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Abstract

A novel method for obtaining high-precision ap-
prozimations of high-order arithmetic operations is
presented. These approzimations provide a starting
approzimation for high-precision iterative algorithms.
An accurate starting approzimation translates into few
iterations and a short overall latency. The proposed
method uses a partial product array to describe an ap-
prozimation and sums the array on an ezisting multi-
plier. By reusing a multiplier the amount of dedicated
hardware is very small. For the square root opera-
tion, a 16-bit approzimation costs less than 1000 ded-
icated logic gates to implement and has the latency of
approzimately one multiplication. This is 1/500 the
size of an equivalent look-up table method and over
twice as many bits of accuracy as an equivalent poly-
nomial method. Thus, a high-precision approzimation
of the square root operation and many other high-order
arithmetic operations such as reciprocal, division, log-
arithm, ezponential, and trigonometric functions are
possible at low-cost.

1 Introduction

There are many iterative algorithms for calculating
the square root of an operand. One common algorithm
for high-order arithmetic operations is the Newton-
Raphson algorithm{1, 2, 3]. It is a root solving algo-
rithm. A function is chosen which has a root equal to
the desired operation. An example is the square root
operation and the function:

f(X)=X*-4A=0,

where A is the input operand. The function’s root is

equal to X = /A which is the square root operation.
The Newton-Raphson algorithm and many other iter-
ative algorithms start with an initial approximation.
They then proceed iteratively to create a higher pre-
cision approximation. For the Newton-Raphson algo-
rithm the iteration is described by:

Tit1 = 1/2 * (:l:i + A/:c,'),

where z; denotes the i-th approximation to the root.
The latency of an iteration is one division and one
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addition. There are several other algorithms for
the square root which may have a shorter latency
(since they do not require a division operation each
iteration[4]) but for simplicity this algorithm is dis-
cussed. The proposed method benefits any algorithm
which uses a starting approximation and is not re-
stricted to the Newton-Raphson algorithm.

The Newton-Raphson algorithm converges quad-
ratically since the absolute error of the i + 1 iteration
is described by the following:

zit1 — VA

€i+1 =
€ = €/(2)
If 025< A <1.0
then 0.5< z; <1
and €41 < e?.

The error in each iteration’s approximation is depen-
dent on the iteration before it. Thus, the precision
of any iteration’s approximation is dependent on the
starting approximation, and its precision determines
the number of iterations. This directly affects the la-
tency of the overall algorithm since a slightly better
approximation might translate into one less iteration.
An iteration for the Newton-Raphson algorithm re-
quires one division and an addition. Thus, a reduction
of one iteration has a substantial effect on the overall
latency.

A high precision approximation can be very costly
or slow. This study proposes a cost-efficient hardware
implementation of an approximation to the square
root operation. The proposed method costs less than
1000 logic gates, has the latency of one multiplica-
tion, and produces an approximation of at least 16
bits correct. The proposed method also applies to
many other high-order arithmetic operations such as:
reciprocal, division, log, exponential, and trigonomet-
ric operations. Thus, a method is presented for creat-
ing a high-precision approximation of many high-order
anthmetic operations at low-cost.

This study first describes standard methods of cre-
ating starting approximations. Then the proposed
method is discussed. The implementation of the pro-
posed method is detailed which consists of reusing an
existing multiplier to sum a partial product array de-
scribing an approximation. The derivation of the par-
tial product array is then described. Results are given
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Figure 1: Iterations Versus Starting Approximation

for the proposed method as compared to standard
methods. Also, differences between this method and
that of other researchers are discussed and the contri-
butions are summarized. Thus, this study proposes a
low-cost hardware method of creating a high-precision
starting approximation.

2 Starting Approximations

The accuracy of the starting approximation has a
quantum effect on the number of iterations as shown
in Figure 1. Both a quadratically converging algo-
rithm, such as the Newton-Raphson algorithm, and
a constantly converging algorithm are plotted for a
53 bit result (e; < 27°*). Not included in this plot
is rounding error that is implementation dependent.
The quadratically converging algorithm needs three
iterations for an approximation between 6.75 and 13.5
bits, and two iterations for an approximation between
13.5 and 27 bits. There are more steps in the graph
of the constantly converging algorithm. A reduction
of one iteration has a significant impact on the overall
latency.

