Exact Rounding of Certain Elementary Functions

Michael Schulte and Earl Swartzlander
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, Texas 78712

Abstract

An algorithm is described which produces exactly rounded
results for the functions of reciprocal, square root, 2*, and
loga(x). Hardware designs based on this algorithm are
presented for floating point numbers with 16 and 24 bit
significands. These designs use a polynomial
approximation in which coefficients are originally
selected based on the Chebyshev series approximation and
are then adjusted to ensure exactly rounded results for all
inputs. To reduce the number of terms in the
approximation, the input interval is divided into
subintervals of equal size and different coefficients are
used for each subinterval. For floating point numbers
with 16 bit significands, the exactly rounded value of the
function can be computed in 51 ns on a 20 mm? chip.
For floating point numbers with 24 bit significands, the
functions can be computed in 80 ns on a 98 mm? chip.

1 Introduction

In general, the exact value of an elementary function
(e.g., reciprocal, exponential, square root, logarithm, etc.)
cannot be represented as a fixed-sized floating point
number. Therefore, the computed result of the function is
rounded to a finite number of bits. To minimize the
difference between the infinitely precise value of the
function and the computed result, the computed result
should be exactly rounded. Exact rounding as defined in
[1] requires the rounded result to be identical to the result
obtained if the infinitely precise value of the function is
rounded to the nearest floating point number.

In the IEEE 754 Standard [2], round to nearest even is the
default rounding mode for addition, subtraction,
multiplication, division, square root, remainder and
conversion between integer and floating point formats.
Round to nearest even is a method of exact rounding
which requires that if the infinitely precise result falls
exactly halfway between the two nearest floating point
numbers, the result should be rounded such that its least
significant bit is zero. The IEEE 754 Standard, however,

1063-6889/93 $03.00 © 1993 IEEE

138

does not require exact for the elementary functions. This
is largely due to a problem known as the Table Maker's
Dilemma [1] [3]. This dilemma and a solution to it are
discussed in Section 4.

Evaluating elementary functions with a method that
produces exactly rounded results has several advantages.
In addition to minimizing the error between the computed
result and the exact value of the function, exact rounding
also preserves several desirable properties of the functions
such as symmetry and monotonicity {4]. Another
advantage is that machines which have the same floating
point format and ensure exact rounding will always
produce the same results. This improves software
portability and allows the correctness of floating point
algorithms to be verified for a standardized system. Other
advantages of having an industry standard for elementary
functions are discussed in [5].

Because of the advantages offered, much research has been
performed to develop software routines which produce
exactly rounded results for the elementary functions. In
[6], software routines are described which always produce
exactly rounded results for single precision exponential,
and single and double precision square root and complex
absolute value in the IBM System 370 floating point
format. However, these routines require between 50 and
70 machine cycles to execute on a general purpose
computer. For the other elementary functions, exact
rounding is achieved for between 95.0 and 99.9 percent of
the inputs. Routines which are expected to produce
exactly rounded results for elementary functions in the
IEEE double precision format are described in [7]. For the
first iteration, the result is computed using double
precision arithmetic. If the result of this routine is not
guaranteed to be exactly rounded, it is recomputed using a
higher precision routine which may be orders of
magnitude slower than the original routine. With this
approach hundreds of cycles may be required to compute
results which are not exactly rounded after the first
iteration.

To speed up computation of the elementary functions,
several techniques have been developed for approximating

the elementary functions with special purpose hardware.
These techniques include the CORDIC algorithm [8],
Newton-Raphson iteration [9], rational approximations
{10], and polynomial approximations [11]. However, no
known implementation of these techniques produces
results which are guaranteed to be exactly rounded.
Instead, most hardware approaches only guarantee that the
computed results will differ from the exact answer by less
than a specified amount, which is often less than one unit
in the last place (ulp). If x is a positive normalized
floating point number, then the ulp of x is the difference
between x and the next larger floating point number. The
algorithm described in this paper also offers a speed
advantage over existing methods, because most of the
computation is performed in parallel and division is not

This paper presents hardware designs which produce
exactly rounded results for the functions of reciprocal,
square root, 2* and loga(x) for floating point numbers
with 16 and 24 bit significands. Section 2 contains a
discussion of polynomial approximations with an
emphasis on the Chebyshev series approximation.
Section 3 examines range reduction, which limits the
range of the input operand. In section 4, the difficulty of
obtaining exactly rounded results is discussed and a
method is presented for determining the accuracy needed
to guarantee exactly rounded results. Section 5 presents
an algorithm by which the coefficients of the
polynomials are adjusted to guarantee exactly rounded
results. In Section 6, hardware designs which produce
exactly rounded results for all inputs are given.

