On Squaring and Multiplying Large Integers

Dan Zuras
Hewlett-Packard Co.

ABSTRACT

Methods of squaring large integers are dlscussed The obv1ous 0 (n*) method turns

out to be best for small numbers. The existing O (n 1 n
better as the numbers et bigger. New methods that are 0 (n°®*/°%%) = 0 (n!
are presented. All of these methods can be generahzed to mul-

log4)

O (n"°® =0 (n**

log2y _ 5% method becomes

) and

tiply and turn out to be faster than an FFT multiply for numbers that can be quite large
(>3,000,000 bits). Squaring seems to be fundamentally faster than multiply but it is

shown that T, <2T

square

multiply +0 (n) :

1. Introduction

In hlS classic work The Art of Computer Program-
ming?, Don Knuth asked the question “How Fast
Can We Multiply?” His answer was far more com-
prehensive than this one will be. In fact, much of the
work presented in this paper is o 6y a minor modi-
fication of the work of A. L. Toom®.

In this paper, some of the simpler methods of
squaring are shown to be best in a surprisingly
large number of cases. Some new methods, and
their generalizations to multiply, will also be dis-
cussed which are useful out to quite large numbers.
In light of these results it seems that methods such
as the Schonhage and Strassen FFT multiply®, while
of theoretical interest, may never be best for any
reasonably sized numbers.

2. The Problem

The problem to be discussed here is how to find
the best (fastest) way to square large numbers in
software. The methods presented here were imple-
mented in C and assembly language on an HP-
9000/720 but the general observations and conclu-
sions should be true in wider areas of application.

The approach used was to write a collection of
routines for squaring w-word numbers producing
2w-word results for various specific values of w.
These were general purpose routines in the sense
that w was a parameter.

In the course of writing these routines, it became

clear that some common operations on large inte-
gers stored as arrays of unsigned 32-bit words
would be needed™. These operations were written
in assembly language and performed the functions

detailed in Table 1.

Given operands a[0,w-1], b[0,w-1], producing result r[0,w-1]

vzconst(r,w,c)

r[0,w-1] = cce...c (n ¢’s)

vzcopy(r,w,a) r[0,w-1} = a[0,w-1]

vzneg(r,w,a) r[0,w-1] = -a[0,w-1]

vzshIM(r,w,a,c) r[0,w-1] = a[0,w-1]lc<<M for M in
[1,2,4,8,16,31]

vzshr(r,w,a,M) r[0,w-1] = a[0,w-1]>>M for M in
[0,31]

vzadd(r,w,a,b) r{0,w-1] = a[0,w-1] + b[O,w-1]}

vzsub(r,w,a,b)

r{0,w-1] = a[0,w-1] - b{O,w-1]

Cout = vzaddwco(r,w,a,b)

r{0,w-1] + Cout = a[0,w-1] + b[0,w-1]

vZxS(r,w,a) r{0,w-1] = S*a[0,w-1}
vzx17(r,w,a) r{O,w-1] = 17*a[0,w-1]
vzx257(r,w,a) r{0,w-1] = 257*a[0,w-1]
vzx65537(r,w,a) r{0,w-1] = 65537*a[0,w-1]
t = vzge(b,w,a) t=00w-1]2 a[0w-1])

Table 1:

A collection of routines for squaring “small” in-
tegers were also written in assembly. These provid-
ed a basis upon which the larger routines could be

(1) These arrays were oriented “big-endian”. That is, the most significant word of a[0,w-1] was
stored in a[0] and the least significant word was stored in aw-1]. While the author preferred “lit-
tle-endian”, both C and the HP-9000 PA-RISC architecture disagreed. They won, in the end.

260

1063-6889/93 $03.00 © 1993 IEEE

built.
All other routines were written in C and compil-
er optimized.

Actual running time was measured for w in the
range 1 to 100,000 words (3,000,000 bits) by count-
ing cycles on a 50MHz HP-9000/720.

3. Finding the Best

We will define T (w) as the time required for
method i to square a number of length w.

Method i is considered best for some length w if
Tws< Tj(w'), Vivw' 2w,

That is, a method is best for a given length if
there is no faster way of squaring numbers at least
as large as this one.

4. Method 1: The »*Basis

To start the ball rolling, basis routines for operat-
ing on small integers were written using the obvi-
ous method.

