A Modular Multiplication Algorithm with Triangle Additions

Naofumi TAKAGI
Department of Information Science
Kyoto University
Kyoto 606-01, Japan

Abstract

A new algorithm for multiple-precision modular
multiplication is proposed. In the algorithm, first the
upper half triangle of the whole partial products is
added up, and then the residue of the sum is calcu-
lated. Next, the sum of the lower half triangle of the
whole partial products is added to the residue, and then
the residue of the total amount is calculated. A new
efficient procedure for residue calculation is also pro-
posed, which accelerates the algorithm. Since it is both
fast and uses a small amount of main memory, the al-
gorithm is efficient for implementation on small com-
puters, such as card computers, and s useful for ap-
plication of @ public-key cryptosystem to such comput-
ers.

1 Introduction

A sharp increase in the use of card computers, i.e.,
so-called smart cards, is expected. These computers
will be the basis of various services, such as prepaid
cards, banking cards, credit cards and so on. The
success of the public-key cryptosystems, such as RSA
[1] and ElGamal [2], could mean that these methods
can also be applied to the card computers to solve
the issue of security. In encryption and decryption
of such public-key cryptosystems, modular multipli-
cation with a large modulus (longer than 500 bits) is
the main operation. Since card computers have only
a small amount of main memory, the key to imple-
menting a public-key cryptosystem on these comput-
ers would be to develop an algorithm for multiple-
precision modular multiplication which is both fast
and uses a small amount of main memory.

Various algorithms have been proposed for modu-
lar multiplication. Most of them are classified into
two methods, i.e., "division-after-multiplication” and
"division-during-multiplication” method. In an n-
word modular multiplication by the former method,

1063-6889/93 $03.00 © 1993 IEEE

272

an ordinary n-word by n-word multiplication is car-
ried out first and then a 2n-word by n-word division for
residue calculation is performed. In the latter method,
each subtraction step for the division for residue calcu-
lation is embedded in the repeated multiply-addition
[3]. The former requires more amount of memory
space than the latter does [4]. Namely, the former re-
quires about 2n-word memory space for storing the in-
termediate results, while the latter requires about only
(n+1)-word memory space for it. On the other hand,
the latter requires more operations for residue calcu-
lation than the former does [5]. Namely, the latter
requires a possible n-word subtraction, as well as an
(n+1)-word by n-word division, for each residue cal-
culation step, while the former does not require such
subtraction.

In this paper, we propose a new fast algorithm
for multiple-precision modular multiplication which
uses a small amount of main memory. It is a com-
pletely new algorithm and belongs to neither the
division-after-multiplication nor the division-during-
multiplication method. In the algorithm, we first add
up the upper half triangle of the whole partial prod-
ucts, and then calculate the residue of the sum. Next,
we add the sum of the lower half triangle of the whole
partial products to the residue, and then calculate
the residue of the total amount. The algorithm re-
quires about the same amount of memory space as
the division-during-multiplication method does, and
at the same time, it requires about the same num-
ber of operations as the division-after-multiplication
method does. Furthermore, we propose a new effi-
cient procedure for residue calculation, which accel-
erates the algorithm. It calculates the residue of an
(n+1)-word number P with respect to modulo N. We
keep the residue in the range of [-N, N) and deter-
mine the quotient from only the most significant two
words of P and those of N.

In the next section, we give assumptions on our
computation model and describe the notations to be
used through the paper. We propose a new algorithm

for multiple-precision modular multiplication, in Sec-
tion 3. We also propose an efficient procedure for
residue calculation which accelerates the algorithm in
Section 4, and prove its correctness in Appendix. Sec-
tion 5 is a conclusion.

