Complex SLI Arithmetic: Representation, Algorithms and Analysis

Peter R Tumer
Mathematics Department, US Naval Academy, Annapolis, MD 21402

Abstract

In this paper the extension of the SLI system to complex
numbers and arithmetic is discussed. The natural form for
representation of complex quantities in SLI is in the
modulus-argument form and this can be sensibly packed
into a single 64-bit word for the equivalent of the 32-bit
real SLI representation. The arithmetic algorithms prove
to be very little more complicated than for real SLI
arithmetic. The paper describes the representation,
arithmetic algorithms and the control of errors within
these algorithms.

Key Words Symmetric Level-Index, SLI, complex
arithmetic, representation, algorithms, error analysis

1. Introduction

The level-index number system for computer
arithmetic was first suggested in Clenshaw and Olver
[1],[2]. The scheme was extended to the symmetric level
index, SLI, representation in [4] and has been studied in
several further papers in the last few years. Much of the
earlier work is summarized in the introductory survey [3].
The primary virtue of SLI arithmetic is its freedom from
overflow and underflow and the consequent ease of
algorithm development available to the scientific software
designer. This is not the only arithmetic system that has
been proposed with this aim; for example the work of
Matsui and Ini [10], Hamada [6], [7] and Yokoo [18]
suggested and studied modified floating-point systems
which share some of the properties of level-index.

Possible hardware implementations of SLI arithmetic
were discussed in [13], {14], [17] while a software
implementation incorporating some extended arithmetic
was described in [16]. The error analysis of SLI arithmetic
is discussed in [2], [4] and is extended in [8], [11], [12].
Applications and software engineering aspects of the
level-index system have been discussed in [5],[9], [15].

In this paper, we concentrate on the use of the SLI
representation and arithmetic for scientific computing
using complex arithmetic. In many complex scientific
computing situations, such as the Fast Fourier Transform,
the computation would be significantly facilitated by
having complex variables represented and processed in
their modulus-argument form. This polar form turns out

U.S. Government Work Not Protected by U.S. Copyright

18

to be the natural form of representation for SLI complex
arithmetic and the arithmetic algorithms using this
representation are not greatly more complicated than for
real SLI arithmetic.

In Section 2, we describe the representation of
complex variables within the SLI system. The
representation adopted uses a single 64-bit word for the
equivalent of the 32-bit real SLI representation. This word
consists of two parts which represent, respectively, the
argument stored as a fixed-point two's complement
fraction of m and the standard SLI representation of the
modulus.

Section 3 is concerned with the arithmetic algorithms
for this representation. Not surprisingly, multiplication and
division turn out to be no more complicated than their real
counterparts. More interestingly, though, it also turns out
that addition and subtraction can be readily achieved in
this format. The algorithms needed are only slight
complications of the real SLI algorithms. In Section 4, we
present an error analysis of complex SLI operations.

We begin with a brief review of the SLI representation

and its arithmetic. The symmetric level index
representation of a real number X is given by
X = s;b®)~)

where the two signs sy and ry are %1, the generalized
exponential function is defined for x>0 by

X 0sx<1,
o) = {
exp(d(x-1)) x>1

and the representation is normalized by the requirement
x21. It follows that for X>1,

X = exp(exp(..(exp/)...))

where the exponentiation is performed /=[x] times and
x=I+f. The integer part, ! of x is called the level and the
fractional part, fis called the index. The freedom of this
system from over- and underflow results from the fact
that, working to a precision of no more. than 5,500,000
binary places in the index, the system is closed under the
four basic arithmetic operations apart from division by
zero. This is discussed briefly in [1], [4] and considered
in some detail in [8].

The appropriate error measure for computation in the
level index system is no longer relative error (which

&)

3

corresponds approximately to absolute precision in the
mantissa of floating-point numbers) but generalized
precision which corresponds to absolute precision in the
index. This error measure is introduced in [1].

For clarity in the description of the complex SLI
algorithms in Section 3, it is desirable to review some of
the fundamentals of the algorithms of real SLI arithmetic.
The algorithms are described in some detail in [4].