Roughly speaking, if the algorithm for a multi-
plyis

FORi=w-1to0:
FORj =w-1to 0:
(rli+,i+j+1] and CarryOut)
+= ali]xbljl,

then squaring can be made strictly faster than
multiply by accumulating the off-diagonal ele-
ments separately and combining them with the di-
agonals according to the formula

Result = 20ffdiagonals + Diagonals

Obviously, the running time, T,(w), increases
quadratically. T,(w), in cycles, is well approximated
by the rationalized least squares formula

T,w) = ((2Q1w+2371/17) w—295) /5.

These routines turned out to be best for all w up
to 25.

5. The 2-Way Method

Karatsuba and Ofman® presented a method of
squarin%a number in less than r’ time based on the
formula®

(Ax+Ag)? = A2(F —x) + (A, +A) x+ AL (1-x)

where x = 27,

Knuth presented a minor improvement on this
based on the slightly different formula

(Ax+A)? = A2(P+x) ~ (A -A) x+ AL (x+1)

Both of these may be regarded as special cases of
solving for the C, in the equation

(Ax+A)* = C,»2 +Cx+C,

Karatsuba and Ofman solve this equation by let-
ting x take on the values {,1,0} @), Rather than
express this system in the usual polynomial form, I
will express it as a linear transformation of the op-
erand in the following way

v, A, 10|,
1
Vil = |4, +4,] = |11 A
01fte
VD AO
After squaring each element of the vector, the so-
lution to the resulting system

fl

nodlel [s A;
111]|C| = |S, (A, +4,)°
C S,

1]

may be expressed as

¢, 100]l5%
Cif = 1-11-1||$,
c, 00 t]ls

Knuth solves the equation by letting x take on
the values {e, 1,0} . A similar transformation

V2 Al 10 A
V1 = A1 _Ao =q1-1 A
v, A 0 1jLe

0

results, after squaring, in a similar system

1
1

;

Lo
- o

Cz Sz 4
SLIG | =18 = (4, -4y
C S, A2
0

o

0

(2) 1'will not, however, inflict the “big-endian” notation on the reader. Here, I will use the some-
what more conventional notation of mathematics. That is, “little-endian”. So there.

(3) In this context, x = < corresponds to lim (A,x+A4.)?/x* = lim (C,@*+C,x+C,) /x>
x =) oo

x —) oo

which has the solution

This latter solution may be diagrammed as in
Figure 1.

A, Figure 1: The 2- -way Method A,

R

f=x] [~ F-%

Assuming that the time for an add of length w is
O(w), the time to square a number of length 2w
would be

T,(2w) =3T,, (W) + O(w)

The overhead involved, one add before the
squaring step and two after, is strictly larger than
the overhead for an »* method. Thus, although an
n* squaring of length 2w would take

T,(2w) =4T,,, (w)+O(w),

best

there is a definite crossover point as w increases

Ratio (T2/T1)

1.80-

where T (w) isroughly the same as T,(w). Below this
point the n* method wins because of its simplicity
and above this point the 2-way method wins be-
cause of its better asymptotic behavior.

Figure 2 illustrates this by plotting the ratio
T,(w)/T,(w) for some 2-way routines.

In the limit, the time of the 2-way method triples
each time the size of the problem doubles. There-

fore, its time increases as w'*8>/1°82 < 11585

The running time of the 2-way routines (in cy-
cles) is approximated by the rationalized formula

T,w) = (223w'°8*"°52 _ 456w + 3341) /8.

This method can be turned into a multiply algo-
rithm by replacing the §; with the P, in the formula

1 0 ol|C: P, AB,
1-11}|C| = [Py = | (A —A,) (B,-B)
0 O 1 Co PD AOBO

and doing the implied extra work.

6. The General Idea

We now have enough background to show the
general idea behind these methods.

In each case, the operand will be split into k parts
A;. Those parts will be transformed via a @, (de-
rived from the original polynomial) into m parts
V. = Q,A,. Then, each of the V, is squared with the
best method available, producmg s, = V.