2 Assumptions and Notations

We consider a modular multiplication of A x B mod
N, where the modulus N is an n-word number and the
multiplicand A and the multiplier B are also n-word
numbers satisfying 0 < A,B < N. We assume the
radix of each word is r. For example, when each word
consists of 8 bits, r = 256. We assume that n < r. The
i-th word (i = 0,1,..,n — 1) of N is denoted by N;.
Namely, N = Y720 N;-r'. Similarly, A = 720 A;-r
and B = z::ol B;-r'.

We assume that our computer has the following op-
erations as in [6].

1. Addition or subtraction of two unsigned single-
word operands with a carry, giving the unsigned
single-word sum and the carry.

2. Complementation of a single-word operand, giv-
ing the one’s complement of the operand. Z de-
notes the one’s complement of z. (Z =r—z—1.)

3. Multiplication of two unsigned single-word
operands, giving the unsigned double-word prod-
uct. The upper and the lower word of the product
of z and y are denoted by (z-y)nigh and (z-¥)iow,
respectively.

4. Division of an unsigned double-word dividend
by an unsigned single-word divisor, giving the
unsigned single-word quotient and the unsigned
single-word remainder. The dividend is assumed
to be smaller than r times the divisor. We re-
fer to the quotient and the remainder of z/y as

DIV (z,y) and REM(z,y), respectively.
5. Comparison of two single-word numbers.

When z and y are single-word numbers, z||y is the
concatenation of z and y, i.e., the double-word number
r-r+y.

3 A Multiple-Precision Modular Mul-

tiplication Algorithm

We consider a modular multiplication of A x B mod
N. We first add up the upper half triangle of the

273

Step 1:

Step 2: 1 0 2 5 -

Step 3: 0 4 4 4 1

Step 4: 4 4 4 1

Figure 1: An example of calculation by [MODMUL]
(Numbers are in the octal representation.)

whole partial products, i.e., (4; - 7*) - (B} - r7)’s such
that 1 4 j > n — 1, and then calculate the residue
of the sum. Next, we add the sum of the lower half
triangle, i.e., (A4;-7') - (B; - r7)'s such that i + j <
n — 1, to the residue, and then calculate the residue
of the total amount. The algorithm is based on the
fact that Ax Bmod N = Z.‘,,’ A;-B; -r** mod N =
((.E.szn—l A;-B;j-r'*)mod N + EH‘j(n—l A;-Bj-
7**7) mod N.
The algorithm is as follows.

Algorithm [MODMUL]
Step 1: P:= 3, .5, Ai-B; e
Step 2: P:=(P- r’T"l) mod N;
Step 3: P:= P+ X, icay Ai - Bj - 75

Step 4: P:= P mod N; (]

Fig. 1 shows an example of a multiple-precision
modular multiplication, i.e., [3131]g x [4754]3 mod
[5527]s, by Algorithm [MODMUL]. (r =8 and n = 4.
[+]s is an octal number.)

In Step 2, we calculate (P-7"~1) mod N by iterative
calculations of the residue of an (n+1)-word number
with respect to modulo N. We will propose an efficient

procedure for this calculation in the next section.

Through Algorithm [MODMUL], we require only
(n+1)-word memory space for storing the intermedi-
ate result. This is about the same as that required
by the division-during-multiplication method and is
much smaller than that required by the division-after-
multiplication method.

In Step 1, we require n(n + 1)/2 single-word mul-
tiplications for generating double-word partial prod-
ucts, and about n? 4 2n — 2 single-word additions for
adding them up in an adequate order. (Note that
we may use only n+1 words.) In Step 3, we re
quire (n—1)n /2 single-word multiplications and about
n? 4 2n — 5 single-word additions. The number of op-
erations required in Steps 1 and 3 in total is about
the same as that required for an n-word by n-word
multiplication.

The number of operations required in Steps 2 and
4 in total is about the same as that required for a
2n-word by n-word division.

Thus, the number of operations required by
[MODMUL] is about the same as that required
for the division-after-multiplication method, and is
fewer than that required for the division-during-
multiplication method.

We reduce the number of operations required in
Steps 2 and 4, using an efficient residue calculation
procedure to be proposed in the next section.