The basic problem is that of finding the SLI

representation sztb(z)” of Z=X+Y where X, Y are also
given by their SLI representations. Without loss of
generality, we may assume that X> |¥1>0 so that s;=+1.
The computation entails the calculation of the members of
three short sequences which vary according to the
particular circumstances. In every case, the sequence
defined by

1
)
where I=[x], 1s computed using the recurrence relation

., = exp(-1a);)]

Depending on the values of r,, », and r,, the other
sequences that may be required are given, for appropriate
starting values also determined from x, y, by

(O)

a = G =1-1,1-2,..,0)

a, = e

b, = 20D - $e-) -1
1 . B > %
oG o 6 V) (6)
=029 p o -
i) (X‘f)’ Y d@z-)

Specifically, the sequence (b)) is used for large arithmetic
when r, = +1. The terms can be computed using

b-1
b, = exp(4] ™M
%
with the initial value given by
exp(g-lja,) (m<D
bﬂ-l = m_les’ = ®)

exp(8-f) (m=1

where m = [y] is the level of y. Since, in this case, y <x,
it follows that 0 < bj <1.

The sequence (o) is used for mixed arithmetic when
ry = +1, ry= -1 and is computed like (a). It is similarly
bounded: 0 < ape,<l.
arithmetic ry=ry=-1, the
requirement X > ¥ implies x < y. The sequence (a)) is

For small where
computed as before along with the sequence (Dj). This
latter is computed using the recurrence relation

B e 1]
9B

B = “P(®

19

for j < I with the initial value

exp(f-Ye,) (I<m)
By =

exp(f-g) (I =m)

The starting values and relations for the ¢- and A-
sequences are discussed in the context of the extended
algorithm in the next section. Like the above sequences,
their values are always suitably bounded. See [4] for a
detailed discussion of the algorithm, [13], [14] and [17]
for possible schemes for hardware implementation.

2. Complex SLI representation

In this section we describe the SLI representation of
complex quantities. It is consistent with the philosophy of
the SLI representation of real numbers that complex
numbers should be represented in their modulus-argument
- or polar - form. That 1s, a complex number Z is
represented by

7 = Rele = ¢(r)tl ele (10)

This is equivalent to writing Z as the exponential of
another complex number (its complex natural logarithm)
written in cartesian form - the same principle that is used
in obtaining the standard real SLI representation.

The question now is how this should be represented as
a computer word. We concentrate here on the equivalent
of single precision SLI which uses a 32-bit word for real
number representation. The complex format will therefore
use 64-bits. This is the format which has been
incorporated into the complex extension of the real Turbo
Pascal SLIunit discussed in [16]. Of course, any
wordlength is possible in principle and the relative lengths
of the subwords used to represent the modulus and
argument can also be varied. In the discussion below, we
use two equal length subwords. Using a single word rather
than two 32-bit words facilitates inline arithmetic in Turbo
Pascal since the single 64-bit word can be the output of a
function as opposed to a procedure.

For many calculations there is no significance in the
order of magnitude of the phase but just its value modulo
27 and so there is no advantage in representing this angle
in floating-point or any other variable precision format.
For this reason therefore, we represent the argument in
Jfixed-point form as a two's complement fraction of m.
Thus the argument 6 in (10) is represented by the integer
N, satisfying @ = N, 723 and 6 €[-7,) .

This representation of the argument occupies the first
32 bits of the complex SLI, or CSLI, representation. The
second part of the word contains the 32-bit SLI
representation of the modulus. In the case of the Turbo
Pascal software implementation, this is achieved by using

the 64-bit integer type comp and the function defined by
function cpack(arg:longint; zmod:slisingle): slicomplex;
begin cpack:=c32*arg + zmod, end;

where the type comp constant ¢32 is 2*? and arg, zmod

store respectively the values of N, above and the SLI

representation of R. The details of the Turbo Pascal

representation of R can be found in [16].

3. CSLI arithmetic algorithms

In the case of floating-point complex arithmetic using
the Cartesian representation of the complex variables the
addition/ subtraction operations are straightforward and
require just two of the corresponding real arithmetic
operations. Multiplication necessitates four real multiplies
and two additions while division is usually achieved
(effectively) by reciprocation and multiplication making
the total real operation count six multiplies, three
additions and two divides. On even a minimally parallel
processor, addition or subtraction could be achieved in the
same time as their real counterparts while multiplication
could be performed using two operations each on two
parallel multiply-accumulate units. Division would
demand three parallelmultiply-accumulate processors each
performing two operations followed by the parallel real
divides.