Now, the solution to the system M, C; = S, (de-

Figure 2

1.50-
AN

140
130 AN

1.20 \‘

1-13 ~

1'w \

050 e AN

0.06 \

078 \\

0.80-

0.5¢

040

0.30-

0.20-

\\M

1es01 2 H 1e+02

Size (wards)
H 1¢+03 2

rived from the square of the original polynomial)
can be expressed as C, = X7} R,;S; with all the coef-
ficients in the integers. (Up to now, X7, which ex-
presses the integer divides, has not been needed as
it was the identity matrix.) Finally, the C, are shift-
ed and added up to produce the result.

7. The 3-Way Method

Toom® showed that circuits could be construct-
ed for squaring integers where the size was bound-

ed by O(nc”"**") and the delay was bounded by

~ogn

O(c).

Cook? showed thatan algorithm for squaring in-
tegers could be realized which had a running time

of O(n2°V'eeny,

This algorithm, which is actually a collection of
algorithms, has come to be known as the Toom-
Cook method.

The first method in this collection is equivalent
to Karatsuba’s method.

The second method divides a number into three
parts and involves solving for the C, in the equation
2
(AR +Ax+A)) = Cx*+CX +C, 7 +C x4 C,

Cook solves this equation by letting x take on the
values {4,3,2,1,0} in the polynomial, leading to
the transformation

v
4 16 4 1
Vs 9 31||42
Vol =14 21]|4,
2 1114,
001

<

which, after squaring, yields the system

c S (164, +44, +A,)>

256 64 16 4 1|| * ¢ s
8127 9 31[[Ca| 55| | PA+34,+4)

16 8 4 21||Cy| = |5,] = | (44,+24,+4,)*
1 11 11f|c s)
0 0001 CL s; (A2+A]2+A0)

- Ao =

the solution of which I will express as

C -1 s,
20000 [1 -4 6 -4 1
¢ 0120 00| |-3 14 —24 18 -5[|%s
C, =10 024 00 [11-56114 —104 35](|S,
c 000120 (-3 16 -36 48 -25||s,
c cooo01 o o 0o o 1]fg

=)

The diagonal terms in the first matrix are the de-
nominators in divides of intermediate results. In
practice, there turn out to be four divides by 3 since
the rest amounts to shifts of 2 or 3 bits.

Knuth solves this with x taken
{2,1,0,-1,-2} leading to the transformation

from

2
(44,+24,+A)

»

2
(A, +A, +4))

w

= 2
AO

S

Il
Lr \!r ! L

(A,-A,+4,)*
2
| (44,-24, +4,)°|

=)

which has the somewhat more symmetrical so-

-1

240 0 00 1 -4 6 -41
0120 00 1 -2 0 2 -1
=10 024 00 (-116-3016-1
000120/ |-18 0 -81
000O01 0 0 1 0 0j|g

Although both of these solutions look similar,
Knuth’s is somewhat better than the previous one.

The matrix expression of this solution hides the
information that one can construct this solution
with relatively few primitive operations (add, sub-
tract, shift, and the like).

If, however, one chooses x from the set
{,2,1,1/2,0} @, then

(4) In general, x = p/q corresponds to ¢*" (A, (p/q)" + ... +A(,)2 = ¢ (C,, (p/9) " +... +Cp) .

v
100
4 4214
Vol = 111 1{[A,
1% 124 Ao
v 001
and
C4
1000 0
16842 1||Cs
1111 1]|c,
124816/|c,
0000 1.

0

have the solution

thr thr Ltr tr W
— N W s

o

60 0 0 O
-21 2 -12 1 -6
-1 10 -1 7
1 -12 2 -21
0 0 0 0 1

- _
10000
C 06000
C=10o0200
c 00060
c 00001

A

2
(4A,+24,+A))
(A, +A,+A)°

2
(A, +2A,+4A)

0 _

This solution has only 2 divides by 3 and 3 shifts
as well as much less overhead in the computation of
the intermediate results.

The squaring method implied by this solution is
shown in Figure 3.

All of the operations shown can be made O(w).
The three shifts can be done separately or as part of
the combined adds that create the final result. That
leaves the divides by 3.

While a divide by 3 can be done in O(w) time, the
actual method chosen, in spite of being asymptoti-
cally O(wlogw), was believed to be faster.