The algorithm presented in this paper has two
limitations. First, it cannot be used for all functions. For
elementary functions such as sine and cosine, range
reduction techniques may introduce errors which cause the
final results to not be exactly rounded. Second, the
algorithm may not be feasible for floating point numbers
with large significands (e.g., double precision), because
the algorithm for adjusting the coefficients requires an
exhaustive simulation of all values on the input interval,

2 Polynomial Approximations

The algorithm discussed in this paper uses polynomial
approximations to compute the value of a function f(x).
Polynomial approximations have the form
n-1
Gn-1(x) =ag+ayx + ... +ay 4-x1 =2ai-xi 0]
i=0
where q,,_1(x) is a polynomial of degree n - 1, and a; is
the coefficient of the ith term.

Typically, the function is approximated on a input
interval [Xpin, Xmax) and range reduction is needed for
values outside this interval. To reduce the number of
terms in the approximation, the input interval is divided

139

into a set of equally sized subintervals. This is done in
hardware by separating the p bit input value into two
parts; a k bit most significant part x;, and a (p-k) bit
least significant part x;, as shown in Figure 1.

If x is on the interval [0,1), then
x=xp +x2°k)
where 0 < x;;, <1 and 0 < x)< 1. Equation (1) then
becomes
n-1)
Pm(®) = D 2ixm) %
i=0
where pp(x) is the approximating polynomial of degree
n-1 for subinterval m. The a;s are obtained by a table
look-up based on x,,. The value of x,, determines the
subinterval on which the approximation occurs and the
value of x, specifies the point on the subinterval at which
the approximation is made. Figure 2 illustrates the effect
of dividing the input interval into subintervals. Figure 3
shows the approximation for a single subinterval.

€)

MSB X LSB
- p bits >
X X,

Figure 1: Dividing the Input Value.

f(x) and p (x)

L
71—

Figure 2: Dividing the Input Interval.

*
m Xyt 2 x

For normalized IEEE floating point numbers [2], the
input interval is often [1,2). In this case, Xy consists of
the (k-1) most significant bits of x, excluding the most
significant bit which is always 1. Numbers of this form
are specified by the equation
x=1+xy +2%x

@

f(x) and p_(x)

x, xm+2']5(l
.Figure 3: A Single Subinterval

An approximation to the minimax polynomial, the

Chebyshev series approximation, is originally used to

select the coefficients for each of the subintervals. On the

subinterval [xp, X, + 2-X), the Chebyshev series

approximation pp,(x) is computed as follows [12]:

1. The Chebyshev nodes t; on [-1,1) are computed
using the formula

y=cos(BEDE) o<icny 9

2. The Chebyshev nodes are transformed from [-1,1) to
(X Xp + 27%) through the equation
X;=Xp+ (+ D2kl (0<i<n) ©
3. The Lagrange polynomial which interpolates the
Chebyshev nodes on [y, Xy, + 2°%) is computed as
n-1
Pm(®) = ZYi‘Li(X)
i=0

0

where

y; = f(x;) ®

n-1

[Je-x0
k=0;k=#i

n-1

H(Xi - Xg)

k=0;k=i

Lx) = o)

The coefficients for each power of x can be factored to
express pp,(x) in the form given in equation (3). The
maximum error between f(x) and p,(x) is
2-n(k+2)+l,fn(§)
n!
where f*(E) is the nth derivative of f(£) and
X S & <xp+ 2K

As can be seen from equation 10, increasing the number
of bits in x;;, by one decreases the maximum error by a

factor of 21, Unfortunately, this doubles the number of
coefficients. In comparison, increasing the number of
terms by one decreases the maximum error by a factor of

E,(x) < (10)

140

approximately 2-(%+2), However, this increases the
number of multiplies and adds which are needed.

3 Range Reduction

Before computing the value of a function, the input
argument is first transformed so that it falls within a
given input interval. The function is then computed for
the transformed input, followed by a second
transformation which compensates for the original
transformation and normalizes the result. The input and
output transformation are commonly referred to as range
reduction. For floating point numbers, the approximation
is usually computed based on the value of the significand
and range reduction is performed to compensate for the
value of the exponent.