4 A Residue Calculation Procedure

We propose a new efficient procedure for residue
calculation. The procedure calculates P mod N,
where N is an n-word number and P is an (n+1)-
word number satisfying —-N -r < P < N.r. We
assume 7" /2 < N < r™ as in [6] and [7]. This assump-
tion is acceptable in public-key cryptosystems [7]). We
assume r > 8 and 7 > 2n. This assumption is also
acceptable. For example, when the modulus is 512-bit
and r = 256, n = 64 and this assumption is satisfied.

We represent P as an (n+1)-word number in two’s
complement form with a sign ps. When ps is 0, P is
positive and otherwise (i.e., when ps is 1), P is nega-
tive. Namely, P = —ps-r**1 + Y7 P, . 7'

We refer to the result of the residue calcula-
tion procedure as MOD(P,N). MOD(P,N) sat-
isfies MOD(P,N) P (mod N) and -N <
MOD(P,N) < N. Namely, we keep the residue in
the range of [~ N, N). This is one of the key points to
achieving the efficient calculation.

The procedure is as follows.

274

Function MOD(P,N)
if ps = O then do begin
f Pp =Np-jtheng:i=r-1
else do begin
(i = DIV(P“"P -1, N,_l);
rem := REM(P,||Pa=1, Nu—-1);
if ((i . N,_g)h,‘gh —rem > lNu-1/2J
then ¢ := § — 1 else ¢ := §;
end;
end;
else do begin
if P, = No_j theng:=r-1
else do begin
é = DIV(P,,,”P_ _1_,N,.._1);
rem := REM(P,||Pa=1, Nu-1);
if (ﬁ . Nn—Z)high —rem > l_Nn—l/2_|
then ¢ := § — 1 else ¢ :=g;
end;
end;

return P — (—1)%* - ¢ - N; o

We determine ¢ from only the most significant two
words of P and those of N. The function returns
an n-word number with a sign. The n-word is the
lower n-word of the result of the final (n+1)-word ad-
dition/subtraction. We let the sign be 0 if the n-th
word (the most significant word) of the result is 0 and
be 1 otherwise (i.e., if the n-th word is r — 1).

We will prove that MOD(P,N) = P (mod N)
and —N < MOD(P,N) < N hold, in Appendix.

As an example, let us consider calculation of
MOD([(0)17572]s, [5527]s), where r = 8 and n
4. First ¢ DIV([17)s,[5]s) = [3]s and rem
REM([17],{5]s) = [0]s are calculated. Since ([3]s -
[5la)nigh — [Ols < [2ls, ¢ = ¢ = [3]s. Hence,
[(0)17572]g — [3]s - [5527]s = [(1)6565]s is calculated
and [(1)6565]s is returned. ((0) or (1) in an octal
number denotes its sign.)

The function can be performed by a couple of oper-
ations for determining g, a single-word by n-word mul-
tiplication and an (n+1)-word addition/subtraction.
We interleave the multiplication with the addi-
tion/subtraction. Note that we require only one
(n+1)-word addition/subtraction, but do not require
any additional n-word addition which is required in
the conventional multiple-precision division algorithm
[6]-

We can perform Step 2 of [MODMUL)] using this
procedure iteratively, as follows.

Step 2(a): P:= MOD(P,N);
Step 2(b): for k := n — 2 down to 0 do
P:= MOD(P.r,N);

1 7 5 7T 2

@: (1) 6 5 6 5
© 1t 1 2 6
(b): © 3 5 3 1
© 1 0 2 5

Figure 2: An example of calculation in Step 2 of
[MODMUL] by Function MOD(P, N) (Numbers are
in the octal representation.)

Since 0 < Ec’+j>n—1A" - B; - riti-ntl o N2,
77"+l < N .r, the P obtained by Step 1 of [MOD-
MUL] satisfies 0 < P < N -7r. Hence, we can
apply MOD(P,N) to this P in Step 2(a). Since
—N < MOD(P,N) < N, we can apply the procedure
iteratively in Step 2(b).

