, however, the most common operands for
a given operation tend to differ from program to program.
For example, the most common multiplicative operands in
the SPEC benchmark alvinn are 0.99 and 0.01, respectively.

Now that we have seen some of the benefit to be de-
rived from recognizing the trivial nature of computation,
let’s turn our attention to the concept of redundant compu-
tation. To what degree is computation redundant? Can we
use the redundant nature of computation to gain additional
speedup?

3 The redundant nature of computation

Computation typically involves the input of an initial
data set, the transformation of these data through one or
more states, and convergence on a final data output. Some-
times the data mimics physical quantities, such as time,
distance, or voltage; other times the data consists of more
abstract items, such as lexical tokens or character strings.

Such input data are by nature redundant. Take the exam-
ple of a simulator for CMOS VLSI circuits, or a compiler
for FORTRAN. Think how many nodes in the circuit will
begin at either 0.0 or 5.0 volts. Think how often the com-
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piler will process the keywords “FOR” or “CONTINUE,”
or the identifier name “I,” as compared to the identifier
name “XYZ123.”

Similar data tends to flow through similar states. Data
read as “inches” and “seconds” may be converted, one da-
tum at a time, to “centimeters” and “hours.” This involves
redundant multiplicationby the same conversion constants.
Programs often run multiple times with the same or very
similar inputs, such as the typesetter that runs over and over
on a progressively refined document.

Acknowledgment of this redundant nature can speed
the task of computation in many ways. Cache memory, for
instance, works so well because the same areas of memory
get accessed over and over during a sufficiently short time
period. As another example, incremental compilation takes
advantage of the fact that programs in development seldom
vary much from one run to the next [14, 3].

The technique of memoization, or tabulation, takes ad-
vantage of the redundant nature of computation. It allows
a computer program to run faster by trading execution time
for increased memory storage. Once calculated, the re-
suit of a function is stored in a table called a memoization
cache. The cache traditionally exists as a software data
structure. Cache lookup then replaces later calls to the
function [2, 7, 1, 8]. Tabulation can be extended to apply
not only to functions, but also statements, groups of state-
ments, or any given region of a program that has limited
side effects and a high degree of recurrence. (Furthermore,
a sophisticated compiler could apply the method to make
programs run faster [15].)

A special hardware cache could perform tabulation with-
out the need for compiler or programmer intervention. Ac-
cess to this result cache could be initiated at the same time
as, for instance, a floating point divide operation. If the
cache access results in a hit, the answer appears quickly
and the floating point operation can be halted. On a miss,
the divide unit can write the result into the cache at the same
time as it sends the result on to the next pipeline stage.

In the experiments described here, we look at direct-
mapped result caches for the set of targeted operations de-
scribed earlier in Section 2. As before, benchmarks from
the SPEC floating-point and Perfect Club suites form the
test case. A filter detects and handles trivial operations,
sending only non-trivial operations on to the result cache.
Appendix C provides further details concerning the exper-
imental setup.

Figures 8 and 9 show the percentage of all instructions
captured by each of a variety of result caches. The bottom
bar for each benchmark tells what percentage of instructions
were trivial targeted operations. This portion of the graph
represents the same information we saw earlier in Section 2.
Successively taller bars show the number of instructions
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Figure 8: Percent of hits in result cache—SPEC.

that hit in successively larger direct-mapped result caches.
In the graph, “256x1” means the cache contains 256 direct-
mapped entries.

Figure 8, for instance, shows that of all instructions ex-
ecuted by the SPEC benchmark 048.ora, 0.5 percent were
trivial targeted operations—that is, trivial multiplies, di-
vides, and square roots as defined in the table of Fig-
ure 1. An additional 6.3 percent of all instructions executed
were targeted operations that would hit in a direct-mapped
sixteen-entry result cache, for a cumulative total of 6.8
percent. Going from sixteen to sixty-four entries captures
another 0.1 percent, for a total of 6.9 percent. And a 16K
cache with trivial-operand detect effectively removes the
latency from 22.7 percent of all instructions executed—a
significant accomplishment, considering that targeted op-
erations comprise only 26.7 percent of all instructions.