Although range reduction is discussed in other papers,
e.g. [13], it is discussed here to illustrate that for the
functions of reciprocal, square root, 2* and loga(x), the
range reduction transformations maintain exact rounding.
Thus, if the results computed over the input interval are
exactly rounded, all results will be exactly rounded. The
steps needed to compute each of the elementary functions
are shown in Figure 4. In these formulas, it is assumed
that the numbers are in the IEEE floating point format
for normalized numbers, which take the form
x = (-1)Sx M, 2Ex (<M <2)

For convenience, the exponent is assumed to have no
bias. The following notation is used:

My and Ex The original significand and exponent
My and E,’ The transformed inputs

My’ and Ey' The pre-transformed outputs

My and Ey The transformed outputs

Sx and Sy The sign bit of the input and output.

For the range reduction formulas, multiplication by 2P
corresponds to a b-bit left shift, and division by 2b
corresponds to a b-bit right shift. Since the input and
output transformations for inverse, reciprocal and 2% do
not modify the bit values of the significand, ensuring
exactly rounded results on the input interval guarantees
exactly rounded results for all inputs. For the output
transformation of logy(x), if Ex is non-zero, it is
necessary to add Ey' to the result and then normalize by a
right shift of Lloga(IEy'l)] bits. If Ey is equal to zero,
leading zeros may appear in log,(My") which leads to a
loss of precision. Since

< logz(‘M,() <

My'-1

computing this value, instead of log,(My'), eliminates
the leading zeros. In the next cycle, this result is
multiplied by the normalized value of (My'- 1) and the
exponent is adjusted.

reciprocal
L _ 1B
M, 2Bx Mx
1) Sy = Sx
V)] My’ = My Ex'=Ex
- R
3) My’ = My Ey'= -Ex
@a)if My'=1) My = My’ Ey =Ey'
@4b) else My'<1) M, =2-M,' Ey=E, -1
square root

f By even) \My2Bx = VBL2EW2
\j M, 2Ex = V2M2Ex-1D 2

if (Ex odd)

(la)if (Sx=1) ERROR

(1b) else (Sx = 0) Sy=0

(2a) if (Ex even) M,' =M Ey'=Ex

(2b) else (Ex odd) M,' =2-My Ex=E;-1
1 1 ' E '

(©) M, = VM, Ey'=—F

@) M, =M, E, =E,'

logy(x)

if Bx#0) logoMy2E%) = logy(My) + By
if Ex=0) logaMx2™) = SEC- My

(la) if (x £ 0)
(1b) if (Ex 2 0)
(1c) else (Ex < 0)
@

(3a) if (Ex' = 0)
(da)

(3b) else (Ex' #0)
(4b)

ERROR
Sy=1
My' =My

Mo = log,(Mx))
YT My -1

A= Lloga(My - 1))

My = My-(My-122

My’ = logy(My")

A =|loga(IEy)]

M, =M, +E, 22 E,=4A
2x
Mx28% _ gMx2Bx' e
Zo=M2Bx Er =1z My =Z- By

1)) Sy=0
@) My =Zy- By Ex'=17]
(3a) if (Sx = 0) My = 2Mx’ Ey =Ey
(4a) My =My’ Ey =Ey
@byelse (Sx=1) M, =2"Mx Ey' = -Ey’
@b) if My’ =05) My =2M, Ey=E, -1
(4c) else (M’ < 0.5) M, =4-M,' Ey=E,' -2

Figure 4:

Range Reduction Equations

141

4 Determining the Necessary Accuracy

For most elementary functions there is no known
theoretical method to determine in advance the accuracy of
the pre-rounded result which is required to guarantee that
the final answer will be exactly rounded. This problem is
known as the Table Maker's Dilemma. For example,
suppose the value of a function f(x) when computed to 4
bits is .0010,. It cannot be determined whether the 3-bit
exactly rounded result is .0015 or .010. If f(x) computed
to 5 bits is .00100;, the 3-bit exactly rounded result still
cannot be determined. For transcendental functions, an
arbitrary number of accurate bits may need to be
computed before it can be determined whether f(x) is
.00100...01XX...o0 or .00011...10XX...2, where X
represents either 0 or 1. Due to this problem [1] and (3]
claim that it is not practical to require that the results of
elementary functions are exactly rounded. This section
describes a method by which the necessary accuracy to
guarantee exactly rounded results can be determined
analytically for a specified floating point format.