There is a tradeoff in the accuracy of an approx-
imation and its hardware cost and latency. Three
standard methods of approximation are: 1) look-up
tables, 2) polynomials, and 3) rationals. A look-up
table typically requires a large hardware cost which
increases exponentially for each additional bit of pre-
cision. Commonly, a look-up table is implemented as a
ROM or PLA. Its latency is small even though an off-
chip delay may be required. The second method is the
polynomial method. It requires very little hardware,
since it is typically implemented in software and only
its constants are stored in hardware. The polynomial
method is slow to converge on an accurate approxi-
mation. A rational approximation is even slower but
it can converge for a lower order equation than the
polynomial method. It requires at least one division
operation of latency, and thus, is considered too slow
in comparison to the other methods. Additionally,
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Figure 2: Multiplier’s Binary Partial Product Array

there are combinations of these methods such as using
a polynomial with coefficients stored in a look-up ta-
ble [5, 6]. These methods may require a long latency,
and have been traditionally applied to transcendental
functions rather than square root. For simplicity the
combination of methods is not compared. Thus, the
standard method of creating a starting approximation
for the square root operation is either to use a look-up
table or a polynomial method.

3 Proposed Method

The proposed method is a non-standard hardware
method of approximating a high-order arithmetic op-
eration. The proposed method expresses its approxi-
mation in the form of a partial product array (PPA).
This PPA is summed on an existing multiplier. The
result is a low-cost high-precision approximation. The
dedicated cost is much lower than an equivalent look-
up table and the precision is much greater than a poly-
nomial approximation of equivalent latency. The la-
tency of the proposed method is approximately one
multiplication latency and the dedicated hardware is
less than 1000 gates. The precision of the proposed
method is 16 bits in the worst case which requires one
less iteration than most other approximation methods.

The simplest type of PPA is that of a direct binary
multiplication as shown in Figure 2. Each binary ele-
ment of one operand is multiplied by each binary ele-
ment of the other operand. The array consists of many
multiplications of two Boolean variables which can be
implemented as logical AND gates. This is shown by
the following:

N-1M-1

P(X,Y)= Z Z (i A y;) % 2~ @+

i=0 ;=0

Each of the columns in the array is weighted by a dif-
ferent power of two. The sum of all these Boolean
elements is equal to the product of the two input
operands.

The PPA in Figure 2 can be generalized as shown
in Figure 3. Each Boolean element (two way AND-
ing) has been replaced by a generalized Boolean ele-
ment, B(; ;). This element is a function of an input

operand(s) and can be any Boolean logic gate. A four
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Figure 3: General Binary Partial Product Array

way logical OR gate is shown below:

B("yj)(X) = B(i_j)(aio,ll,-’l:z,"',ﬂ!,,)
i.e. B(,,J)(X) = (3}0 I:Bl | T4 | 1:5)
Bij)(X) e {0,1}

The Boolean elements are chosen such that their sum-
mation produces an approximation to the operation
being considered:

M N
f(X) ~ Z Z B(,,])(X) * 2—(i+j)+k

i=lj=1

where k is a constant which allows the approxima-
tion to be a shifted sum. If the shape of the general
PPA describing an approximation is chosen to be the
same as that of a particular multiplier, then it can
be summed by that multiplier. Thus, the proposed
method consists of describing an approximation to an
operation with a generalized PPA and then using an
existing multiplier to sum this PPA.

4 Implementation

The implementation of the proposed method con-
sists of reusing the internal hardware of a multiplier
to sum a PPA. A multiplier is used because it is ca-
pable of summing Boolean elements, and many arith-
metic units have large fast multipliers. Floating-point
multiplication is the second most frequently executed
floating-point arithmetic operation. Therefore, it is
common to implement a full direct multiplication in
one iteration. Thus, typical implementations sum a
large number of Boolean elements very quickly. This
ability to sum Boolean elements is used by the pro-
posed method to create a more accurate approxima-
tion than by using the multiplier’s ability to perform
a generic multiplication. This is shown by compar-
ing the proposed method to a polynomial method
with similar latency. Thus, a multiplier’s hardware
is used effectively for approximations by reusing only
its Boolean element summing ability.

