MEASURING THE ACCURACY OF ROM RECIPROCAL
TABLES*

Debjit Das Sarma and David W. Matula
Department of Computer Science & Engineering
Southern Methodist University
Dallas, Texas 75275

Abstract

We prove that a convenient ROM reciprocal table
construction algorithm generates tables that minimize
the relative error. The worst case relative errors real-
ized for such optimally computed k-bits-in, m-bits-out
ROM reciprocal tables are then determined for all ta-
ble sizes 3 < k,m < 12. We next prove the table
construction algorithm always generates a k-bits-in,
k-bits-out table with relative errors never any greater
than %2'k for any k, and more generally with g guard
bits that for (k + g)-bits-out the relative error is never
any greater than 2-(+1(1 4+ k). To provide for
determining test data without prior construction of a
full ROM reciprocal table, we describe a procedure
that requires generation and searching of only a small
portion of such a table to determine regions contain-
ing input data yielding the worst case relative errors.

1 Introduction and Summary

With the density of transistors that can be real-
ized in an integrated circuit on a single chip rising so
rapidly, it has become increasingly common for arith-
metic circuits to include a ROM reciprocal table to
either assist or replace the division instruction [FW
71], [AC 74], [SB 86], [DG 89], [FS 89], [Co 90], [BM
91], [Ka 91], [OL 91], [WF 91].
For low precision arithmetic computation, direct use
of a suitably large ROM reciprocal table [OL 91], or
applying interpolation in a moderate size such table,
provides an easy to implement efficient. alternative to
a division instruction. ROM reciprocal tables are also
becoming more common in the high performance im-
plementation of IEEE standard 754 double or dou-
ble extended floating point chips for the platforms of
workstations and PC’s [DG 89], [Co 90], [BM 91}. The
trend in the design of these chips is to include a fast
multiplier, and then often to realize divide and square
root by incorporating reciprocal refinement algorithms
such as Newton Raphson or convergence [Go 64] in
the microcode. These procedures benefit greatly from
a good initial reciprocal approximation such as can be

*Supported in part by a grant from Cyrix Corporation and by
the Danish Natural Science Research Council grant no. 11-8243.

1063-6889/93 $03.00 © 1993 IEEE

95

rapidly provided by a ROM reciprocal look-up table.

ROM reciprocal tables are generally constructed by
assuming that the argument is normalized 1 < z < 2
and truncated to k bits to the right of the radix point,
trunc(z) = 1.b1by...bg. These k bits are used to index
a table providing m output bits which are taken as the
m bits after the leading bit in the m+1 bit fraction re-
ciprocal approximation recip(z) = 0.1675,...b;,. Such
a table will be termed a k-bits-in m-bits-out reciprocal
table of size 2¥m bits.

The maximum relative error for any k-bits-in m-bits-
out ROM reciprocal table denotes the supremum of
the relative errors obtained between % and the table
value for the reciprocal of z for 1 < & < 2. The
precision in bits of the table is the negative base two
logarithm of this supremum. A table precision of &
bits then denotes that the approximation of % by the
table value will always yield a relative error of at most
one part in 2¢.

In Section 2 we describe a method that has been used
[FS 89] for constructing ROM reciprocal tables. The
procedure is based on a known result for optimal re-
ciprocal approximation by reals [Fe 67], but the ap-
plicability to approximation by finite precision recip-
rocal approximations requires a proof of optimality.
Interestingly, we first demonstrate that the method
can fail to find the optimal m-bit reciprocal approxi-
mation for certain input intervals. Our first principal
result is then that the method restricted to the inter-
vals occuring in k-bits-in, m-bits-out ROM reciprocal
tables indeed always generates reciprocal approxima-
tions minimizing the relative error and guaranteeing
the highest precision for each table. Employing this
algorithm we compute this precision guarantee by ex-
haustive search of the constructed tables and tabulate
these results for k-bits-in, m-bits-out ROM reciprocal
tables for all sizes 3 < k,m < 12.

It is convenient to parameterize our reciprocal tables
by employing g as the number of output guard bits,
implying then a k-bits-in, (k + g)-bits-out ROM recip-
rocal table. Qur second principal result is given in Sec-
tion 3 where we prove it is always possible to construct

a k-bits-in, (k+ g)-bits-out ROM reciprocal table with
relative error of the table at most 2-(F+1(1 + L)
for any ¢ > 0 and any & > 1. In particular this con-
firms that a k-bits-in, k-bits-out ROM reciprocal table
will guarantee precision of at least k + 0.415 bits, and
with one, two and three guard bits on the output we
are guaranteed precisions of at least k + 0.678 bits,
k +0.830 bits, and k + 0.912 bits respectively. These
resuts are useful in determining whether adding a few
guard bits might provide sufficient additional accu-
racy in place of the more costly step of increasing k
to k + 1, which results in more than doubling the ta-
ble size. Note that the inclusion of three guard bits
adds about one half bit of precision. If the initial ap-
proximation is to be refined by three Newton Raphson
iterations as part of a division process, the resulting
doubling of precision in each iteration then provides
that the three guard bit initial enhancement implic-
itly contributes four more bits of precision to the final
result.