To ensure exact rounding for the elementary functions, it
is sufficient to guarantee the following: (1) the pre-
rounded result is less than 0.5 ulps from the exactly
rounded value of the function and (2) the pre-rounded
result is rounded using round to nearest. If f(x) is the
exact value of the function and p(x) is the value of the
pre-rounded result, the following statements holds:
IF Ip(x)-f(x)1<0.5ulp-| [f(x)]p - f(x) | THEN
1 p(x) - [f(x)]p | < 0.5-ulp AND
p())p =)], (12
where [x]p is the value of x rounded to p bits using round
to nearest. Thus, if the distance between the pre-rounded
result and the exact value of the function is less than
Y(x), where
Y(x) = 0.5-ulp - | [f(x)]p, - f(x) | 13)
exact rounding is guaranteed. This is equivalent to
requiring that f(x) is closer to p(x) than it is to the
midpoint of the two nearest floating point numbers.
Figure 5 illustrates this requirement.

[f(x)] st 0.5*ulp
L px)
ip(x) - flx) 0.5%lp - I[Rx)}- fx) = Hx)
&+ J x)
(=)l

Figure 5: Exact Rounding Criterion.

Based on the previous discussion, the accuracy in the
pre-rounded result which will guarantee exact rounding is
determined by finding the minimum value of Y(x) for all
values on the input inverval. The minimum value of
Y(x) for floating point numbers with 16 and 24 bit
significands, along with the required number of accurate

bits in the normalized, pre-rounded result is shown in
Table 1. The number of accurate bits required is
Bits = [-1ogo(Y(X) ;) |

Table 1: Necessary Accuracy

16 bit significand 24 bit significand
Function Y(X)min Bits Y(X)min Bits
reciprocal [2.33.10-10 | 32 | 3561010 | 48
sqr.root | 2.33.10110 | 32 | 3561015 | 48
loga(x) | 3.69-10111 | 35 | 6.11.10°16 | 51
X (x>0] 237107 | 29 | 621100 | 48

S Adjusting the Coefficients

If the coefficients of the Chebyshev series approximation
are used to compute the elementary functions, either the
size of the table look-up or the number of terms in the
approximation must be very large. Figure 6 contains an
algorithm by which the values of the coefficients can be
adjusted to achieve exactly rounded results.

(1) Set the best coefficients to the coefficients of the
Chebyshev approximation;
(2) fori=1 to number of coefficients do

(3) forj=1 to number of subintervals do
(&) compute the number of incorrect results for this
subinterval using the best coefficients;
®) for k = 1 to number of iterations do
© for sign = -1 to 1 step 2 do
U] modify the value of the ith coefficient on
the jth subinterval by
a[il(j] = a[il(j] + sign-k-2"Pi;
® compute the number of incorrect results
using the best coefficients and the modified
ith coefficient ;
© if (the number of incorrect results is reduced
and none of the approximations have more
than one ulp of absolute error) then
(10) the modified coefficient becomes the best
coefficient for this subinterval;
11 remember the number of incorrect results;
(12) if (the number of incorrect results is zero)
then
13) exit this subinterval (exit j);
14) end k
15) end j
(16) if (the total number of incorrect results is zero)
then
an exit modifying coefficients (exit i);
18) endi

Figure 6: Adjusting the Coefficients.

To determine the number of iterations for adjusting the
coefficients, it is assumed that the difference between the
exact answer and the pre-rounded result is less than 2-9

142

and the rounded result has an ulp of 2°P. The ulp of the
ith coefficient is 2°Pi, where p <q< p;.

1. For a given ay, a,..., ap-1, the maximum number
of iterations needed to select the optimal value of
ag is 2P09,

2. For a given ag, ai,...,ai-1, 3j+1,.-. ,8n-1, the
maximum number of iterations needed to select the
optimal value of a; is 2PiP.

The algorithm for adjusting the coefficients executes on a
50 MFLOPS processor in under one hour for numbers
with 24 bit significands.

6 Hardware Designs

Polynomial approximations are computed on the input
interval in three steps:)
(1) obtain the coefficients a;(x,,) and the powers x;!
(2) compute the terms a;(x,)-x;!
(3 sum together the terms from step 2
Because the terms in the approximation are independent,
they can be generated in parallel and then summed using a
multi-operand adder. Figure 7 shows a block diagram for
a polynomial approximation of degree n.