Fig. 2 shows an example of a residue calculation in
Step 2 of [MODMULY, i.e., ([17572] - 83) mod [5527]s,
by the iterative use of Function MOD(P, N).

We can perform Step 4 of [MODMUL] by using
Function MOD(P, N), as follows.

Step 4(a): P:= MOD(P, N);
Step 4(b): if P < 0 then P:= P 4+ N; a

The P obtained by Step 2 satisfies —-N < P <
N. Since 0 < 3, icn 1 Ai-Bj- P <(n-1).7r*
and we have assumed N > 7" /2 and r > 2n, the P
obtained by Step 3 satisfies —N < P < N - 7. Hence,
we can apply MOD(P, N) to this P in Step 4(a). (If
we relax the restriction of r > 2n, we have to apply
MOD(P, N) more than once in Step 4(a). r < n, we
need more than n+1 words for storing the P obtained
by Step 3.) Since MOD(P, N) may be negative, we
need Step 4(b) for correction.

5 Conclusion

We have proposed a new multiple-precision modu-
lar multiplication algorithm. Since it is both fast and
uses a small amount of main memory, the algorithm is
efficient for implementation on small computers, such
as card computers, and is useful for application of a
public-key cryptosystem to such computers.

We have also proposed a new efficient procedure
for residue calculation which accelerates the proposed
algorithm. In cooperation with this procedure, the al-
gorithm achieves competitive speed to Montgomery’s

275

algorithm [8]. Note that although it is fast, Mont-
gomery's algorithm requires pre- and post-processing
for conversion to and from Montgomery’s representa-
tion.

The proposed residue calculation procedure can
also be used in the division-after-multiplication
method for accelerating it. It may also accelerate
multiple-precision division.

References

{1] R. L. Rivest, A. Shamir and L. Adleman, "A
method for obtaining digital signatures and public-
key cryptosystems”, Commun. ACM, vol. 21,
no. 2, pp. 120-126, Feb. 1978.

[2] T. ElGamal, ”A public key cryptosystem and a

signature scheme based on discrete logarithms”,

IEEE Trans. Information Theory, vol. IT-31, no. 4,

Pp. 469-472, July 1985.

[3] E. F. Brickell, ”A fast modular multiplication algo-

rithm with application to two key cryptography”,

D. Chaum et al Eds., ’Advances in Cryptology,

Proceedings of CRYPTO 82’, pp. 51-60, Plenum

Press, New York, 1983.

[4] H. Morita, "A fast modular-multiplication algo-

rithm based on a higher radix”, Lecture Notes in

Computer Science, vol. 435, G. Brassard Ed., 'Ad-

vances in Cryptology - CRYPTO’89 Proceedings’,

pp- 387-399, Springer-Verlag, 1990.

A. Vandemeulebroecke, E. Vanzieleghem, T. De-
nayer and P. G. A. Jespers, "A new carry-free di-
vision algorithm and its application to a single-chip
1024-b RSA processor”, IEEE J. Solid-State Cir-
cuits, vol. 25, no. 3, June 1990.

[6] D. E. Knuth, 'The art of computer programming,
vol. 2: Seminumerical algorithms, second edi-
tion’, "Section 4.3: Multiple-precision arithmetic”,
Addison-Wesley, 1981.

[7] H. Morita and C. H. Yang, ”A modular multipli-
cation algorithm using lookahead determination”,
IEICE Trans. Fundamentals of Electronics, Com-
munications and Computer Sciences, vol. E76-A,
no. 1, pp. 70-77, Jan. 1993.

[8] P. L. Montgomery, "Modular multiplication with-
out trial division”, Mathematics of Computation,
vol. 44, no. 170, pp. 519-521, 1985.