In this study, an IEEE 754 format [7] double-
precision floating-point multiplier is considered for
reuse. The operands of this multiplier are 53 bits.
A direct multiplication is assumed which produces a
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Figure 4: Direct Multiplier’s Partial Product Array

large partial product array as shown in Figure 4. This
array consists of 53 rows of 53 elements. Each element
of the array is a Boolean element and is equal to the
logical AND of two Boolean variables. There are a to-
tal of 2809 Boolean elements in the array. This allows
for a very large generalized PPA to be mapped onto
this PPA. Thus, a total of 53 rows are allowed which
is the critical dimension of the PPA.

Multipliers using other formats or algorithms can
also be reused. Booth multipliers are common and
typically have an array of 27 rows (8, 9, 10]. The same
techniques developed for direct IEEE format multi-
pliers can be applied to other multipliers noting the
shape and size of their PPA. Results are reported for
both 53 and 27 row implementations.

Assuming a generalized PPA can be mapped onto
the PPA of a multiplier, it can be summed on the mul-
tiplier with some minor adjustments. The adjusted
dataflow of the multiplier is shown in Figure 5. To
sum the PPA on this multiplier a multiplexor is added
above the counter tree and another Boolean element
creator is added to evaluate the auxiliary PPA. The
multiplexor can simplify into an OR gate if the PPAs
are guaranteed to evaluate to all zeros when their op-
eration is not being performed. Thus, the adjustment
is: 1) a Boolean element creator is added for each
auxiliary PPA and 2) a multiplexor is added above
the counter tree.

One issue currently being addressed is how to re-
duce the wiring complexity. In a standard cell design
the added wiring may be acceptable since there are
less than 500 wires that need to be added to an area
which already has 2809 wires. This only affects the
wiring prior to the first counter stage and is less than
a 20% addition. For a custom design, the Boolean
elements are created in close proximity to the first
counter stage. To eliminate a significant number of
wires common sub-expression are created in a prelim-
inary stage as shown in Figure 6. Also, it may be
possible to reuse some of the wires of the multiplier
by placing the input operand into either the multipli-
cand or multiplier register. Thus, several techniques
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can be used to reduce the wiring complexity.

Other issues are that the critical path is affected
slightly and there is a cost in hardware. The hard-
ware cost is approximately equal to two gates per el-
ement in the auxiliary PPA. One gate is to evaluate
the element in the PPA and the other is for a one bit
multiplexor. Also, this is an advantage since this is a
very low hardware count as compared to an equivalent
look-up table. Other advantages are fewer iterations
for the same hardware cost, the approximations can
be pipelined, and many approximations can be imple-
mented on the same multiplier. The latency is also
good because it is equal to the latency of one multi-
plication. Thus, the adjustments have been described
and they have a low impact on the multiplier and pro-
vide a high-precision approximation. The next section
describes how to create a PPA that provides a high-
precision approximation.
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5 Derivation of Proposed Method

The derivation of the PPA is based on a method
by Renato Stefanelli [11] which has been enhanced by
David Mandelbaum [12, 13, 14, 15] and the authors of
this study [16, 17, 18, 19, 20]. The method is presented
in two steps which are both described in algorithm
form. Algorithm 1 derives a signed PPA which ap-
proximates an operation. A signed PPA has Boolean
elements with known signs!. Algorithm 2 takes the
signed PPA and transforms it into an unsigned PPA
which has a shape similar to the multiplier’s PPA.
Thus, a PPA is derived which is summed on a multi-
plier and produces a high-precision approximation.

5.1 Algorithm 1

Algorithm 1 creates a high-precision approximation
in the form of a signed PPA. This is accomplished in
six steps:

1. Express operation as a multiplication (or series),

2. Expand multiplication (or series) into a PPA,

3. Back-solve PPA for unknown operand,

4. Form new PPA and reduce,

5. Determine size of approximation which fits the

multiplier, and

6. Add error compensating elements and reduce.
These six steps are general steps which can be applied
to many high-order arithmetic operations. For this
study an example is shown of the square root opera-
tion.