Finally in Section 4 we determine and tabulate the in-
put intervals containing the worst case relative error
input for all cases of k-bits-in, k-bits-out, and (k + 1)-
bits-out, 5 < k < 15. Such intervals are useful in
determining input values for testing the correctness
of certain hardware division implementations, partic-
ularly when these ROM reciprocal table values are fur-
ther refined by a Newton Raphson or convergence pro-
cess to achieve a target accuracy level [AC 74], [SB86],
[DG 89],}00 90], [BM 91], [Ka 91]. Applications where
the use of a guard bit on output is explicitly mentioned
include a 13-bits-in, 14-bits out ROM reciprocal table
i)r(l)][WF 91], and an 8-bits-in, 9-bits-out table in [Co

For larger ROM reciprocal tables it can be useful in
advance to find input intervals yielding the largest rel-
ative error without having to construct and search the
whole table. In Section 4 we also provide a method
for determining such worst case input intervals that
involves constructing and searching only a small por-
tion of the respective tables.

2 Constructing Optimal ROM Recip-
rocal Tables

An optimal (k, m) bit table denotes a k-bits-in, m-
bits-out ROM reciprocal table as described in the pre-
ceding section where the maximum relative error for
each entry in the table is the minimum possible for
that entry. Observe that each of the 2% indices into a
k-bits-in ROM reciprocal table corresponds to an in-
put interval [, 25) for 0 < i < 2¥ — 1. To construct
an optimal (k, m) bit table it is necessary to choose a
reciprocal approximation table entry minimizing the
error for each such interval. For motivation we note

the following standard result valid for recirocal ap-
proximation by reals [Fe 67].

Lemma 1: For z any value from the interval [a,]

96

with 0 < a < b, the minimum value of the maximum

relative error in an approximation of -;— is :;—: and is
realized by the reciprocal ‘approximation —2;, i.e. by

a+4d?
the reciprocal of the mid-point of the interval contain-
ing z.
Proof: The exact reciprocal will fall in the interval
[%,%], and the worst case error will occur for input
being one or the other of the endpoints. These end-
point relative errors for the reciprocal approximation
2 1 2 y/1 _ b= 2 1y/1 _ b=
axs are (3 — a3)/a = 358 and (g5 — §)/1 =333
Any reciprocal approximation other than 2y would
result in one of these relative errors being larger. O

We must now extend Lemma 1 by considéring the
consequence of limiting our reciprocal approximation
choice to m-bit values. Let RU denote round-up to-
wards 400 and RD denote round-down towards —oo
to the prescribed binary format.

Corollary 1.1: For z any value from the interval
[a,b] with 1 < @ < b < 2, the minimum value of the
maximum relative error in an m + 1 bit approxima-
tion 0.1b1b5......b/, to L is realized by choosing as the
prescribed approximation that one of the two values
RU(;‘—%) and RD(&;) that yields the least relative
€ITOr.

Proof: As in the proof of Lemma 1 we obtain that a
value larger than RU (a%b) yields worse relative error

than does RU(-ni—b). Similarly
a value smaller than RD(;—i—,;) yields worse relative er-
ror in approximating % = -;— than does RD(a—ib). So

the better of these two approximations provides the
minimum relative error approximation. O

in approximating 1 =

Letting RN denote round-to-nearesi(even), it is tempt-
ing to conjecture that RN(G—L;) is the value that yields
the minimum relative error in Corollary 1.1. But this
is not true for arbitrary input intervals [a,d] with
1 €< a < b < 2 In particular consider choosing
the best 3 bit reciprocal approximation 0.1b1b5 for z
ranging over the interval [1,3?]. The best infinitely

precise reciprocal approximation is %g =0.10110010...

for which we obtain RN(33) = 0.110 = 3. It is readily
checked that the worst case relative error with recip-
rocal approximation % i§ %, whereas RD(% = % has
worst case relative error of only ‘g, so that -g is the
preferred reciprocal approximation.

For ROM reciprocal tables we need only concern our-

selves with input intervals of the form [5'1—,'—35}) for
2% < i < 281 — |, Fortunately, for these input inter-
vals we obtain the following satisfying result.

Theorem 2: For z any value from the interval
[37, %) with i an integer in the range 2% < i <

2%+1 _ 1, the minimum of the maximum relative er-

ror in approximating % to m + 1 bits is obtained by
choosing the reciprocal approximation to be RN (%)
to m + 1 bits.