This method, which actually is a divide by -3, in-
volves only adds and shifts. Assuming that the
number in question is in fact a multiple of 3, we
have

4(3k) +3k— 15k = 16k—k
16 (15k) + 15k — 255k = 256k —k

2 2P-Dh+ (2P-Dko (2" -1)&k

29021k + (2 -k 22 -1Dk

22022+ (22 -Dk— 2% -1k

(2% -+ 2% -k 2P - 1)k

With sufficiently many steps one can, by dis-
carding the 2“"#°k term, divide a number by -3.

Assuming that the time for operations of length
w is O(w), the time to square a number of length 3w
would be

T,(3w) = 5T,

best

(W) +0(w)

This suggests that the asymptotic running time
of the 3-way method increases as w'*8*/1°8% = ! 465

The improvement is not nearly so dramatic as
the improvement in the 2-way method over the »’
method. The advantages of more complex routines
will be even less dramatic for much more work.

The running time of the 3-way method is ap-
proximated by the formula

T (w) = (1370w'°%°/'°8% _ 8718w + 457414) /17

As before, to turn this method into a multiply,
one duplicates those operations before the squaring
steps and multiplies the corresponding terms in-
stead of squaring them.

8. Running Time of Toom-Cook Style Methods

The running time of a Toom-Cook, Knuth, & k-
way methods will have three components:
m = 2k—1 squarings of components of size w/k;
some O(w) overhead; and some fixed overhead.

Assuming that one starts with a basis routine of
length w, that takes , time, we have

T,(wy) = 4,

T (K wy) = mT,(Kwp) +c,Kw, +c,

T (kwy) = mty+c,wy+c,

Tk(k2w0) = mzt(J +eoywy (m+k) +cy(m+1)

T (Ew) = m’t+c,wy (m* +mk+ k%) +c, (m* +m+1)

. m -k
T (Kwy) = m't +c, Yok

Rearranging terms in this last equation gives

m -1

+cy——
"m-1

.
W, N ., G wok [4

0
m—l)m -

m-k m—-1

+

T(Kwp) = (1,+

m—k

or, in terms of w = k’w, becomes

265

logm

logk

CIWG Co C,W

—+
m—k

T,w) = (1,+ m—l)(wio)

(If a portion of the overhead takes O(wlogw) time
then this formula generalizes to

logm

logk w ¢

c,kwlogw o

w
T,00 = 4G —

m—k m—1
where

c,klogk

m—

w, c
3 +c,logw, +c)) p

0

A=1+(t—=

and

c,klogk
-k

~c, (k—=1)logw,+c,.

But I have found that the simpler formula

logm

logk

T,w) = A" (wi) -Bw-C
0

is more than adequate to represent the running
time of these routines in the regions of interest.)

9. The 4-Way Method and Beyond

Extension to a k-way method involves solving
for the C, in the equation

A+ +4) = C 8 4. +C,

Cook would solve this equation by letting x take
on the values {0, ..., 2k} .

Knuth would solve this equation by letting x
take on the values {—«, ..., k}.

But

1
{1,%,0,2, 7 -2,~

chooses from the set

1
3. 3
3

if one
1
7

2
A

[YRV

-3, —%, }, that is, the

set of small rational numbers, tg, such that the
GCD(p, q) = 1, the resulting system of equations is
very symmetrical and the algorithm is simpler.
I will illustrate the various methods for k = 4.
Cook:

216 36 6
12525 5
16 4
93

O = A

S =N
i e |

(46656 7776 1296 216 36 6
15625 3125 625 125 25 5
4096 1024 256 64 16 4

e e e e |

"M =179 243 81 27 93
64 32 16 8 42
1 1 1 1 11
LO 0 0 0 00
720 0 0 0 0 00
0 240 0 0 0 00
0 0 1440 0 00
=10 0 048 0 00
0 0 0 0236000
0 0 0 0 0 600
L0 0 0 0 0 01
1 -6 15 =20 15 -6 1
-5 32 -85 120 -95 40 -7
17 -114 321 -484 411 -186 35
R=|_15 104 -307 496 -461 232 -49
137 =972 2970 —5080 5265 -3132 812
—10 72 -225 400 —-450 360 -147
L0 0 0 0 0 o0 1|
Knuth:
27 9 3 1
8 4 21
1111
g=10 001
-11-11
-8 4-21
=27 9 -3 1]
729 243 81 27 9 3 1
64 32 16 8 4 2 1
1 1 1 1111
M=]10 0 0 0001
1 -1 1 -11-11
64 —32 16 -8 4 -2 1
729 —243 81 =27 9 -3 1
(720 0 0 0 0 00
0 240 0 0 0 00
0 0 140 0 00
=10 0 048 0 00
0 0 0 036000
0 0 0 0 0 600
LO 0 0 0 0 01