Using the polar form obviously would simplify the
multiplication and division operations to their real
counterparts for the moduli together with addition or
subtraction of the arguments. In the representation
outlined above, the manipulation of the arguments
requires just integer arithmetic with wraparound. On the
other hand, addition and subtraction are apparently much
more complicated since we must "solve the triangle”.

As we shall see, in the case of CSLI arithmetic the
additional complication of the addition and subtraction
algorithms is very slight while, of course, the advantages
for multiplication and division are retained. In what
follows we describe the arithmetic algorithms for these
CSLI operations and also consider which parts can, in
principle, be performed in parallel.

For multiplication and division, the regular SLI
operations can be performed on the moduli simultaneously
with the two's complement addition or subtraction of the
arguments. Even for an entirely serial implementation the
only additional cost is one integer add/ subtract operation
which, in that situation, is a small fraction of the SLI
operation time. Thus CSLI multiplication and division can
be performed, as one would expect, in essentially the
same time as their real counterparts.

We concentrate for most of this section on the case of
CSLI add/subtract operations and see that the additional
cost relative to the corresponding real operation is small.

20

Consider then the addition of two CSLI variables. The
task is to find Z, = Z, + Z, where each is given in its
CSLI form; that is we require

Re™ = ¢rye™ = d(rpe’™ + d(r)e™
_ Rlew‘ . R,ew’
We assume throughout that R, 2 R,. Recall from [16] that
magnitude comparsion is a straightforward task in the real
SLI representation since the type slisingle s
identified with type longint in an order preserving
manner. The situation is illustrated in Figure 3.1.
The addition algorithm reduces therefore to the
determination of Ry =¢(ry) and 0, which involves the
“solution of the triangle" in Figure 3.1.

an

0,6, -0,

FIGURE 3.1 Complex addition in polar form

Now, using the cosine rule we obtain
R32 =R +R} +2R,R,cos 0,

or, equivalently,

2 2
53.. = 1+ﬁ+2.’?2_c(560
R R R

which, for the "large" case where R, 2 1, reduces to

¢y = 1+bj +2byo0s8, (12

There is no need to form the square-root of this quantity.
Subsequent members of the c-sequence can be computed
in the usual way with the minimal modification

¢ = 1+gync, = 1+-;—a(,lnco2

and, of course, the division by 2 can be achieved with a
simple shift.

In just the same way, we obtain redefinitions of ¢, for
the "mixed" (R;21>R,) and "small" (R <1) cases:

g = 1+ (aya)* +2(aapcos 6,
cg’ = 1+ Py +2By00s6,

where, in the small case, we usecé =1fcy=d(r)/d(ry)
just as for real SLI arithmetic.

The remainder of the c- and h- sequences can then be
computed just as for real arithmetic as described in [4] or
{16]. The questions which obviously arise here result from
the need for trigonometric function evaluation within the
algorithm. Before considering this in detail, we must
examine the computation of the argument 0, of the result.

The computation of the modulus is based on making
a suitable adjustment to the larger operand - just as is the
case with real SLI arithmetic. In the same way the
argument will be computed as a correction to 6,. That is,
we compute 0, - O,. From the trigonometry of the
triangle in Figure 3.1, we see that

sin 6
arctan _Rosin€,
R, +R,c08 0,
bysin 6,
1+bycos 0,

0,-6,
13)

for the large case. Similar expressions are appropriate for
the other cases.

Subtraction can be handled by a simple adjustment of
the argument of the subtrahend by the addition (or,
equivalently, subtraction) of m. In the fixed-point two's
complement fraction of T representation being used, this
is simply a reversal of the first (sign) bit of the stored
argument. A simple sorting procedure is necessary to
ensure that the operation is arranged so that R, 2 R,. It
may therefore be necessary to have a similar adjustment
to the argument of the final result in the event of
subtraction where the arguments have been reversed. This
is again a single bit reversal.