Proof: First we claim that the interval

— (2 i+1 yo—(m+1) _2* i \o—
= (;%' - (37)2 (mi), e (751)2 (m+1)]
contains a unique m + 1 bit reciprocal approximation
s = 0.1b)05.....b),, minimizing the maximum rela-
tive error over all m + 1 bit approximations to 1 for
p T
1 2k 2k

+ in the range (73, %)

To justify the claim note that the left-open right-

closed interval I has width 2-(™+1) and therefore con-
tains exactly one value =Lz where j is an integer. Ap-

proximating any value % in the interval (%,:";] by
st yields a relative error no larger than the maxi-
mum of the two relative errors determined by :
o gk x ; _
1) approximating % by %%— — ()2~ (m+D),
. . k k . _
2) approximating ;Z:T by %%— + (z57)2 (m+1)
But the relative errors for both (I) and (2) are the
same value r = mlm(l + i(i 4 1)27(mE+1)),
It follows that approximating any % in the interval
;%, %—k—] by 2—,,{-_;,—; yields relative error at most r. Fur-
thermore, for any 7,,{—’;7 outside interval I, it is readily
seen that the process of approximating some value of
. . P .
Lin (‘i—l, -2—;-] by 457 will yield a larger relative error
than r, proving the claim.

Now we mgst show that the m+1 bit round-to-nearest
value of %%- falls in the interval I.

To prove this we assert a second claim that the interval
I' = (;—z_ér - (%*_:—1)2"("""1),‘.—2;{ — 12=(m+D] cannot
contain any m + 1 bit value 5—,,{Tr Assuming the sec-
ond claim false we would have for some integer j that
Fr - (D0 < e < 27 - 3270, Bue
then multiplying by (2i 4+ 1)2™+! yields 2¥+m+2 - —
1< j(2i+1) < 2k+m+2 _ ;i _ 1 The right hand in-
equality can be sharpened since j(2i + 1) is an integer
to yield 284m+2 4 1 < j(2i 4+ 1) < 2k+m+2 |,
a contradiction verifying the second claim.

Thus the unique m + 1 bit value -.L,—,,ﬁ-,- of the first

claim must fall in the interval I — I' = (‘—iig -
19-(m+1), %{ +(z7)27™*1)] and must then be the
m + 1 bit round-to-nearest value of ‘—i—} a
Algorithm 1

[ROM Reciprocal Table Construction]

Stimulus: Integers k > 1and m > 1

Response: A k-bits-in m-bits-out ROM reciprocal
table with the relative error
interval given for each table entry

Method: for i = 2F to 2¥+1 — 1 step 1
<for each input interval [, 3)>

begin
L1: table(i) := RN (Xt
2

<m-bit reciprocal approximation is 2—,,‘%>
L2: r.eant(i) := (1 — 2’+,,1‘ 1 — o)

<relative error interval>

end

Theorem 3: For any k > 1 and m > 1, Algorithm 1
generates an optimal (k, m) bit table.

Proof: It is immediate from Theorem 2 that each ta-
ble entry has the maximum relative error minimized
by the m+1 bit reciprocal approximation specified in
Algorithm 1. O

We apply Algorithm 1 to generate optimal (5,5) and
(5,6) bit reciprocal tables and illustrate the resuts in
Table 1. Consider for example line nine of Table 1.
Line nine is indexed by the 5 bit string 01000 arising
from input truncated to the value 1.01000 . This desig-
nates that the input value z for which we wish a lookup
table reciprocal value was in the range [40/32,41/32).
The reciprocal of the mid-point (being 32/41.5) is
first given with several decimal places as 50.568/64
in the table so the reader may note the additional
rounding error introduced in determining the 5-bit ta-
ble value written as a fraction 51/64. The relative er-
ror interval for inputs approximated by 51/64 is then
computed and shown to be (2:(51%» 5-084—8]. Note that this
input interval yields the largest relative errors of any in
the table, with only the input interval corresponding
to 1.10010 yielding comparably large relative errors in
the reciprocal approximation. The fact that line nine
yields the largest relative error is at least partly asso-
ciated with the observation that the mid-point recip-
rocal 50.568/64 suffers a comparatively large rounding
error to become the m+1 bit value 51/64. It is further
instructive to note that this relative error interval is
not well centered around zero compared to others in
the early part of the table. Finally note that with one
more output bit the resulting relative error interval
will be well centered for this entry, so the worst case
input must occur elsewhere in the (5 ,6) bit table.

The precision of the optimal (5,5) bit reciprocal table
is then —log,(43/2048) = 5.573... .It is worth not-
ing that the worst case relative error in the optimal
(5,6) bit reciprocal table occurs only for input in the
interval [35/32,36/32), which results in the precision
of that table being — log,(71/4096)= 5.850... . The
precision of such optimal (k, m) bit reciprocal tables
for all 3 < k,m < 12 is given in Table 2, which by it-
self provides a useful reference if one needs to employ
a ROM reciprocal table for testing or implementing a