266

-6 15 =20 15 -6 1
1 -4 5 0 -5 4 -1
-1 12 -39 56 -39 12 -1
R=1i-18 -13 0 13 -8 1
2 =27 270 —490 270 -27 2
1 =9 45 0 -45 9 -1
00 0 1 0 0 0]

4-way
1 00 0
8 4 2 1
-84 -2 1

=111 1 1
1 -24 -8
1 2 4 8
0 0 0 1]

1 0 000 0
64 32 16 8 4 2
64 3216 -8 4 -2
M=11 1111 1
1 =2 4 -816-32 64
1 2 4 8 16 32 64
0 0 000 0 1]

0
1
1
1

10 0 0 0 00
0180 0 0 0 0 O
001200 0 00
Z=100 0300 00
00 0 012000
00 0 0 0 1800
00 0 0 0 0 1

1
]

1 0000 0 0
-180 6 2 -80 1 3 180
-510 .4 4 0 -1 -1 120
R = 11530 —27 -7 680 -7 -27 1530
120 -1 -1 0 4 4 -510
-180 3 1 -80 2 6 -I80
Lo 00 00 0 1

pu

This last solution was implemented as shown in
the rather busy Figure 4.

Dividing by -15 (for 120 = 8 x 15) can be done by
skipping the first step in a divide by -3.

To divide by -45 (for 180 = 4x45 and
360 = 8 x 45), first observe that 4095 = 91 x45 and
construct the following chain

4(45k) +45k — 225k
8 (225k) + 225k — 2025k

Figure 4: The 4-way Method
A3 i A2 % % Al i AO
= 4A, + A, Ly, = 44, + A 1, = A +A, 02 = A A, L =44 +A, lyo = 4A,+A
V. =2 [2t05 = 14| V=t V, = 215 — 1y V) = 2,
2 2 2 2 2 2
C, = A2 [ss=vi| [s.=vi] [s,=v] =% ls,=vi] e =4
\/ \ VAR 1 / /
FTNFN FR 7 V7
Ls = AC—Cy 1y, = 85+ 5, ty; = Co+Cy ly, =8, +85, Ly =8S,+8] 1, =4C-C,
Ly = 4551y, 1y = 2y i3, = 21y, + S,y = 48, -1,
lyy = 41,5+ Cy 1y, = 285, +1,, ‘ N ty, =28, +1,, L, = 41,,+C
| 33 = 4‘21 fr
42 = 8ty + 155 Ly =2y, ¥y ty = 321y,
gy =4, +1, lgy = 1o =20y,
60 = 1615, +15, 180C, = ¢,, — 2t
120C, = 1, -1,
161
2 (2025k) + 45k — 4095k = (2> 1)k The 4-,“{‘304)’ method is asymptotically
w Bk and is approximated on the HP-
22(2% -1+ (2 -Dk> 2* -1k 9000/720 by the formula

_ log7/log4
924 ((224_ Dk + (224 —Dk— (2 -1k T,(w) = (1940w — 10709w + 370959) /13

22 (2%-Db+ 2% -k (2 -1k 10. The FFT Multiply

P52 -1k + (2 - 1)k (2= 1)k The best known method of squaring or multiply-
ing integers is the FFT multiply discovered by
Schonhage and Strassen®. That is, thisis the method

267

with the best known asymptotic behavior of
O(wlogwloglogw).

I'shall not present this method here in any great
detail but I recommend the excellent description in
Chapter 7 of Aho, Hopcroft, and Ullmanl.

In brief, the FFT multiply of order k splits a num-

ber into 2~ parts for increasingly large values of
k, performs an order k FFT on it, multiplies (or

squares) those 2* elements, and performs an in-
verse FFT on the result. All arithmetic is performed
in a ring with a solution to the equation v ™' = 1.

If the ring chosen is the integers mod some base,

b, the equation becomes w?' ' = -1mod(b) and b
must be larger than the result coefficients.

It is common to choose 5 = 2% '+1 with

m2*~! > 2wlogw/log2 so that @ = 2, although other
choices are possible.(This transform is also known
as a Number Theoretic Transform or NTT.)