The input operand of the square root operation is
assumed to be normalized. The normalization is dif-
ferent than usual and is between 0.25 < A < 0.5 and
the exponent is assumed to be even. If the exponent
is odd, the square root of two is multiplied by the re-
sult’s magnitude. The new exponent is assumed to be
calculated elsewhere in hardware and is calculated as
follows:

A = Ax2°
A2 = AM2 4 2¢/2 eyen e
= AY2./2x20-0/2  odd e

This study solves directly for the square root of
operands which are normalized within this range and
have even exponents, but an additional multiplication
by the square root of two is needed for odd exponents.
This multiplication can have a short latency since the
operands are not very wide (slightly over 16 bits). This
added delay for half the operands is neglected and a
latency of one multiplication is assumed for simplicity.
Algorithm 1 proceeds as follows:

5.1.1 Express operation as a multiplication:

For the square root operation this step is shown below:

ao 0, a,1:0, 02:-‘1
A a2*2_2+a3*2_3+---

025< A <05

1B(,-‘j)(X) is replaced by s;; * B(; ;)(X) where s;; is an
element of {—1,+1}.



Q = q*27 42774
05< Q@ <1/vV2=0.707---
A = QxQ (1)

Equation 1 represents the square root operation as
a multiplication.
5.1.2 Expand multiplication into a PPA:

The multiplication is then expanded into a PPA as
shown below:

0 1 ¢ ¢ qa
X 0 a1 g2 g3 g4
9194 49294 q3q4
9193 4293 4393 G443
9192 9292 4392 Q492
9191 9291 49391 q4q1
az a4 as

5.1.3 Back-solve the PPA:

@ is in a redundant notation and chosen such that
the PPA does not have any carries propagating be-
tween columns. Each column forms a separate equa-
tion. This set of equations is solved for several digits
of the unknown operand.

@=1 g@=0a3/2; ¢3=a4/2— a3/8;

Any number of unknown operand digits can be back-
solved, though their complexity increases exponen-
tially for each less significant digit. This complex-
ity translates into both a larger hardware cost and
an increased difficulty to derive the formulations.
Mathematica[21] is a software tool which is used to
automate the derivation of the less significant digits.

5.1.4 Form a new PPA and reduce:

The equations of the unknown operand digits are
placed into a PPA. Each equation forms a separate
column since they are weighted by different powers of
two. The following is the new PPA for three digits
back-solved:

q1 q2 q3
—a3/8
1 a3/2 as/2

Since the fractions are powers of two, they are easily
represented. For other operations which produce frac-
tions that are not powers of two, a minimal redundant
binary notation (with —1,0, +1) is used [15, 19]. For
PPAs with more elements, many Boolean and alge-
braic equivalencies are applied to reduce the PPA (see
[22, 17]). This process is automated by a dedicated
program written in C language which performs reduc-
tions to an element, a column, or the full array. The
reduced array is shown below:

91

92 4¢3

1 0 a3 a4 0 —a3
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5.1.5 Determine size of approximation:

The previous step showed that back-solving three dig-
its yields a PPA of one row. Its accuracy is increased
by back-solving more digits of Q. This is a coarse
adjustment of the precision. Since a direct multiplier
with 53 rows is to be used for the implementation an
approximation of higher precision is easily possible.
The dedicated program for reducing PPAs is used to
determine the size for different number of digits back-
solved. After many sizings a PPA derived from back-
solving 19 digits is chosen. The resulting signed PPA
has a maximum of 59 rows but this only occurs in
one column. The reshaping step of algorithm 2 brings
this PPA under 53 rows. Thus, a signed PPA from
back-solving 19 digits of the square root is chosen.

5.1.6 Add error compensating elements:

Back-solving 19 digits of the array causes the first 19
columns to have no carry-outs. But, there can be car-
ries from less significant columns into the back-solved
columns. This introduces error into the approxima-
tion. In the previous step, the precision is increased
by back-solving as many digits as possible. In this step
a fine adjustment of the precision is accomplished by
adding error compensating elements directly to the
PPA. Since the correction is internal, the effect on the
size and latency is negligible. Also, the control cir-
cuitry is not affected by this type of correction. The
error of the previous step’s PPA is small on average
but has a large worst case error. Since most imple-
mentations assume a fixed number of iterations the
worst case dictates the latency. Thus, a method is
presented for decreasing the worst case error which
involves three steps: 1) plot the error, 2) determine
correction terms, and 3) add them to the PPA and
reduce.