5 bits in 5 bits out 6 bits out
Chopped Input Middle point | Rounded [Relative Error | Rounded | Relative Error
Input Interval Reciprocal | Reciprocal Interval Reciprocal Interval
x(1/64) x(1/2048) x(1/4096)
1.00000 32/32,33/32 63.015 63/64 -31,32 126/128 €-62,64
1.00001 33/32,34/32; 61.134 61/64 g-26,35 122/128 -52,70
1.00010 34/32,35/32) 59.362 59/64 (-17,42 119/128 (-69,50
1.00011 | [35/32,36/32) 57.690 58/64 E-40,18 115/128 (-44,71
1.00100 36/32,37/32 56.110 56/64 -24,32 112/128 (-48,64
1.00101 37/32,38/32 54.613 55/64 5-42,13 109/128 g -46,63
1.00110 38/32,39/32 53.195 53/64 -19,34 106/128 38,68
1.00111 39/32,40/32) 51.848 52/64 (-32,20 104/128 -64,40
1.01000 | [40/32,41/32) 50.568 51/64 -43, 8 101/128 -45,56
1.01001 41/32,42/32) 49.349 49/64 -10,39 99/128 -62,37
1.01010 42/32,43/32 48.188 48/64 -16,32 96/128 § -32,64
1.01011 43/32,44/32; 47.080 47/64 §-20,27 94/128 40,54
1.01100 44/32,45/32) 46.022 46/64 (-22,24 92/128 (-44,48
1.01101 45/32,46/32 45.011 45/64 -22,23 90/128 2 -44 46
1.01110 46/32,47/32; 44.043 44/64 5-20,24 88/128 40, 48
1.01111 47/32,48/32 43.116 43/64 5—16,27 86/128 % -32,54
1.10000 48/32,49/32 42.227 42/64 -10,32 84/128 20,64
1.10001 49/32,50/32) 41.374 41/64 (-2,39 83/128 -54,29
1.10010 | [50/32,51/32) 40.554 41/64 (-43,-2 81/128 -35,46
1.10011 51/32,52/32) 39.767 40/64 (-32, 8 80/128 (-64,16
1.10100 52/32,53/32 39.010 39/64 (-19,20 78/128 -38,40
1.10101 53/32,54/32 38.280 38/64 (-4,34 77/128 -62,15
1.10110 54/32,55/32 37.578 38/64 (-42,-4 75/128 f -29,46
1.10111 55/32,56/32 36.901 37/64 (-24,13 74/128 48,26
1.11000 56/32,57/32 36.248 36/64 (-4,32 72/128 (-8 64]
1.11001 57/32, 58/32 35.617 36/64 (—40,-4{ 71/128 -22,49
1.11010 58/32,59/32 35.009 35/64 (-17,18 70/128 -34,36
1.11011 59/32,60/ 32; 34.420 34/64 (8, 2]] 69/128 E -44,25
1.11100 60/32,61/32 33.851 34/64 (-26, 8 68/128 52,16
1.11101 61/32,62/32 33.301 33/64 (2,35 67/128 -58, 9
1.11110 62/32,63/32 32.768 33/64 (-31, 2] 66/128 -62, 4
1.11111 63/32,64/32) 32.252 32/64 (0,32 65/128 (- 64, 1]
Table 1: Optimal 5 bits in,5 bits out and 5 bits in,6 bits out Reciprocal Tables
bits In 3 4 5 6 7 8 9 10 1T 12
_/bits out
3 3.540 [4.000 [4.000 | 4.000 | 4.081 | 4081 | 4.081 | 4.081 4.087 4.087
4 4.000 [4.678 | 4.752 | 5.000 | 5.000 | 5.000 | 5.042 | 5.042 5.042 5.042
5 4.000 | 4.7527] 5.573 | 5.850 | 5.891 | 6.000 | 6.000 | 6.000 6.022 6.022
6 4.000] 5.000 | 5.850 [6.476 | 6.790 | 6.907 | 6.950 | 7.000 7.000 7.000
7 4.081 | 5.000 | 5.891 176.790 | 7.484 | 7.775 | 7.888 | 7.948 7.976 8.000
8 4.081 | 5.000 | 6.000 [6.907 | 7.775 | 8.453 | 8.710 | 8.886 8.944 8.974
9 4.081 | 5.042 | 6.000 | 6.950 | 7.888 | 8.719 | 9.430 | 9.7%5 9.852 9.942
10 4.081 | 5.042 | 6.000 | 7.000 | 7.948 | 8.886 | 9.725 | 10.443 [10.693 | 10.858
11 4.087 15.042 | 6.0227| 7.000 | 7.976 | 8.944 | 9582 | 10.693 | 11.429 | 11.701
12 4.087 | 5.042 | 6.022 | 7.000 | 8.000 | 8.974 | 9.942 | 10.858 | IL.701 | 12.42

Table 2: Minimum precisions of tables of different sizes

division instruction. The values in Table 2 were same for all k, m in the table. This can be proved to
rounded down to provide true lower bounds on the holg in general despite the great variance in the sizes
precision attainable. Interestingly the table precision m2® and k2™ of total bits employed in the (k, m) and
for optimal (k, m) and (m, k) reciprocals tables are the (m, k) tables. The result is tangential to our interests

98

here and no proof is included.