To reduce the complexity of the elementary function
generator, special purpose multipliers and multi-operand
adders are designed which take advantage of the
characteristics of the polynomial approximations. Since
the x)'s are guaranteed to be positive, each term is
computed using a n by m multiplier in which the
multiplicand is a two's complement number and the
multiplier is always positive. The partial products for
this multiplier are shown in Figure 8. To avoid sign
extension, the sign bit of each of the partial products is
complemented and a one is added to the nth column. This
is similar to the method of sign extension presented in
[14]. The multi-operand adder computes the sum of two's
complement numbers. The high order terms in the
approximation will have leading ones or zeros. Sign
extension of these terms is performed as shown in Figure
9, where W, X, Y and Z are the four terms being added.
For a cubic approximation W, X, Y, and Z correspond to
ayx3, apx)2, a) x| and ag, respectively. Instead of using
extra hardware to add the ones during the computation,
they are added to the coefficient ag when its value is
originally determined. Since the sign of the result is
computed based on the sign of the input and the function
being evaluated, the sign of ag is not stored and carry into
this position is ignored.

One of the disadvantages of the design shown in Figure 7
is that a carry-propagate adder is needed for each
multiplication and the final summation. Instead of
performing the multiplications with separate multipliers
and then summing the terms with a multi-operand adder,
the multiplications and summation can be merged using

Dadda [15] or Wallace [16] trees. With this approach,
only a single carry propagate adder is needed and the delay
and area are reduced. Implementations for merged
arithmetic and a discussion of its advantages are given in
[17].

Input

AL
|

L x.

1
ROMPLA L R xp
a ° l‘ .2 . . ."
L
I Mult-1 I I Mult-2 I """ Mult-n
L multi-operand adder
Output

Figure 7: Elementary Function Generator.
L
Pyn P12 Ry
T Pens P22 Pay

L .

Pn-tn Prtnt smmmemmmesesmanee Pn.1,2 P4

W.n Prant

R;M

Pm,z Pm,l
Figure 8: n by m Multiplier.

11 ';q' w, W, W,

11 1Y) X, X, smemmmmmmmeanX, X,

LR A AP R 8 Y, Y,
Zz,2z,, 2y Z4

Figure 9: Two's Complement
Multi-operand Adder.

The hardware requirements to obtain exactly rounded
results for the four functions were determined through
computer simulation. The simulation first determines the
coefficients of the Chebyshev series approximation for
each subinterval. It then simulates the computation of
functions for all values on the input interval and adjusts
the coefficients using the algorithm presented in Section

143

5 to guarantee that all results are exactly rounded. The
exactly rounded value of the function is determined by
rounding the IEEE double precision value of the function
using round to nearest even. The simulation was
performed for numbers with 16 and 24 bit significands
using linear, quadratic and cubic approximations.

The hardware requirements for each design are given in
Table 2. For the multipliers, the number of bits in the
multiplicand and multiplier are given. The number of bits
in the rounded product is shown in parenthesis. The
number of input bits and output bits is given for the
Square and Cube circuits. For the multi-operand adder, the
number of bits in each input is given. Table 3 shows the
lengths of the coefficients and the memory requirements
for each design.

Area and delay estimates are shown in Tables 4 and 5.
The area in mm2 and delay in ns is given for each
component. These estimates are based on data from a 1.0
micron CMOS standard cell library [19]. The estimates
for the multipliers, squaring circuits and multi-operand
adders assume a Wallace reduction followed by carry look-
ahead addition, with four bit blocks. The areas of each
component are estimated by calculating the total size of
the macrocells (e.g., AND gates, full adders, half adders,
etc.) which make up the component. An area overhead of
50% is assumed for the internal wiring of each
component. The estimated area and delay for the entire
chip are also given. The overhead due to global wiring
and power and ground signals is estimated as 50% of the
total area, and an additional 1.0 mm is added to the height
and width of the chip for 1/0 pads. The components
which contribute to the critical path are marked by a "*'.
To determine the delay of the entire chip, an overhead of
25% is assumed for delay due to global routing. The
values given do not take into account the time and area
needed to perform range reduction.

The powers of x are generated with either special purpose
squaring circuits or by a table look-up operation.
Implementations for squaring circuits are given in [18].
For numbers with 24 bit significands, x;3 are obtained
either through a table look-up or by multiplying x; by
x12. The estimates for these two designs are label
cubic(24)-1 and cubic(24)-2, respectively.