The first substep is to plot the absolute signed error
as shown in Figure 7. Error spikes can occur if each
successive back-solved digit alternates in sign which
results in an instability in the approximation. This
sometimes occurs for a pattern of successive “01” in
the input operand. This is the case for the spike
in the figure which is for the input 0.416015625 =
(0.011010101),. The average error from 20 bit simula-
tion is 19.24 bits correct and there is a worst case 2 of
14.00 bits correct. If the error in this region is ignored,
the worst case is 16 bits correct (< 2 7'7). A correc-
tion term is added to reduce this error. Adding 216
between 0.40625(0.011010;) and 0.421875(0.011011,),
which corresponds to the Boolean element a3@zasas,
reduces the worst case error. This element is added
to the column of the PPA weighted by 276 and then
the PPA is reduced. This process is a direct manual
method of increasing the precision of the approxima-
tion.

2The worst case is calculated from exhaustive simulation of
the model. The bound of values on the square root for each
iteration step is subtracted from the model’s calculated value
to determine the limit on the worst case error. This simulation
provides verification of the proposed method.
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Figure 7: Absolute Signed Error of Approximation

Typically the error region is enlarged and replotted.
Then more Boolean elements are determined which
correct for the worst case error. For this PPA a total
of 14 elements are added which improves the approxi-
mation to 19.44 bits correct on average and 16.08 bits
worst case. Thus, there has been a significant improve-
ment in the worst case error by adding a few elements
to the PPA. These elements have been added only to
non-critical columns. Any additional correction ele-
ments will affect the critical columns and therefore no
further correction is applied.

Algorithm 1 has two main variables to increase pre-
cision: 1) the number of digits back-solved, and 2) the
number of compensating elements to add. The first
variable performs a coarse adjustment of the error.
The maximum number digits are chosen which forms
a PPA that fits within the multiplier’s PPA constraints
(53 rows maximum). The second variable performs a
fine precision adjustment of the worst case error. The
regions of large error are corrected by directly adding
compensating Boolean elements to the PPA. This step
is performed until no new elements can be added which
correct for error and fit within the constraints of the
multiplier’s PPA. Thus, a signed PPA is created which
provides a high-precision approximation of an opera-
tion. The next step is to transform it into an unsigned
PPA by algorithm 2.

5.2 Algorithm 2

Algorithm 2 transforms a signed PPA into an un-
signed PPA. This algorithm consists of three steps: 1
complement negative variables and subtract one, 2
sum all constants and add result to PPA, and 3) per-
form minor shape adjustments of PPA. These steps are
very simple as compared to algorithm 1 and are only
discussed briefly. Note that these steps are applied by
the same program used in algorithm 1 to reduce the
PPA. Step one replaces negative elements with their
complement and a negative one. This step is valid
since —a; = @; — 1. Thus all the negative variables are
replaced by their positive complement, and the only
negative elements left are constants. Step two sums
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21 columns

Figure 8: Square Root PPA Superimposed On Multi-
plier’s PPA

all the constants and adds the result back to the PPA.
If the result is negative the two’s complement is added
to the PPA. Thus, all the negative elements are elim-
inated and at most one row is added. This one row is
the result of step two and consists only of constants.
Step three performs minor reshaping of the array and
is discussed in more detail.

There are two methods of adjusting the PPA so
that it can be superimposed on a multiplier’s PPA.
The first is to shift the whole array into a different
portion of the multiplier’s array. The auxiliary PPA is
smaller than the multiplier’s PPA, typically less than
20% of the size. Therefore it is sometimes necessary
to sum the auxiliary PPA by superimposing it on the
middle portion of the multiplier’s PPA since this is
where the multiplier’s PPA has the most rows. Either
the normalizer’s shift amount is adjusted which only
requires a few logic gates, or the result is shifted af-
ter the product is formed. This is due to the result
being in the middle bits of the product register. The
second form of adjustment is to shift one element to
a less significant column and to replicate it by the ap-
propriate amount. If a column had 54 rows and only
53 were allowed, one element is shifted to the next
less significant column and replicated twice due to the
equivalency: a = (a+a)/2. Thus, there are two meth-
ods of adjusting the shape, the first method performs
a coarse shape adjustment and the second alters one
element at a time.