The ROM reciprocal tables of greatest practical in-
terest may be more aptly characterized as k-bits-in,
(k+ g)-bits-out where g indicates the number of guard
bits on the output. The precisions of optimal (k, k+g)
reciprocal tables for 0 < g <4 and k = 6,8, ..., 16 are
given in Table 3 and suggest convergence of the frac-
tion portion for fixed g with increasing k. This topic
is further discussed in the next section.

k 6 8 10 12 14 16

g

016.476 | 8.453 | 10.443 | 12.428 | 14.422 | 16.418
116.790 [8.719 | 10.693 | 12.687 | 14.682 | 16.679
2 16.907 [8.886 | 10.858 | 12.844 | 14.834 | 16.833
3 [6.950 [8.944 [10.924 [T2.918 [14.915 [16.914
4 17.000 [8.974 | 10.970 | 12.963 | 14.959 | 16.956

Table 3: Minimum precisions of reciprocal
tables with different guard bits

At this point we note that in many applications it can
be required that the approximate reciprocal must be
guaranteed higher(or lower) than the infinitely precise
reciprocal [AC 74], [Ka 91], [WF 91]. A larger rela-
tive error is then necessary in the worst case recipro-
cal approximation to assure that the approximation
is properly directed. By methods similar to our pre-
vious discussion we have computed the best precision
attainable for similarly sized tables where the recipro-
cal approximation must be guaranteed either high or
low, and these are shown in Table 4 for comparison
with Table 3. The analysis of the worst case rela-
tive error for directed approximation of reciprocals is
somewhat simpler than for reciprocal approximation
in general. For brevity we do not further discuss herein
the directed reciprocal approximation table construc-
tion process, and concentrate in the following on anal-
ysis of tables minimizing the maximum magnitude of
the relative errors.

k [} 8 10 12 14 16
g
015430 | 7.419 | 9.416 | 1T.415° [13.415 [15.415
5.565 | 7.482 | 9.447 | 11.429 | 13.421 | 15.417
T15705]7.685 | 9.680 | 11.678 | 13.678 | 15.678
5.752 | 7.715 | 9.696 | 11.687 | 13.683 | 15.680
2 [5866] 78391 9.832 | I1.83T | I3:830 | 15.830
5.921 | 7.875 | 9.853 | 11.841 | 13.835 | 15.832
315953 717.923 19915 [11.913] 13.913 | 15.912
5.956 | 7.934 {1 9.923 | 11.918 | 13.915 | 15.913
41599977966 | 9.958 | 11.956 | 13.956 | 15.955
6.000 [7.978 | 9.967 | 11.961 | 13.958 | 15.957

Table 4: Precisions of tables with directed
(high and low) reciprocal approximation

3 Error Bounds for Reciprocal Tables
For the reciprocal tables constructed by Algorithm
1, it is possible to derive an upper bound on the

maximum relative error valid for any (k, k + g) bit re-
ciprocal table.

Theorem 4: The maximum relative error of an opti-
mal reciprocal table with k-bits-in, (k + g)-bits-out is
bounded above by 2~ (++1)(1 + L),

Proof: First we claim that if 1 <y <2andg > 1
where y € Rt and g is an integer, then

29+1 . .
y+ <5~ is maximumat y = 1, (1a) and
y+§ achieves the maximumat y = 1 and y = 2. (1b)
To justify the claim let f(y) = y + %ﬂ where ¢ > 1.
Then %(f(y)) :1-%:—1 <0inl <y < 2for
g > 1. So, f(y) decreases monotonically in the in-
terval 1 <y<2 and is maximum at y = L.
Now let f (y) = y+%‘ Then a%(f (y))y=1- ;2; w},nch
is<0in1<y<+v2and>0inv2<y<2 Sof(y
monotonically decreases in the interval 1 < y < v/2,

monotonically increases in the interval V2 < y <2,
and achieves maximum value at y = 1 and y = 2,
proving the claim.

Let % be any midpoint of [;‘;,-’—;}) for 2F < i <
2k+1 _ 1, and let 7;%—;—, be the true reciprocal of Jz.
Let n = 2k + g + 1, so then zz' = 2",

Applying Theorem 2 and observing that the
maximum rounding error z’ can suffer is 0.5 ulp,

) h
[r.e|mazr < max (c+1/2 22:'1 2)-ze) where the max
is over appropriate z.

1 max (z42')+ -;

™

2
max (z+2:-)+ —;

IN A

1
2 2 g9+1

1 max (y+ 35—)t e

L g—psvr)

where y = 5% and the maximum may be
taken over all y, 1 <y < 2.

Applying (la) for g > 1 and (1b) for ¢ = 0,

N

But |r.e|maz 1s of the form -2-'; where j rhust be an
integer, and since 28~1 + 2¥%9 is an integer, the
inequality can be sharpened to yield

k- k
|r-e|mar S 2_12'i;2l
2k—l 2k+g

> TRt
<2201 4 d) 0

From Theorem 4, we immediately obtain a lower
bound on the precision guaranteed for any (k, k + g)
bit reciprocal table.