The SPEC benchmarks in Figure 8 show a wide range
of hit rates, from near zero for the mdlj programs to over
20 percent for the floating-point intensive ora. The Perfect
Club benchmarks in Figure 9 show similar variation over a
smaller range, from less than one percent for LW and WS to
over seven percent for SD. Note that T/, while not gaining
any advantage from trivial operations, responds well to the
result cache.

While the detection of trivial operands seemed primar-

Hits as percent of all instructions executed

Speedup as percent of cycles eliminated
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Figure 9: Percent of hits in result cache—Perfect Club.
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Figure 10: Machine speedups using result cache.



ily to benefit multiplication, the result cache also captures
a fair number of divides and square roots. In the applica-
tion 048.ora, for instance, the largest result cache captured
81.9 percent of all double-precision square root operations.
As seen earlier in Figure 5, this advantage gets multiplied
by 40x to 120x, depending on the implementation of the
square root function. This, along with the other operations
captured, results in enormous speedup.

Figure 10 gives geometric means for whole-suite im-
provements on each of the Aggressor, Normol, and Wemp
test machines. Speedup corresponds to reduction in pro-
gram run time, ignoring memory and system effects. Im-
provements from a given cache show remarkable similar-
ity across benchmark suites. With caches ranging from 16
to 16K entries, the Aggressor achieved a 4 to 13 percent
speedup, the Normol got 7 to 21 percent, and the Wemp a
17 to 48 percent speedup. The chart shows a fairly constant
improvement of about 2x with each 4x increase in cache
size, indicating that a knee has not yet developed; still larger
caches would probably get still more improvement.

4 Conclusions

Experiments indicate a high percentage of trivial opera-
tions. Algorithms for complex arithmetic functions should
always provide an early-out for such cases. For certain
programs studied, trivial operations accounted for as much
as 67 percent of targeted operations. Fast evaluation of
these operations yielded significant speedup in execution
time, as seen in Figure 7.

Figure 10 showed that memoization of individual in-
‘structions via result cache provides further benefit, yielding
more and more speedup as the result cache size increases.

Both schemes showed best results in floating-point-
intensive programs, probably because most of the targeted
operations were long-latency floating-point functions. Ob-
viously, any long-latency instruction could become a can-
didate for speedup using these shortcut techniques.

The simplicity of the tchniques presented make them
particularly attractive alternatives to expensive complex-
operation support in low-cost designs. The long-latency
Wemp composite machine showed speedups of up to 43.1
percent on the set of SPEC benchmarks studied, and 47.8
percent on the Perfect Club set. Machines with shorter
latency also benefitted, improving by ten to twenty percent.

S Future work

The conditions for triviality captured few divide or
square root operations. Closer observation of these func-
tions might reveal a high frequency of some simple
operand, such as divide-by-two, that has not yet been con-
sidered.
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Different hashing algorithms for producing an index
given an operand or pair of operands might raise the hit
rate of the result cache. Furthermore, a cache associativity
greater than one might prove useful.

A persistent result cache would exhibit “warm-start”
characteristics across successive iterations of the same pro-
gram. To what extent would this improve speedup?

The result cache presented here targeted only multiply,
divide and square root operations. The scope could be
expanded to contain others. Furthermore, the cache could
support general memoization through use of specialized
“check-result-cache” instructions.

Finally, means could be explored for gaining optimum
hit rate per area of result cache. Such means might include
data compression or limiting the type, size, or precision of
operand considered for inclusion in the cache.