The resulting PPA for back-solving 19 digits of the
square root is shown in Figure 8. The array requires
398 elements which is less than 15% of the size of
the direct multiplier’s PPA. The amount of dedicated
hardware is equal to approximately two times the to-
tal number of elements which is 800 gates. The PPA
provides 19.44 bits correct on average and a worst case
of 16.08 bits correct. The formulations of each column
are provided in the Appendix. Thus, a PPA has been
created which provides a high-precision approximation
of the square root.



Operation Proposed Look-up Table Size
Min. Max. Eq. Eq. Ratio
Bits Rows | Gates Shape | Gates
Sqrt. 16.08 53 800 || 2¥z14 400t || 500:1
Sqrt. 13.07 26 470 || 2'%z11 39t 83:1
1/Sgrt. | 13.52 53 | 1100 || 2¥3z12 43t 39:1
1/S¢rt. | 11.16 27 610 || 2''z10 9t 15:1
Recipr. | 12.00 53 | 1000 [[ 2™%z11 39t 39:1
Recipr. 9.17 27 400 21028 3.6t 9:1

Table 1: Size of Proposed Method Versus Equivalent
Look-up Table

Operation Proposed Poly. || Accuracy
Max. || Total | Min. Min. Ratio
Rows Ele. Bits Bits
Sart. 53 398 | 16.08 7.06 2.28:1
Saqrt. 26 232 | 13.07 7.06 1.85:1
1/Sgrt. 53 534 | 13.52 5.03 2.69:1
1/Sqrt. 27 304 | 11.16 5.03 2.22:1
Recipr. 53 484 | 12.00 4.08 2.94:1
Recipr. 27 175 9.17 4.08 2.25:1

Table 2: Accuracy of Proposed Method Versus First
Order Polynomial

6 Comparison

The proposed method has been shown for the
square root operation. Also, it can be applied to many
other operations, a few are shown in Table 1. Siz-
ings of the square root, reciprocal of the square root,
and the reciprocal operations are given in this table.
The minimum bits correct, maximum number of rows,
and equivalent gate counts are detailed for each oper-
ation. Also, given is the shape and equivalent gate
count(t = 1000) of a look-up table with the same pre-

cision. 3 The size of the proposed method compares
favorably to the look-up table since it is between 9
times and 500 times smaller.

Table 2 shows that the proposed method also
compares favorably to a first order polynomial (see
[23, 24, 25] for coefficients). A first order polynomial
1s chosen since it has a similar latency, a multiplication
and an addition versus an average of 1.5 multiplica-
tions for the proposed method. The proposed method
provides between 1.85 and 2.94 times the number of
bits correct as compared to a similar latency poly-
nomial method. Thus, the proposed method is much
more accurate than a polynomial method of equivalent
latency.

The proposed method has shown its advantages
over both standard types of approximation methods.
Also, it is an improvement over non-standard methods
from which it is based. Stefanelli [11] created formu-

3 For simplicity an equivalent precision model is used rather
than an equivalent number of iterations since the number of
iterations is dependent on whether the high-level algorithm is
quadratic or constantly converging.
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lations for the reciprocal and division operations and
they had linear latency. Each quotient digit of his for-
mulations is dependent on all the more significant quo-
tient digits. His implementation requires a dedicated
implementation in the form of a cellular array. Man-
delbaum [12, 13, 14, 15] enhanced Stefanelli’s method
by removing the recursion of the formulations. In-
stead of each quotient digit being dependent on other
quotient digits, substitutions are made and the depen-
dency is removed. His method has log latency since
each quotient digit is calculated in parallel. Mandel-
baum also requires a dedicated implementation but in
the form of a counter tree. He applied his method
to several other operations such as square root, log,
and exponential. The proposed method differs from
both of these researchers in that it reuses a multiplier,
each Boolean element is allowed to be more complex,
and the precision is enhanced. The implementation of
the proposed method reuses an existing multiplier and
only a small amount of hardware is dedicated. This
is the only method known to reuse the internals of a
floating-point multiplier for a non-multiply operation
(only other previous uses are for fixed point multipli-
cation [10] and for a multiply-add {26]). Also, each
Boolean element of the PPA is allowed to be true or
complement and use any type of Boolean gate such as
a logical OR gate. The precision has been enhanced
by adding error compensating elements and allowing
larger PPAs to be implemented due to the smaller ded-
icated cost of reusing a multiplier. Thus, the proposed
method has transformed these high-cost low-precision
methods into a low-cost high-precision method.