Observation: The precision of the k-bits-in, (k+g)-
bits-out reciprocal table constructed by Algorithm 1
forany k> 2, g > 0is at least k + 1 - logy(1+ 547)-

Table 5 illustrates the value of extra guard bits for
an optimal (k,k + g) bit reciprocal table for any k.
Note in particular that going from 0 to 3 guard bits

brings about one half the benefit of increasing k by one
bit. With respect to the cost of higher precision re-
ciprocal approximation in terms of table size, the first
few guard bits are proportionally much more benefi-
cial than increasing k& when k is large.

Precision
k+.415
k+.678
k+.830
k+.912
k+.955

5| k+.977

Table 5: Lower bounds on the precision of op-
timal (k, k + ¢g) bit reciprocal tables for any &

Comparing Table 3 with Table 5 demonstrates that
the actual precision obtained in the constructed tables
approaches that of the bound with increasing input
bit size k. Table 6 shows the realized relative errors
from table search as a percentage of the corresponding
computed upper bound on relative error. The bound
tightens with increasing k and appears to rapidly ap-
proach 100 %.

W N = Olog

k=5
Realized Upper % of
Bound Bound
g=0 | 437207 487211 89.58 %
g=1 71/212 80/2'2 | 88.75 %
g=2 | 1387213 144/2'3 | 95.83 %
k=10
g=0 | 15067277 1536/2°T [98.04 %
g=1| 25327222 2560/222 | 98.91 %
=2 | 4517/2% | 4608/2%% | 98.02 %
k=15
g=0 | 49058/2%T | 49152/2°T | 99.81 %
g=1| 81616/2%% | 81920/232 | 99.63 %
g=2 | 147154/23% | 147456/2%3 | 99.79 %

Table 6: Comparison of the greatest realized
relative error with the relative error upper
bound from Theorem 4 for k-bits-in, (k + g)-
bits-out reciprocal table

4 Efficient Determination of Worst
Case Inputs to Reciprocal Tables

Using Algorithm 1 and Theorem 3, a reciprocal ta-
ble can be constructed and searched exhaustively to
compute the maximum relative error and precision of
the table. The search also reveals particular input
intervals that realize the worst case reciprocal approx-
imation. Knowledge of such intervals is useful for test-
ing iterative refinement division algorithms employing

100

such tables. The rapid approach to the bounds with
increasing k in Table 6 is a good indication that we
might expect to encounter worst case errors near the
theoretical limit of Theorem 4 in large tables. The
methods determining the limits did not indicate where
the realized worst case bound and the corresponding
input occured. Table 7 indicates no pattern to the oc-
curance of worst case input intervals as found by ex-
haustive search, other than the trend that the worst
case error occurs comparatively earlier in the table as
k increases.

worst 1nput for g=0 [worst input for g=1
k=5 | 1.01000 1.00011
k=6 | 1.001011 1.000010
k=7 | 1.0000101 1.0000100
k=8 | 1.00010010 1.00000101
k=9 | 1.000001011 1.000001000
k=10 | 1.0000100100 1.0000001011
k=11 | 1.00000100111 1.00000010000
k=12 | 1.000001010101 1.000000010110
k=13 | 1.0000010010001 1.0000000110111
k=14 | 1.00000001000000 1.00000000101101
k=15 | 1.000000001011010 | 1.000000010001111

Table 7: Table input values generating the
worst case relative errors

For larger tables e.g. k > 10 it is desirable to find
the intervals that realize the worst case error without
having to generate and search the whole table. Ex-
haustive search can be avoided if we can predict and
locate the input regions which are guaranteed to suf-
fer the maximum relative errors. Logically that should
happen for input regions which suffer rounding errors.
for midpoint reciprocal rounding close to 0.5 ulp. Ad-
jacent pairs of such input regions can be characterized
by a switch in the midpoint reciprocal rounding from
round-down to round-up in realizing round-to-nearest,
defining a break point in the arithmetic progression
of table values. Table 8 shows the initial arithmetic
progression of table values for the (10,10) bit recip-
rocal table through the first break point, and further
shows the next nine break points as characterized by
the rounding direction switches. A few particularly
bad input regions are highlighted. Note that the re-
ciprocals of these inputs suffer rounding errors very

close to 0.5 ulp. In fact (3359, 43%1] contains the worst

input for the (10,10) bit reciprocal table.

Lemma 5 locates the first break point of a (k, k) bit
reciprocal table.