The overhead involved can be large compared to
the previous methods but the divides are always by
powers of 2.

For example, with @ = 2™ and & = 22" +1, we
have w? = —1mod(b) and an FFT-2 would look like

1% A +A, 11
V. _ Ay—A, _ 11 A,
12 Aj+A0 1 oA,
14 Ay-Aol [1-@
and
V2
o -1-01]|% 5 ;
—o -1 o 1|6 = S, = Va
-1 -6 S|y
11 11 c, S, V2

with the solution

-1

C| fa000 11 1 1]S
C 0004 [10-1+w-0l|S
c,| looaol {11 -1 -1|ls
cl| o400 |10-1-0 o]

This method is shown in Figure 5.

V, = A +Aw

Figure 5: The FFT-2 Method

4C

=t +1,.w 4C0=100+t°1

11. Running Time of FFT-k Methods

Since b must be large enough to contain the re-
sult coefficients, each of the 4 squares in an FFT-2
method must be done with a method which is
slightly larger than the entire operand! Therefore,
this method is not useful for constructing larger
squares.

The first method that is useful in that sense is the
FFT-3. The operand is divided into 4 parts and 8
squares are performed in a ring that is slightly larg-
er than half the operand. Therefore, this method is
asymptotically Ow'***'*%?) = 0(w*)!

In general, an FFT-k will have 2t squares in a
ring slightly larger than 2 ~? times smaller than the
operand. The as?rm;)totic behavior is therefore
O &=y = !+ (=2,

A timing formula for an FFT-k may be derived in
the same way as the previous methods as follows

T (w,) = 1,

7,20 020y = 27,27 D) 4 ¢ k2 wy + ¢,
T2 " 2wg) = 2%, + ¢ kwy +c,

T2 * D) = 2241+ 2c, kw2t + (22 + 1) ¢,

T,2** D wg) = 2%+ 3¢ hw 22+ 2% + 25+ 1) ¢,

rk
r(k=2) — Ark ’ 27" -1
T2 wo) = 27, +c kwr2 ky (2"—1)Co

Time (cycles)

Rearranging terms gives

C C,
7,2 * " Pw,) = (t°+2_"clkwor+ 2)2"‘— 2
2t-1 2t-1

or, with w = 27 * "2, becomes
w
¢, kw,log — k-
O w, o w. (k-2)

T,w)= 1,

+ + —
2 (k-1)log2 2F-1| ",
o

-1

12. Some Actual Results
Figure 6 compares the methods discussed here.

As a log-log plot, Figure 6 diminishes the differ-
ences between the various methods. We can illus-
trate those differences better by rescaling the data
by T,(w).

Figure 7 shows a log-linear plot of T (w)/T,(w).
We can now see that the k-way methods are faster
than the FFT-k methods for w < 10° words (3 x 10°
bits) but we still don’t have a clear idea of the as-
ymptotic behavior.

For that, the ratios
T,w)
BT /B
T
for the k-way methods and

Figure 6

1e+08

18407

18406

1000 3 1e+01 3 1a+02 3

269

Si
Teet ize (words)

w

1e+04 3 1e+05

[] Figure 7
-3-way, 4-way . N
. \ }4 Y e
00 \ B k_\’ I ‘\
st 1 FET-37 L1

4.00

3.00- NS 3,
3 e S
250- \ \W\ e WP
NI e
200 : N \%“‘"‘v‘x..niw{ e
. m}?ux. Nﬁ\., "
1.50 — E f ‘\“""ﬂﬂ"m‘m%\
100 2-way..~~1 /’::::«- crococed” e s ; 2. Z b e
050 — /
mBasis-—-—--“"'
- Size twords)
1400 3 1e+01 3 1e+02 3 1e+03 3 1e+04 3 1e+05
T.w ssible that the FFT-k methods will eventually win
log —k po d y
- T SOM 100, rds.
T,w/2* 9 for some w » 000 words
“k-2)log2 The overhead in an FFT-k is known to grow as

for the FFT-k methods will illustrate how quickly
each approaches its asymptote. Figure 8 shows this.