We see that for all cases of the arithmetic, cos 6, is
required for the computation of the modulus while this
quantity and sin€, are necessary for the argument
computation. These two can be computed simultaneously
with even minimal parallelism. Indeed the suggested
hardware implementations discussed in [14], [17] make
extensive use of modified CORDIC algorithms for
computing the various sequences for SLI arithmetic and
the CORDIC algorithins for trigonometric function
evaluation naturally generate both values simultaneously.
In either event the relative time penalty associated with
this will be slightt Even within the software
implementation, which, of necessity, uses the built-in
general purpose exponential and logarithm functions, these
trigonometric function calls represent a very small relative
additional cost.

21

The only further cost involved in computing the
modulus comes from the multiplication of b, by both
itself and by cos 6, and the addition of these terms. With
even a small degree of parallelism available, this
represents the only true additional cost since the
trigonometric evaluations could then be performed
simultaneously with (one term of) the a-sequence. There
is even some compensatory simplification in the algorithm
resulting from the fact that both moduli are necessarily
positive.

It is worthwhile noting here that the internal
computation of the SLI and CSLI algorithms is entirely
fixed-point in nature so that these additional costs would
indeed be very small in a hardware implementation of
CSLI arithmetic. Furthermore, the arguments are restricted
to the interval [-m, m) and are stored in two's complement
integer form. It follows that the need for range reduction
is almost eliminated. Detecting the appropriate quadrant,
for example, is reduced to testing just the sign bit and the
most significant bit. The interval of convergence of the
CORDIC trigonometric routines is greater than 7t/2 and so
determining the right quadrant is sufficient range
reduction. Again the fact that fixed-point internal
arithmetic is to be used renders the simplest, absolute
precision, version of the CORDIC algorithm suitable.

It remains to complete the calculation of 8, Once
bycos 8, bysin 6, have been computed, all that is needed
is the evaluation of the arctangent as in (13) and the
(integer with wraparound) addition of 0, to the result. The
division implied by (13) need not be explicitly performed,
we can instead use the CORDIC (or other) algorithm for
|ufv| < 1. the that
| bysin 6y | > |1+bycos ;| then we are computing the
arctangent of the reciprocal of the actual value; the
resulting angle must be adjusted accordingly by
subtraction from n/2.

The cost of this part of the algorithm is one additional
trigonometric function evaluation and one or possibly two
fixed point additions. For the serial software
implementation, this is a very small additional cost -
indeed the overall cost of complex addition in this
situation is much /ess than the doubling which would be
expected for standard cartesian representation. For any
parallel implementation - and especially for the sort of
hardware implementation envisioned in [16] - there would
be no additional cost in computing the argument and so
the overall increase would be just the multiplications

arctan (u/v) with In event

needed for the formation of cg .

Thus, in the SLI environment, the polar form of
complex arithmetic - which is more appropriate for many
computations - is, at worst, only very shightly slower than
its real counterpart. This contrasts markedly with the

(cartesian) floating-point situation where addition and
subtraction have a cost factor of two, while for
multiplication and division the factor grows to 6 or more.
Of course, even in a hardware implementation, we expect
the underlying SLI arithmetic to be somewhat slower than
for floating-point - but this is yet another area in which
that time loss is eroded for more advanced operations.

In the next section discuss the precision requirements
for these algorithms, but first we consider some of the
other binary and unary CSLI operations which are
necessary for successful complex scientific computing.

Most of the unary operations require very simple
manipulation after the 64-bit word is unpacked into its
modulus and argument. We have already seen from
considering subtraction that the unary minus operation
involves simply a reversal of the first bit of the argument.
Obtaining the modulus is achieved by the unpacking
operation itself although there are two possible forms in
which the result may be required - either as a real SLI
number or as a CSLI quantity with argument zero. Either
is simple to achieve and both are included in the software
implementation.

Formation of the complex conjugate is achieved by a
two's complement operation on the argument.
Reciprocation involves this same two's complementing of
the argument together with the real SLI reciprocation of
the modulus which with the certainty of positivity is
especially easy - consisting of just the reversal of all but
the first (sign) bit of the SLI modulus.

Other binary operations are important parts of complex
computation. The formation of integer roots of complex
variables is readily achieved by simply dividing the
argument by the appropriate integer and forming the
required root of the SLI modulus - a straightforward
operation. The representation of the argument is such that
this necessarily delivers the principal value of the desired
complex root. Others can be readily obtained by simple
rotations of this one. Rotation through any angle can be
achieved by the simple fixed-point addition of the angle
and the argument.