7 Conclusion

A method has been presented to create a partial
product array (PPA) that sums to an approximation
of an arithmetic operation. The summation is per-
formed by an existing multiplier to produce a low-
cost approximation. Many iterative algorithms use a
starting approximation. A higher precision approxi-
mation translates into fewer iterations and a shorter
overall latency. The proposed method provides a 16
bit approximation which only requires two iterations
for a quadratically converging algorithm such as the
Newton-Raphson. Thus, the proposed method con-
tributes to the reduction in latency by lowering the
number of iterations. The proposed method requires
1/9to 1/500 the size of an equivalent precision look-up
table and provides two to three times the accuracy of
an equivalent polynomial approximation. Thus, the
proposed method provides a low-cost high-precision
approximation to many high-order arithmetic opera-
tions such as the square root operation.
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Appendix: Square Root Formulations
The number of rows is 53 and total number of ele-
ments is 398.

qfl] = 0; ¢2]=1; q¢8]=1+as; ¢4 =1+ay;
gl5) = a5 q6]=a3+as; g7 =1+ (@wlar)+ar;
g[8] = 1+a1+ asas + (3alas) + as;
a9 = (@sl@) + (3s]s) + (@[a6) + as;
g{10) = 147a5 + (as|@s) + (as]as|@s) + (as]as]ds)
+(@slas) + (aslar) + (a1]ar) + a1o;
g[11] = @5 +33asae + (a5[as]as) + (@3]a7) + (@slar)
+(as|@s) + as@s + a11;
q[12] = asasae + (@s|aslas|as) + asasar + asar
+(as|as) + (@s|@s) + (@s|as) + (aa|@s) + a12;
g{13] = 14 (as|@]ae) + asas + as@1azae + asar

+asasar + asasar + (@z(aslar) + asasar
+asasas + asasas + (as[as|as) + (@3]as)
+(as|as) + (aslac) + (ax|aio) + axs;

q(14] = 1+ asazas + (as|ar) + (as|@x]ar) + asar
+asGsapar + aeGear + A4as + A3a4a8 + A4apas
+(as|as(as) + (a7]@s) + asasas + (d6]as)
+a3810 + as@10 + (@3)a17) + (Ga[@1r) + a14;

q[15] = 1+ asas +asasdear + Tzasaear + asas




q{16]

q[17]

q(18]

q[19]

+asasasds + asasas + asaras + asag + asasag
+asasas + asasas + asasas + (a7|as)
+asasaio + asasaio + (@s|aio) + (a3]arr)
+(a@slan) + (as]az) + (@s]aiz) + a1s;

asas + (3|a4[a5|a%) + Taasar + (as|as|as|ar)

+(az|as|@s|ar) + asas + asas@s + (as|as[as)

+(@s|ai|as|as) + Fsasacas + (aslar|as)
+asdsasdsaras + asasagag + d3asasas

+asarag + (a3(a3|@s) + asaio + asasaio

+asasagao + (@s|aslaio) + (a7|aro)
+asasars + (@slair) + (@s)a1z) + (@sla1z)
+(az|a1s) + (az[a13) + ae;

1+ asasas + as@sas + (a5|as) + (@3]as|ds)
+asasasas + asasagasas + (as|arlas)

+(as [3]ar[3) + a3 04 TearTs + asTrasTEaras
+asaqasas a7 as + Gsasas + asas
+(@s[@laslas) + asasas + asaras
+asasasarag + asdsas + asdsagGeardsag
+asa6a10 + asasasasaio + asazaio

+(as|a10) + a4a11 + asasarr + asasary
+(@z|as|a11) + asasan + (a7ai1)