Appendix: Correctness of MOD(P,N)

We prove the correctness of Function MOD(P, N).
Namely, we show that MOD(P,N) = P (mod N)
and —-N < MOD(P,N) < N hold.

(Proof)

Since MOD(P,N) = P —(—1)P*-q- N for a certain
integer g, MOD(P,N)=P (mod N) holds.

To prove —N < MOD(P,N) < N, we have to
consider the following six cases. Hereafter, P’ denotes
the part of P less than r®*~! and N’ denotes the part
of N less than 7" ~2. Namely, P = —ps-r**1 4+ P, -7" +
Pn_l'T"_l-!-P' and N = N,,,_l-T"—1+N,,,_2'T"_2+N'.
Case 1: P> 0
Case 1-1: P, = N,_;

g=r-1

MOD(P,N)=P—-(r—-1)-N

MOD(P,N)> Np_y-t" = (r-=1)-N

>t (Nyoy -7+ 1) > =N

MOD(P,N)<r-N—-(r-1)-N=N
Case 1-2: P, < N,,_;

rem=P, - r+ P,y —¢- Ny

0<rem < N,_;

Case 1-2a: (G- Np—g)high — rem < [Np_1/2]
g=q
MOD(P,N)=P~4-N
=rem-r"" 14 P —§.(Ny—g- "2+ N')
MOD(P,N) > (rem — (§ - Na—2)hign — 2) - -l
2 —(|Na-1/2]+2)- "1 > =N

MOD(P,N)<rem-t" '+ P <N
Case 1-2b: (§- Np—2)high —rem > [Np_1/2]

g=4-1

MOD(P,N)=P—-(4~-1)-N

=rem-1t"" 14+ P —§.(Na—g- ™ ?+N')+ N

MOD(P,N)> —4-(Np—2- ™24+ N')+ N

>—(r=1)-r""" 14+ N>-N

MOD(P, N) S (rem—(é‘Nn_g);.,-gh)'r"'l+P'+N

<(=|Nao1/2]+1)-r"" L4+ N<N

276

Case 2: P <0
Case 2-1: P, = N,
g=r-1

MOD(P,N)=P+(r-1)-N
MOD(P,N)> -r-N+(r—1)-N=-N
MOD(P,N)< =" -Np_1+(r—1)-N
<l (r=1=Np1)< N
Case 2-2: P, < N,_,
rem=(r2 =Py 71— Po_1—1)—§- N,y
0<rem < Ny
Case 2-2a: (G- Np—2)high —rem < [Na_1/2]
g=4
MOD(P,NY=P+§-N
= (__Tu+1 + Pn 4 Pn—l Lpn—l + PI)
+4 (Npoy " 1+ Nyg-r""2 4+ N')
=(-r24+P, 1+ Py +§-Ny_y) -t
+Pl +é'(Nn—2 . rn—? + Nl)
=—(rem+1)- ™ 14+ P' +§.-(Ny—a- "2+ N')
MOD(P,N) > —(rem +1) - r"™!
>-Npoy ™12 =N
MOD(P, N)
=(-rem — 1+ (¢ Nac2)nign) 7" !
+(é 'Nn—2)law ‘ Tu-—Z + P! + q -N'
<(|Nu-1/2]+2)- "1 <N
Case 2-2b: (¢ Np_2)nigh — rem > [Np_1/2]
g=4-1
MOD(P,N)=P+(§-1)-N
=—(rem+1)-r"" 1 + P
+§-(Ng—g - ™ 24+ N')-N
MOD(P,N)
> (—rem — 14 (G- No2)high) - 7" ! = N
> ([Nn-1/2]-1)-""1-N>-N
MOD(P,N)
< —pn=1 _+_Pl+q".(Nn_2‘,rvL—2+Nl)_N
<r*-N<N
Thus, in any case, —-N < MOD(P,N) < N holds.
Therefore, the correctness of Function NOD(P, N)

has been proven. @]