Appendix A: SPEC benchmarks

The SPEC (Systems Performance Evaluation Cooper-
ative) benchmarks consist of twenty CPU-intensive pro-
grams variously written in FORTRAN and C[17]. The
suite is broken up into six integer benchmarks and fourteen
floating-point benchmarks. Because this paper focussed
mostly on long-latency floating-point operations, it used
only the floating-point portion of the suite.
013.spice: famous circuit simulation program;

015.doduc: Monte Carlo simulation of a portion of a nuclear
reactor;

034.mdljdp2: simulates the interaction of 500 atoms;

039.waveS: simulation of particles in a plasma;

047.tomcaty: vectorized version of a mesh generation program;

048.0ra: traces rays through spheres and planes;

052.alvinn: trains a neural network to drive a vehicle;

056.ear: simulates sound in the human cochlea;

077.md|jsp2: single-precision version of mdljdp2;

078.swm256: solves a system of shallow water equations;

089.su2cor: computes masses of elementary particles;

090.hydro2d: uses Navier Stokes equations to compute galacti-
cal jets;

093.nasa7: heavily floating-point-intensive FORTRAN kemels;

094.fpppp: computes a “two electron integral derivative” for a
given number of atoms.

Appendix B: Perfect Club Benchmarks

The Perfect Club is a set of computationally-intense,
highly numeric FORTRAN programs for benchmarking
scientific computers [5]. Each of the thirteen programs
is designated by a unique combination of two alphabetic
characters. The benchmarks are described below. The
benchmarks average about 129,000 characters of FOR-
TRAN source code each.



AP: A mesoscale model for air pollution.
CS: The well-known circuit simulator spice.

LG: Simulation of the gauge theory of the strong interaction
that binds quarks and gluons into hadrons.

LW: A molecular dynamics program for the simulation of lig-
uid water.

MT: Determines the course of a set of an unknown number of
targets, such as missiles or rocket boosters.

NA!: A molecular dynamics package for the simulation of nu-
cleic acids.

OC: A two-dimensional ocean simulation.
SD: A structural dynamics benchmark, solves for displace-

ments and stresses, along with velocities and accelerations
at each time step.

SM!: A seismic migration code used to investigate the geolog-
ical structure of the earth.

SR: A two dimensional fluid flow solver.

TF': Analysis of a transonic inviscid flow past an airfoil.

TI: A kemnel simulating a two-electron integral transforma-
tion.

WS: A global spectral model to simulate atmospheric flow.

Appendix C: Details of Result-Cache Experi-
ment

We simulated only direct-mapped caches. More com-
plex strategies, such as multiple set-associative, are of
course possible. Discussion of the algorithms used to pro-
duce cache indices will use the following symbols for bit-
level operations:

xor +
and -

or

®
. not

» = rightshift

For simplicity’s sake, the algorithm converts all
operands to double-precision before generating a cache in-
dex. A more time- and space-efficient algorithm would cal-
culate a separate hash function depending on the operand
type. The sign, exponent, and the most significant 20 bits of
each double-precision operand z¢ and y were combined
using an exclusive-or operation; the two resulting num-
bers z; and i, were then exclusive-or’ed together. The
appropriately-masked result of this operation formed the
cache index i. For the unary square-root operation, the
algorithm always set the unused operand to 0.0.

hash(z2, 2,4, m)
T2
z1

(z2® ) - m, Vi € {4,6,8,10,12,14}
(z1 > 31)® (21 > 20) ® (z1 > (20— 1))
(zo > 32) - FFFF FFFF6

The benchmarks NA, SM, and TF were omitted from this paper
because of a difficulty in attaining accurate results.

i | cache size=2' maskm =2 -1
4 16 Fie

6 64 3Fs

8 256 FFig

10 1,024 3FF¢

12 4,096 FFFi6

14 16,384 3FFFie

Each cache line included the two 64-bit operands as
tags, as well as the 64-bit result and an 8-bit field to desig-
nate the operation. Again, the experiment used this space-
expensive layout for simplicity only. Single-precision or
unary operations do not need so much room in the cache
line.
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