For the case of FFT calculations rotations through
angles of the form kn/2" are needed. Provided n < 31 -
which is of course true for all practical cases - then this
corresponds to the addition of the integer k2°' to the
argument of the complex operand. Thus such a rotation
amounts to no more than a shift-and-add operation in the
argument.

Forming integer powers of complex SLI variables is
similarly ~ straightforward necessitating only the
corresponding SLI-integer operation together with the
integer multiplication of the argument. Some economy is
also available for other mixed operations.

In the case of addition or subtraction of a real SLI or

22

integer variable to a complex SLI quantity, the real
operand is simply converted to CSLI form and the
arithmetic performed in the manner outlined above. (Some
very minor simplification of this is possible in principle
but does not yield sufficient saving to justify the special
algorithms.) For multiplication and division of course the
situation is somewhat different. Either the standard SLI
multiplication/ division algorithm or the SLI-integer
operation is used on the moduli while the argument is left
unchanged for multiplication or division by a real positive
quantity. For negative real operands, the argument must
be adjusted by m while division by the CSLI variable
necessitates negation of the argument. Both of these
operations have already been seen to be especially simple
for the CSLI representation described here.

The representation proposed is also convenient for
some of the elementary functions. Complex logarithms are
especially simple:

In(p()*'e®) = +d(r-1) +i0 (14)

This result must be converted to the polar CSLI form
using algorithms similar to, but simpler than, those
required for input conversion. This conversion
automatically gives the principal value of the complex
logarithm.

The complex exponential function is similarly
straightforward to define for the CSLI representation:

exp(d(r)*'e'®) = ¥ casd pid(n)'sin as

The first factor here i1s the modulus which can be
computed by a modified version of the real SLI
exponential function routine. The second factor yields the
argument which must be reduced to its principal value.

4. Precision analysis

In this section we consider the internal accuracy
required for the various parts of the CSLI arithmetic
algorithm in order to control the errors to be of the order
of inherent error. This is based on a similar linearized
error analysis to that used for the regular LI and SLI
algorithms in [2], [4] and [17]. As in those cases, we find
that working to fixed absolute precision in the internal
arithmetic will suffice. As in [17], denote by ¥, and ¥,
the precision used for the a- and b- sequences
respectively.

We shall only consider, in any detail, the case of
"large” arithmetic in which R, R, 2 1. We consider first
the computation of the modulus. in order to obtain the
required control over the error we must first consider the
inherent error for this computation. From the cosine rule
for the triangle of Figure 3.1, we have

0(r)* = Oy’ + d(r)* +20(r) d(r)cos8, (16)

from which we obtain the first-order estimate of the error 8r,
inr
[d’(’l) + ¢('ﬁ omeo] d)/(r])ﬁrl
= ———— +[0(ry) +drcosOG|¢(ror, p 17
)P | " 4 o)d(r,)sind 36,
This is, of course, a first-order estimate of the generalized
precision of the modulus of the result. The dominant term

in (17) is [¢(r'l)d)’(rl)/¢(r3)4>/(r3)]6rl which 1s to be
compared with the dominant term in the corresponding
real SLI inherent error [d>'(r1)/¢/(r3)]6rl.

For the "additive" case, ¢(r;) <2¢(r) and so the
complex error is at least one half of the real error. It
follows that controlling the error to the same order of

magnitude as in the real case will suffice for the complex
algorithm. Similarly, in the "subtractive" case where

or,

&(ry) < d(r)) the complex error term is greater than its
real counterpart and so achieving the same error control
as for real SLI arithmetic will again suffice.

Now the only additional source of error in this
calculation relative to the standard real SLI addition

operation comes from the definition of c: in (12). We
obtain

|8c5| s 128byc0s8, + 2b,(3cos€y+8b) | (15
< 48b, + 28 cos8;

since |by|, |cos@,| < 1. The remainder of the arithmetic
algorithm proceeds just as in the real case. The bound
(18) compares with |8¢,| = |8b,] for the real operations.
If the trigonometric functions are evaluated to the greater
precision of y, then the error at this stage of the CSLI
algorithm is essentially 4 times that for the real SLI
algorithm. It follows that increasing the precision v, by
two more bits allows the same accuracy to be achieved as
for real SLI arithmetic.

