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Abstract

In this work we present a Cordic rotator, using
carry-save arithmetic, based on the prediction of all
the coefficients into which the rotation angle is de-
composed. The prediction algorithm is based on the
use of radiz-2 microrotations with multiple shifts in
the first iterations and the use of a redundant radiz-2
and radiz—{ representation for the coefficients in the
rest of the microrotations. The use of multiple shifis
Jacilitates the prediction of the coefficients in the case
of microrolations where i < n/4, being n the pre-
cision of the algorithm, and the use of radiz—4 mi-
crorotations helps to reduce the total number of itera-
tions. The prediction is carried out using the redun-
dant representation of the z coordinate, without any
need for conversions to a non-redundant representa-
tion. Finally, we present a VLSI architecture based on
this algorithm. As the production of the coefficients
is very fasl, and they are known before starting each
microrotalion, the resulling archilecture can be highly
pipelined and consequently appropriate for applications
where high speeds are required.

1 Introduction

The CORDIC algorithm is an iterative technique
for performing plane rotations and evaluate different
trigonometric, hyperbolic and linear functions [14][15].
Its current applications are in the field of digital signal
and image processing, filtering, matrix algebra, simu-
lation and robotics [9]. The algorithm is based on the
decomposition of the rotation angle into known ele-
mentary angles. The basic iteration or microrotation
is

Tigr = zi—mo27y
Yis1 = ¥Yi+0i27'; (1)
Zigy = Z4i—O0iGim

where a; m = m~!/2 tan~!(m!/22-%) is the microrota-
tion angle, m specifies the coordinate system (m = 1
for circular coordinates, m = —1 for hyperbolic co-
ordinates and m = 0 for linear coordinates) and
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o; € {—1,+1} is the microrotation direction. In the
rotation mode, where coordinate z is driven to zero,
o; = sign(z;), and in the vectoring mode, where y
is driven to zero, o; = —sign(y;) - sign(z;). The
value of the final coordinates is scaled by the factor
Km = [1(1 + mo?2-%)!/2_ Since 0; € {~1,+1}, Km,
is constant and must be compensated. In circular co-
ordinates at least n + 1 microrotations (n in the case
of linear and hyperbolic coordinates) are required for
n bit precision. However, in hyperbolic coordinates
it is also necessary to repeat the microrotations with
shifts 4,13,...,k,3k+1,...in order to guarantee con-
vergence [15].

The propagation of the carry in the adders lim-
its the speed of the CORDIC processors. Redun-
dant carry-save and signed-digit arithmetic have been
used in order to eliminate the carry propagation
[4](5](6](12). However, the determination of o; requires
the assimilation of the redundant representation of the
z or y coordinate, depending on the operation mode.
A small number of the most significant bits are as-
similated so as not to degrade the speed of redundant
arithmetic. Because of this, additional correcting mi-
crorotations [10][12] must be introduced in order to
correct the possible errors when obtaining o;. Alter-
natively o; must be allowed to take values in the re-
dundant set {—1,0,1} [6] [12].

Another method for the determination of o; in re-
dundant arithmetic is based on the parallel prediction
of the o}s [2][13]. The main advantage of the pre-
diction algorithm is that its implementation in VLSI
technology is faster than the other methods. How-
ever, and due to the fact that the prediction can only
be achieved from i = 1 on, the convergence range in
circular coordinates is smaller than [-7/2,7/2]. On
the other hand, in the z coordinate it is necessary to
carry out several conversions from redundant to non-
redundant arithmetic. This constrains the efficiency
of its implementation in a pipelined architecture. The
prediction algorithm has been applied to the rotation
mode with carry-save arithmetic in non pipelined un-
folded architectures [2] [13].

In this work we present a modification of the pre-
diction algorithm for the rotation mode and carry-
save arithmetic which eliminates these drawbacks. We
propose a new prediction algorithm based on micro-



rotations with multiple shifts. We incorporate this
method into a general algorithm and architecture. On
the other hand we use radix-4 microrotations [31][10]
(13] that permit reducing the number of stages of the
processor. Finally a complexity analysis and compar-
1son with another implementation is made. We only
present the modified prediction algorithm for circular
coordinates. In order to make reading this work eas-
ier, the microrotation angles for circular coordinates,
«; 1, are represented as ;.