+asasa1z + asasaiz + aeasaiz + agliz
+as@is + (5]ats) + (@3lame) + (@ ams)
+(a3]ai5) + a17;

asasar + (@3|as|as|ar) + (az|as]as|a7)
+@sasas + (a3|as|as(as) + (as|azas]as)
+(@s[aslar|as) + (aa|as|a7|as) + (@slac|ar|as)
+(ax]s]a7(as) + (a5 las) + (as|a5) + (a5)a6]as)

+(a¢(as|as|as) + asac@ras + T3a5a7a0

+(as|as|a7|as) + asaras + asasas + asdsasas
+(as|as|as|as|arjas|as) + asTrasasarazas
+@3a4a10 + asaio + a3a5a10 + a3asasalo
+(@s|az|@s|ato) + asasasaio + (as|as|ds(G10)
+asazaio + asaraio + asasaio + (@3(@10)
+asasasasarasasdio

+(@3|a4|@5|as [@7|az|as [a10)

+(@3|a4|@5|as [@7|as|@s[a10) + (@35 ]a11)

+asaea11 + asasarr + (@(a7]a11)

+(as|as]an) + (as|ac|as|as|ao|ar)
+(as|az]aiz) + as@sa12 + asasar
+(@7]a1z) + asaso1s + (as[aslars)
+(as]as|ais) + (@s}es|ars)
+(@s]aa) + (Galars) + ais;

(as|az]@s|as) + (a3]as|as]a7) + asasdsas

111

q(20]

g[21]

g[22]

+asaras + (as|azlas) + asasazas
+(23|a1|@s|a7|@s) + Tearas + (@3|de|a7|ds)
+asaearas + (as|as|as|as) + (@s]ax|as|as|ds)
+asaras + (@s]a|ar|as) + (a5|as]ar|as)
+asasaras + (as|az|as|as) + (@a|ds|as|as)

+asasasas + Bzasaio + asasdsaio

+(@3|ax|@s|a10) + (@s|az]ar|aro)
+(asz|as|ar|aio) + Tzasaraio + asan
+asagaio + a@sasasaio + asdedio + asaiy
+asaragaio + (asfas|as|arr)

+(@slas(aelar) + (ae|as|as|arr)

+asaza11 +asasarail + a4asar

+as@gasa1 + (delair) + (as|as|as|as]aro|ain)
+(@s|ax|@s|@s|@r0|a11 ) + (a3 |2a[as]arz)

+asasa12 +a3a5a6a12 + G4a7312 + 23@1G7A12

+(as[@s|a12) + asBrasTaaiiarz
+(as|as|as|as|ar1 [a13) + (as|as]|asars)

+asasa14 + asasasais;

asas7 + (@3|axias|ar) + (as|da|as)
+(as(aslas) + (as|as|@s) + (as|az|as|as|as)
+(as|as|as|ar|as) + (@s]|as|@s) + asasas
+(@s|as(as) + (as|as|as) + (@5 |ac|as)
+asarag + (@G5|a7las) + (@laslas|a7|as)
+asa7@5 + (35|8[@) + arasas + (as]ato)
+(as|@slar0) + (@slas]as(as|aro)
+(@s|a7|a10) + asasaio + asasaio
+(as|azlar) + (@slas|arr) + (aslas[ain)
+(a5|@e]a@n) + asarair + agasan
+asasays + (as|aio|dir) + (@slas]az)
+azasa1z + asaraiz + a4sa1z + (as|as]arz)

+agasars + asaras + (as|as|[@s) + T3aeais

+asasais + arars + asarais + asasags
+asasais + (as|as|ais) + (as|as|are)

+(as|@s|@17) + (@s|as|@s|as) + Tsaras;

4[1] + 4[asasais] + 4[asasa1s] + 4[asasars]
+4{(a7]a13)] + 4[(@s]a1a)] + 4[asa15]
+4{(as]ate)] + 4[(as]a1e)] + 4[(2]a1s)]
+2[(a5[ar6)] + 4[(Fa17)] + 4[ars];

16[1] + 4[az20];

Where N{a;] denotes a; summed N times with a;

being a Boolean element.