We turn now to the computation of the argument
correction 0,-0, and the control of the error there. Again
we must first identify the dominant term inherent in the
first-order error for this computation. There is one special
case which should be isolated from the discussion, namely
the situation of subtraction of two equal complex
quantities. This case would be characterized in the
algorithm by the conditions b, = 1 and cos 6, = 1.

We have

A in6
8 = 0,-0, = arctan —2D50% _
&(ry +$(r,)cos, 19)
~ bysin@, u
1+b,cos0, v

from which we may deduce

80 = vou -udv (20)
e

and, using absolute values throughout, we get

du

r

sin@, 8b, + b,cos, 36,
R 1) d(r) ¢'(ry
= sin@, or, + or
°[O N
, 9

o) %000

bosin6°[¢’(r2—l)6r2 +¢'(r, —l)brl]
+ byc0s8,60,

1)

and

dv

u

/, /
, $'(r) or,+ $(r)9'(r) or,
o) @y
oy sin6,36,
&(ry)
bycos8,[¢/(r,-1)dr, +¢/(r,-1)r, |
+ bysin®,36,

(22)

+

There are again two cases to consider. These are easily
defined by the conditions |u] < |v|, in which case the

argument adjustment satisfies 6 < 14 and |u| > |v|, with

8> /4. These do not correspond directly to the two
cases for the modulus analysis above.

In the first case, the dominant term in (20) is
approximately (1/v)du which, using the dominant term of
(21), yields

. bysin6,¢/(r,-1)

56 dr; < ¢'(r,-1)8r,

1+b,cos0,

In the same manner, we obtain the inherent error estimate
for b,

_ ¥r)er)
@

It follows that the same working precisions as are used in
[2] for regular LI arithmetic control the error in the
argument correction to a similar level. The bound
obtained there is

8b, < 247,0/(r,-1)

3b, dr, = ¢/(r,-1)8r,

and with the additional two bits accuracy suggested above
for the modulus calculation giving y, =27 this yields

the desired accuracy in 6.
The second case in which |ul > |v| includes the

situation of extreme cancellation when by=1,and 6y=m.
We may assume without loss of generality that 6, > 0.
Now for this case, the dominant term in (19) is

80 = Lav = coto 0/, -1) 87, @3)
u

using (22) also. The error estimate (23) clearly grows as
6y~ as would be expected. (It also grows as 6, ~ 0 but
of course that would also imply # < v and so is not
included in the present case.)

Now the computed value has the first-order error
estimate

n . viu-udv
e
s (Yu)([du| +[6v() + v,
1 |5b,sin@,| + |bycos 6,36, . (24)
bysin8, | + |8b,cos65| + |Bsin8, 88, |~ 13
1+ |cot6 |
= —Tobo+(1+looteo|)6eo+y,

where vy, is the working precision of the arctangent
computation.

Now for u > v, we have 1+bycos6-b,sin6, <0 and
this function has its minimum with respect to 6, at 3n/4

and its value there is 1 —boﬁ which can only be negative
for b, > 1/y2. 1t follows that the estimate (24) yields

80 < y2(1+|cot8, |)8b,
+(1+]cot@,)88, + v, (25)

< y2(1+|cotf, [)2.4 y,0/(r,-1)
+(1+|cotf, |)86, + v,

For all cases of interest, |cotB;|21 and since

¢’(r1—l) 2 1, the estimate (25) can in turn be bounded by
80 < |cotf, | $/(r;-1)(6.8y, +v,+280,) 26)

The representation of the argument as a two's complement
fixed-point fraction of m has a rounding unit of 2>
which is therefore the appropriate quantity to use for 86,
in (26). The working precision y, = 2 was used above
and taking y, = 27 as a suitable precision for the
arctangent routine, we obtain from (26)

86 < |cot8 |§/(r,-1)(6.8x273 +2731 4+ 2%
4.0x27% | cot@, | ¢'(r,-1)

2728 ooty | '(r,-1)

Comparing this with (23) and remarking that the rounding

unit for the single precision SLI representation is 2%, we
see that the desired error control has indeed been

LN

achieved.

Similar conclusions can be obtained in a similar
manner for the "mixed" and "small" cases of CSLI
addition and subtraction. The details are omitted here.