The values shown in Tables 4 and 5 illustrate the
tradeoffs that can be made in terms of delay and area by
varying the degree of the polynomials. If the product of
delay and area is the criterion used to select the optimum
design, then the quad(16) approximation is the best
design for numbers with 16 bit significands, while the
cubic(24)-2 approximation is the best design for numbers
with 24 bit significands. The linear(24) approximation
cannot be practically implemented, because of its huge
memory requirements.

Table 2: Hardware Requirements for Exactly Rounded Results.

Approximation Multl Mult2 Mult3 Square Cube Adders
linear(16) 15x5(16) 24, 16
quad(16) 19x8(21) 12x10(14) 8(10) 24 21,14
cubic(16) 22x10(23) 17x16(18) 12x12(13) 10(16) 10(12) 25,23, 18, 13
linear(24) 21x6(22) 36, 22
quad(24) 31x12(33) 19x16(21) 12(16) 40, 33, 21
cubic(24) 35x15(37) 27x24(29) 18x14(20) 15(24) 14(14) 41, 37, 29, 20

Table 3: Memory Requirements for Exactly Rounded Results.
Coefficient Lengths Table Size

Approximation ag aj a a Words Bits/Word Total Bits
linear(16) 24 15 6656 39 253.5K
quad(16) 24 19 12 832 55 44.7 K
cubic(16) 25 22 17 12 208 76 154 K
linear(24) 36 21 851,968 57 46.3 M
quad(24) 40 31 19 17,408 90 149 M
cubic(24) 41 35 27 18 1,920 121 2269 K

Table 4: Estimated Area (mmz).

Approximation Multl | Mult2 | Mult3 | Square | Cube | Adder | ROM | Total Chi
linear(16) 1.0 0.6 13.8 154 34
quad(16) 1.9 1.6 0.4 0.8 3.1 7.8 20
cubic(16) 2.8 3.5 1.9 0.8 1.4 1.0 2.1 13.5 30
linear(24) 1.8 0.9 2191 2194 3407
quad(24) 4.6 3.8 0.9 1.3 62.7 73.3 132

cubic(24)-1 6.6 9.5 3.3 1.9 19.3 1.3 10.8 52.7 98
cubic(24)-2 6.6 9.5 3.3 1.9 2.8 1.3 10.8 36.2 70
Table 5: Estimated Delay (ns).

Approximation Multl | Mult2 | Mult3 | Square | Cube Adder | ROM | Total Chip
linear(16) 17* 13* 30 38
quad(16) 19* 16 13 14* 8* 41 51
cubic(16) 22 23* 16 8* 8 15% 6 46 58
linear(24) 19* 15% 150* 184 230
quad(24) 24* 23 14 17* 14* 55 69

cubic(24)-1 24 27* 23 19* 14 18* 11 64 80
cubic(24)-2 24 27 23* 19* 22% 18* 11 82 103
Table 6: Maximum Error and Minimum Bits of Accuracy.
reciprocal square root logo(x 2X
Approximation | MaxError | Bits | MaxErmor | Bits | MaxEmor | Bits | MaxEmor | Bits

linear(16) | 3.12.107 | 22 | 132107 | 23 | 14107 | 23 | 132107 | 23

quad(16) 123107 | 23 [914108 [24 [775108 | 24 | 8.5210° | 24

cubic(16) | 436108 | 25 | 258108 | 26 | 236108 | 26 | 32210% | 25

inear?4) | 2901011 | 35 | 201101 | 36 | 1901011 | 36 | 1881011 | 36

quad(24) 2941012 | 39 | 3451012] 39 | 3831012 | 38 | 2401012 | 39

cubic(4) | 15561012 40 [94510 [40 [9621013 | 40 | 9151013 | 40

144

Table 6 shows the maximum error and the minimum
number of accurate bits in the pre-rounded result for each
of the designs. Comparing these values to those given in
Table 1 demonstrates that our algorithm produces exactly
rounded results using much less accuracy than is required
by the analysis developed in Section 4. For example, the
analysis of Section 4 shows that for reciprocal, 48 bits of
accuracy will guarantee exactly rounded results for
floating point numbers with 24 bit significands.
However, our algorithm requires only 35, 39, and 40 bits
of accuracy for the linear, quadratic and cubic designs,
respectively. This is because the algorithm uses
knowledge about the exactly rounded result to adjust the
coefficients.