Lemma 5: For a (k, k) bit table, the first break point
corresponds to the adjacent pair of input intervals
(28 +12% — 1,25 + 193] and (2F + 125, 2k + 128 4 1)
Outline of proof: Consider the first input interval
whose reciprocal suffers a rounding error of 0.5 ulp.
Let the mid-point of such an interval be 2% + ¢ + %
Then the reciprocal of the mid-point is clearly 2F+1 —
2i — 1 + € where ¢ is suitably small.

mid-pt mid-pt rounded rel error

recip recip interval

x(1/1024) | x(1/2048) | x{1/2048) | x(1/2%1)
1024.5 2047.000 2047 (1023,1024
1025.5 2045.004 2045 (1018,1027
1026.5 2043.012 2043 (1009,1034
1027.5 2041.024 2041 (1996,1045
1028.5 2039.039 2039 § 979,1060
1029.5 2037.059 2037 958,1079
1030.5 2035.082 2035 933,1102
1031.5 2033.109 2033 % 904,1129
1032.5 2031.140 2031 (871,1160
1033.5 2029.175 2029 § 834,1195
1034.5 2027.213 2027 793,1234
1035.5 2025.255 2025 748,1277
1036.5 2023.301 2023 E 699,1324
1037.5 2021.351 2021 (646,1375
1038.5 2019.405 2019 589,1430
1039.5 2017.462 2017 g 528,1489
1040.5 2015.523 2016 (1504, 512}
1051.5 1994.438 1994 536,1458
1052.5 1992.543 1993 21477, 516}
1059.5 1979.379 1979 (588,1391]]
1060.5 1977.512 1978 (1506, 472
1066.5 1966.387 1966 (/570,1396]
1067.5 1964.545 1965 (1468, 497]
1072.5 1955.386 1955 (563,1392)
1073.5 1953.565 1954 (1444, 510]
1077.5 1946.313 1946 (636)13101}
1078.5 1944.508 1945 (1503, 442
1082.5 1937.323 1937 (619,1318]
1083.5 1935.535 1936 (1472, 464]
1087.5 1928.416 1928 (512,1416]
1088.5 1926.644 1927 (1351, 576]
1091.5 1921.349 1921 580,1341
1092.5 1919.590 1920 %1408, 512}
1095.5 1914.333 1914 (592,1322]
1096.5 1912.587 1913 (1322, 504]

Table 8: Inputs leading to the first break
point and a first few worst case inputs
to a (10,10) bit table
Then (2% +i+ 3)(2F+! - 2i— 1) = 2%+ ignoring lower
order terms Solvmg for i in 2 + 3i — 2+ =0we
get i = ——— + %22 + € where € is suﬁiclently small.

So for the first break point which corresponds to in-
puts which suffer midpoint reclprocal roundmg €rrors

of nearly 0.5 ulp, we get i 2+ 129 +¢| or
i = f“‘— + 122 + €] which 1mplles i = 12: —1or

101

1= —22 Thus the first break point corresponds to
the palr of input intervals .
(28 +32% — 1,26+ 12%), (¥ + 125 2F 4 125 41). O

Corollary 5.1: For a (k,k + g) bit table, the first
break pomt corresponds to the pair of mput intervals

(2% + 125 — 1,28 4+ 12°5"] and (2% + 12%5% 2% 4
1oty 1].
roof: Similar to the proof of lemma 5.

We now need to show that certain inputs in the first
break point intervals are indeed good candidates for
the worst case inputs. In particular, if all the pre-
ceding input intervals are guaranteed to have relative
errors less than the relative errors of the input inter-
val pair at the first break point, then we can branch
directly to the first break point without missing any
candidate for worst input interval. In the following
lemma we show that the first break point intervals are
effectively worse than all the preceding intervals.

Lemma 6: Let the two input intervals in the first
break point be I; and I respectively and let the rela-
tive error intervals of I and I, be denoted by (r1,72)

and (ry,,] respectively. Also let (r r] be the
relative error interval of any precedmg lnput interval

(7,74 1] where i <]22 - 1
Then ry > max; r(o and r > max; r(&

Outline of proof: r{) = 22’°+1—(2’c -i-z)(‘z"*’1 ~2i-1)
= 2¢* +1+2" and rp = 92k+1 _ (2% 4+ j)(2F+ =25 -1)
= 252+ j + 2, where j = ;25—1 Since ¢ < j,
therefore r; > max; ro(3). r1(i) = (25 + i + l)(2’°"’1
20— 1)— 22+ =9k _ 22 _3i 1 < 2% 1. r =
(2 +1+1)(25H —20) - 2744 = 2’°+1 212 — 21, where
I = 127, which glves ry = 22% — 2% which is clearly
> 2¥ — 1. Thus ’"1 > max; T Z). 0

The implications of Lemma 5 and Lemma 6 are of
paramount importance. We know the first region of
bad input and can locate that easily. Note that the
first break point corresponds to an adjacent pair of
input intervals whose midpoint reciprocals are in the
neighbourhood of zzz.5 ulps, the first one slightly be-
low and the second one slightly above zzz.5 ulps, each
of them thus suffering rounding errors close to 0.5 ulp.
In fact all the other bad regions will comprise a pair of
adjacent input intervals of the same nature. If we can
locate all the other break points to a high degree of
approximation and all the other inputs between these
break points are guaranteed to be no worse than the
inputs corresponding to these break points, then our
search for worst case inputs will be limited to a few
branches to those regions, performing a small local
search in those regions and identifying the worst case
inputs.