5. Conclusions

In this paper we have presented details of the
symmetric level-index representation of complex numbers
in modulus argument form. The virtues of this polar form
for many scientific computing tasks make this
representation philosophically attractive. The CSLI
arithmetic algorithms presented show that this
attractiveness carries over to the practical.

The multiplicative operations are of course simplified
but we also see that addition and subtraction of CSLI
quantities is only marginally more complicated than for
the corresponding real operations. A hardware
implementation of CSLI arithmetic would be expected to
be only unnoticeably slower than real SLI arithmetic using
the same technology.

It has also been established that arithmetic errors can
be controlled to be of the same magnitude as the inherent
error using only very slightly improved internal working
precisions - but retaining the desirable use of just fixed-
point, fixed-precision internal computation.

The particular representation and algorithms discussed
have been implemented in software as an extension to the
Turbo Pascal SLI unit. The representation appears to lend
itself naturally to calculations such as Fast Fourier
Transforms. This and other applications will be tested and
the results reported on subsequently.

References

[1] C.W Clenshaw and F.W.J.Olver, Beyond floating point, J.
ACM 31 (1984) 319-328.

(2] C.W.Clenshaw and F.W.J.Olver, Level-index arithmetic
operations, SIAM J Num Anal 24 (1987) 470-485.

[3] C.W.Clenshaw, F.W.J.Olver and P.R.Tumer, Level-index
arithmetic: An introductory survey, Numerical Analysis and
Parallel Processing (P.R.Tumer Ed.) Lecture Notes in
Mathematics 1397, Springer Verlag, 1989, pp. 95-168.

[4) C.W .Clenshaw and P.R.Tumer, The symmetric level-index
system, IMA J Num Anal 8 (1988) 517-526.

[5] CW.Clenshaw and P.R.Tumer, Root-squaring using
level-index arithmetic, Computing 43 (1989) 171-185.

[6] H.Hamada URR: Universal representation of real numbers,
New Generation Computing, 1 (1983) 205-209.

[7]) HHamada, A new real number representation and its
operation, pp. 153-157, Proc. ARITH7, (MJ.Irwin and
R.Stefanelili, Eds) IEEE Computer Society, Washington DC, May
1987.

[8] D.W Lozier and F.W.J.Olver, Closure and precision in
level-index arithmetic, SIAM JNum. Anal, 27 (1990) 1295-1304.

[9] D.W Lozier and P.R.Tumer, Robust parallel computation in
floating-point and SLI arithmetic, Computing 48 (1992) 239-257.
[10] S.Matsui and M. An overflow/underflow-free
Sfloating -point representation of numbers, J. Information Proc. 4
(1981) 123-133

[11] F.W.J.Olver, A new approach to error arithmetic,
SIAM J Num Anal. 15 (1978) 368-393

[12] F.W.J.Olver, Rounding errors in algebraic processes
- in level-index arithmetic, Proc. Reliable Numerical
Computation (M.G.Cox and S.Hammarling, Eds) Oxford, 1990,
pp.197-205.

[13} F.W.J.Olver and P.R.Tumer, Implementation of
level-index arithmetic using partial table look-up, Proc. ARITHS,
(M.JIrwin and R.Stefanelli, Eds) IEEE Computer Society,
Washington, DC, 1987, 144-147.

[14] P.R.Tumer, Towards a fast implementation of
level-index arithmetic, Bull IMA 22 (1986) 188-191.

25

[15] P.R.Tumer, Algorithms for the elementary functions in
level-index arithmetic, Scientific Software Systems (M.G.Cox
and J.C.Mason Eds) Chapman and Hall, 1990, pp. 123-134.
[16] PR.Tumer, A software implementation of sli
arithmetic, pp. 18-24, Proc. ARITH9, (M.D.Ercegovac and
E.Swartzlander, Eds) IEEE Computer Society, Washington DC,
September 1989.

[17] P.R.Tumer, Implementation and analysis of extended
SLI operations, pp. 118-126, Proc. ARITH10 (P.Komerup and
D.W . Matula, Eds) IEEE Computer Society, Washington DC,
June 1991.

[18] H.Yokoo, Overflow/underflow-free floating-point
number representations with self-delimiting variable length
exponen! field, pp. 110-117, Proc. ARITH10 (P.Komerup and
D.W.Matula, Eds) IEEE Computer Society, Washington DC,
June 1991.