7 Conclusion

An algorithm has been presented which produces exactly
rounded results for the functions of reciprocal, square
root, 2X and log)(x). Because the coefficients are adjusted
based on the error in the original approximation, exactly
rounded results can be obtained using much less hardware
than would be required if a more conventional method of
polynomial approximations had been employed. Area and
delay estimates illustrate the feasibility of obtaining
exactly rounded results with special purpose hardware.

Acknowledgments

The authors wish to thank Srilatha Manne who developed
the area and delay estimates. They are also grateful to
Prof. V. K. Jain who introduced them to a method for
elementary function generation which led to some of the
ideas presented in this paper.

References

(11 David Goldberg, "What Every Computer Scientist
Should Know About Floating-Point Arithmetic,"
ACM Computing Surveys, Vol. 23, pp. 5-48,
1991.

"IEEE Standard 754 for Binary Floating Point
Arithmetic,” ANSI/IEEE Standard No. 754,
American National Standards Institute,
Washington DC, 1988.

David Hough, "Elementary Functions Based on
IEEE Arithmetic,” Mini/Micro West Conference
Record, Electronic Conventions, Inc., Los
Angeles, pp. 14, 1983.

Shmuel Gal and Boris Bachelus, "An Accurate
Elementary Mathematical Library for the IEEE
Floating Point Standard,” ACM Transactions on
Mathematical Software, Vol. 17, pp. 2645, 1991.
C.M. Black, R.P. Burton, and T.H. Miller, "The
Need for an Industry Standard of Accuracy for
Elementary Function Programs,” ACM
Transactions on Mathematical Software, Vol. 1,
pp. 361-366, 1984.

[21

B3]

4]

(51

145

]

7

(8]

1

(10]

{1

(12]

{13]

(14]

[15]

[16]

(17

(18]

[19]

Ramesh C. Agarwal, James W. Cooley, Fred G.
Gustavson, James B. Shearer, Gordon Slishman,
and Bryant Tuckerman, "New Scalar and Vector
Elementary Functions for the IBM System/370,"
IBM Journal of Research and Development, Vol.
30, 126-144, 1986.

Abraham Ziv, "Fast Evaluation of Elementary
Mathematical Functions with Correctly Rounded
Last Bit,” ACM Transactions on Mathematical
Software, Vol.. 17, pp. 410-423, 1991,

J.E. Volder, "The CORDIC Trigonometric
Computing Technique," IRE Transactions on
Electronic Computers, Vol. EC-8, pp. 330-334,
1959.

M.J. Flynn, "On Division by Functional
Iteration,” IEEE Transactions on Computers, C-
19, pp. 702-706.

L. Koren and O. Zinaty, "Evaluation of Elementary
Functions in a Numerical Co-Processor Based on
Rational Approximations, " IEEE Transactions on
Computers, Vol. 39, pp. 1030-1037, 1990.

P.M. Farmwald, "High Bandwidth Evaluation of
Elementary Functions," Proceedings of the 5th
Symposium on Computer Arithmetic, pp. 139-
142, 1981.

J.H. Mathews, Numerical Methods for Computer
Science, Engineering and Mathematics, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1987.
J.S. Walther, "A Unified Algorithm for
Elementary Functions,” Spring Joint Computer
Conference, pp. 379-385, 1971.

C.R. Baugh and B.A. Wooley, "A Two's
Complement Parallel Array Maultiplication
Algorithm,"” IEEE Transactions on Computers
Vol. C-22, pp. 1045-1047, 1973.

L. Dadda, "Some Schemes for Parallel
Multipliers," Alta Frequenza, Vol. 34, 349-356,
May 1965.

C.S. Wallace, "A Suggestion for a Fast
Multiplier,” IEEE Transactions on Electronic
Computers, Vol. EC-13, pp.14-17, 1964.

E. E. Swartzlander, Jr., "Merged Arithmetic,”
IEEE Transactions on Computers,” Vol. C-29, pp.
946-950, 1980.

T. Jayarshee and D. Basu, "On Binary
Multiplication Using the Quarter Square
Algorithm," Spring Joint Computer Conference,
Pp. 957- 960, 1974.

LSI Logic 1.0 Micron Cell-Based Products
Databook, LSI Logic Corporation, Milpitas,
California, 1991.