The following lemma computes the approximate
branching point to these regions of worst case input.

Lemma 7: For a (k, k + g) reciprocal table, The j**
break point is in a small neighbourhood of the input

2% 4 5@2"_? where 7 > 1.

Outline of proof: Consider the input 2% 4 i+ % to
correspond to the j** break point. If its reciprocal
suffers a rounding error of exactly 0.5 ulps, the scaled
reciprocal is 269+ — 29%15 — (29 — 1) — 1 4 (j - 1).
The product of these two terms should "be exactly
equal to 2¥+F+9+1 5o setting the equation and ignor-
ing the lower order terms, we solve for i to obtain
1= 3@;32%1. Since there is a small degree of ap-
proximation in the solution for 7, the 7** break point is
iél a small neighbourhood of the input 2* + 2'12"_;1

To devise our branch and bound search procedure, the
only thing that needs to be proved is that the inputs
falling in the interval between the break points need
not be considered as candidates for the worst case in-
puts.

Lemma 8: For a (k, k+ g) bit reciprocal table the in-
puts falling between the j*» and (j + 1)*? break points
have relative errors no worse than the maximum rela-
tive errors of the inputs corresponding to the (j+ 1)
break point.

Proof: Similar to the proof of Lemma 6.

Algorithm 2
[Search of Large Tables for Worst Case Inputs]

Stimulus: Integers k > 10 and ¢ > 0

Response: The worst case inputs to the k-bits-in
(k + g)-bits-out ROM reciprocal table

Method: for i =1 to 12 step 1
<compute the first twelve break points>
begin

L1: Compute the i** break point as
break;=2F + V2=1ghse

L2: Perform a smalflocal search in the neigh-

bourhood of break; and identify the two
adjacent locally worst case inputs.
end

Theorem 9: For a (k, k+g) bit reciprocal table, Algo-
rithm 2 generates the worst case inputs to the table.

Outline of proof: It is immediate from Lemma 7
and Lemma 8 that all the worst case inputs should
be contained in the break point intervals which corre-
spond to the bad input regions. For large tables it is
desirable to bound the branching procedure described
in Algorithm 2 to find the worst case inputs, so that
the search is limited to only a small portion of the
table. It can be proved that for k¥ > 10, the search
of the tables for worst case inputs can be bounded by
the 12* break point such that the worst case input is
guaranteed to fall within the first 12 such input inter-
val pairs. The proof is beyond the scope of this paper
and will be included in an expanded version. O

102

References

[AC 74] G. M. Amdahl and M. R. Clements, ”Method
And Apparatus For Division Employing
Table-Lookup And Functional Iteration”, in
United States Patent, No. 3,828,175, 1974.

[BM 91] W. B. Briggs and D. W. Matula, ”Method
and Apparatus for Performing Division Using
a Rectangular Aspect Ratio Multiplier”, in
United States Patent, No. 5,046,038, 1991.

[Co 90] D. Cocanougher, ”Floating Point Division
Method And Apparatus”, in European Palent

Application, Publication No. 0,377,992, 1990.

H. M. Darley and M. C. Gill,, ”Floating
Point/Integer Processor With Divide and
Square Root Functions”, in United States
Patent, No. 4,878,190, 1989.

D. Ferrari, ” A Division Method Using a Par-
allel Multiplie®’, in IEEE Trans. Electron.
Comput. , 1967, EC-16, pp 224-226.

D. L. Fowler and J. E. Smith, "An Accu-
rate High Speed Implementation of Division
by Reciprocal Approximation”, in Proc. gth
IEEE Symp. Comput. Arithmetic , 1989, pp
60-67.

[FW 71} C.V. Freiman and C.C. Wang, ” Division Sys-
tem And Method”, in United States Patent,
No. 3,691,787, 1971.

[Go 64] R. E. Goldschmidt, ”Applications of divi-
sion by convergence”, in M.S. thesis, Mas-
sachusetts Institute of Technology, Cambridge,
Mass., June 1964.

[DG 89]

[Fe 67)

[FS 89]

[Ka 91] H. Kadota, ” Apparatus For Executing Divi-
sion By High Speed Convergence Processing”,
in United States Patent, No. 4,991,132, 1991.

[OL 91] W. J: Ooms, C. D. Leitch and R. M. Del-
gado, "Method And Apparatus For Obtain-
ing The Quotient Of Two Numbers Within
One Clock Cycle”, in United States Patent,
No. 5,020,017, 1991.

[SB 86] J. R. Schomburg and L. B. Bushard, ” Appa-
ratus For Performing Quadratic Convergence
Division In A Large Data Processing Sys-
terg”, in United States Patent, No. 4,594,680,
1986.

[WF 91] D. C. Wong and M. J. Flynn, ”Fast Division
Using Accurate Quotient Approximations to
Reduce the Number of Iterations”, in Proc.
10t* IEEE Symp. Compul. Arithmetic, 1991,
pp 191-201.