None of the FFT-k methods tried have any
chance of being best. An FFT-6, asymptotically
OW"E%*1°81% = o'), will also be too slow. An
FFT-7, 0w'"°t'2/°¢%) = ow'*), is asymptotically
faster than the 4-way method but the 5-way meth-
od, OW"°e*/°8%) = o' 3%, very likely has much
less overhead and will win first.

In spite of this behavior for small orders, it is

something like O(k2%). A k,.-way method is as-

ymptotically comparable to an FFT-k,, method
ksg—2

when k..~2 ? . If the overhead of the k-way

methods, dominated by a matrix inversion, grows

3

2 (kgs=2)
as fast as O(k2)~0@2*> =), the FFT-K's may
eventually win.

Figure 8
log(T/T0M0g(K)
N S
20 \\ T Sy
00 FFT:5 WFFT-4 3 A e e 3,0000
3-way,.\ '-\\5\\
“”2-‘&3‘5'\ """" Zo T
2.80- \'\ &-wa) : \
0 <. ANAN
40 A}
\\
2.20 e
\\ \)
2.0 \\ o 2.0000
1.80- '\\
o =
e, aa»~~-~.m~.»~-.m../\.....:.~,]_m7
1.60- A eoerg 15850
~1.4650
140~ 11.4037
3 1e.01 3 Te+02 3 1e+03 3 10404 3 10405 e eores)

270

13. Is Squaring Faster than Multiplying?

Squaring is a special case of multiplying. There-
fore, we have trivially that

<T

square multiply

But, in all the methods presented here, squaring
involves strictly less work than multiply. Further,
most of this savings is in the overhead and, in the
limit of large numbers, virtually all of the work in a
multiply is in the overhead.

Therefore, we are led to ask the question: Is it
possible that there are squaring methods that are of
an order faster than any multiply methods?

The answer is, unfortunately: no.

While it is possible that we may discover some
method of squaring that is strictly faster than any
existing multiply method, any squaring method can
be used to construct a multiply method that is no
more than a constant slower.

A simple proof is
XY = (X+)2~ (X2+Y)) /2

which, assuming that add and shift are no worse
than O(n), shows that

<3T +O0(n)

Tmuln'ply square

Karatsuba presented a better method
XY = (X+1) - (X-N}H /4

which gives a multiply in 2 squares and 0(s).
Therefore,

T

multiply

<2T

square

+O0(n)

14. Conclusions, Speculations, Etc.

It would appear that many of the simpler meth-
ods of multiplying are best all the way out to quite
large numbers. Certainly, into the millions of bits.
Possibly, much farther.

In spite of the fact that squaring is fundamental-
ly faster than multiply, it can be no better than a
constant faster in the limit of large numbers.

It is still possible that the Schénhage and Stras-
sen method will win in the end in spite of a slight
asymptotic disadvantage. This would be a useful
area for further work.

A closely related area is that of what is the mini-
mum amount of overhead possible in Toom-Cook
style methods. Different assumptions about the
cost of overhead might lead to different trade-offs.

For example, in the approach taken in this paper,

271

what are the best choices of is SO as to minimize
add, shift, and divide overhead?

15. Acknowledgments

I'would like to thank the reviewers for their com-
ments. I believe the resulting changes improved the
paper considerably.

I would also like to thank Willy McAllister for
his support and Cathrin Callas for her help in the
preparation of this paper.

Many of the figures in this paper were made
with xgraph, a program written by David Harrison
of the University of California.

16. References

1. Aho, A.V., Hopcroft].E., Ullman].D., The
Design and Analysis of Computer Algorithms,
Addison Wesley, 1974, Chapter 7.

Cook, S.A. On the minimum computation
time of functions, Thesis, Harvard Universi-
ty, May 1966, pages 51-77.

Karatsuba, A. and Ofman, Yu. Multiplica-
tion of Multidigit Numbers on Automata, So-
viet Physics - Doklady, Vol. 7, #7, January
1963, pages 595-596.

Knuth, D.E. The Art of Computer Program-
ming, Vol. 2., Second Edition, Addison-
Wesley, Reading, Mass., 1981, Chapter 4,
Section 3.3, pages 278-301.

Schénhage, A. and Strassen, V. Computing 7
(1971), 281-292 (in German).

Toom, A.L. The Complexity of a Scheme of
Functional Elements Realizing the Multiplica-
tion of Integers, Soviet Mathematics, Vol. 3,
1963, pages 714-716.