2 Prediction Algorithm

The prediction algorithm [2][13] consists in select-
ing the values of ¢; equal to the digits of the z coor-

dinate. It is however necessary to repeat some micro-.

rotations in order to correct the error introduced by
selecting the o}s this way. Using a non-redundant rep-
resentation with n bit precision, z; can be expressed

as,
n n
z,-:i -2t _;_ oy
i=j

i=j
with ¢; € {—1,+1} instead of the set {0,1} (the con-
version between these two sets of digits is very simple
[13]). In general, a; = tan=!(2%) # 2%, although the
difference between 2~* and a; decreases as the value
of i increases. If we select 0; = ¢; fromi =jtoi=k
an error is accumulated between iterations j and k,
because a; # 27*. In order to insure the convergence
of the algorithm it is necessary to repeat microrota-
tion k, which corrects this error. The indices j and k
must verify the following relation:

k
D2 e <2t
i=j

(2)

(3)

This expression permits determining how many g;s
may be predicted from microrotation j before intro-
ducing a correcting microrotation in k. Observe that
we have imposed the bound 2% instead aj. This
bound is less strong and we can use it because a 1 or
a —1 are allowed in the position with weight 2~* since
we begin the next prediction from the position k. The
difference between 2% and ay is corrected by the next
correcting microrotation.

The relationship between j and k is k < 3j + 1.
For performing the next prediction, starting in micro-
rotation k, it 1s necessary to know the value of z in
non-redundant representation. Starting with j = 0
we obtain k = 1. The second prediction is from
J = 1tok = 4. The third one is from j = 4 to
k = 13. Consequently, the microrotations with indices
1,4,13,...,,35+1, ... must be repeated. In addition,
the same number of updates of the z coordinate must
be carried out using carry-save adders and its non-
redundant representation must be obtained [13].

The prediction algorithm presents two drawbacks.
In the first prediction it is only possible to obtain &y
and o,. In order to perform the next prediction it is
necessary to update the z coordinate and convert it
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from a carry—-save to a non-redundant representation.
For preventing the latency from being determined by
this conversion, the first microrotation has to be j = 1
[13]. This, however, constrains the convergence range
in circular coordinates to [-1,+1]. On the other hand,
in the z coordinate, we perform several updates in
carry-save representation. After each update the con-
version from a carry-save to a non-redundant repre-
sentation is necessary in order to be able to perform
the next prediction. This makes it impossible for the
prediction to be implemented in pipelined architec-
tures with high throughput. The prediction based ar-
chitectures that have been proposed are unfolded but
not pipelined [2]{13].

3 Modified Parallel Prediction Algo-

rithm

In this section we present a new CORDIC algo-
rithm for the rotation mode with carry-save arith-
metic based on the prediction of the o; coefficients
that can be implemented in a high speed and low la-
tency pipelined architecture.

Before describing the new prediction algorithm we
must point out that in order to maintain a constant
scale factor it is necessary that o; € {—1,+1}. How-
ever for i > n/4 we can use o; € {—1,0,+1} main-
taining a constant scale factor [13]. To this end, when
o; = 0 (the microrotation is not carried out) the fol-
lowing scaling is carried out:

zi+ 275,
yi + 275y,

5

Tigl

(4)

Yi+1
Zit1

The prediction algorithm we present is based on the
use of radix-2 microrotations with multiple shifts and
o; € {~1,+1} for 0 < i < n/4, radix—2 microrotations
with o; € {~1,0,+1} for n/4 < i < [(n — 1)/3], and
radix-4 microrotations with o; € {-2,-1,0,+1,+2}
fori> [(n-1)/3].

3.1 Radix-2 Microrotations with Multi-
ple Shifts

With the new prediction algorithm we carry out
the prediction of the ois from i = 0 to ¢ = n/4.
This way we can obtain the next prediction using
o € {—1,0,+1} (As 7 > n/4, K can be kept con-
stant). This permits performing the prediction with
parallel operations and without any conversion from
carry-save to non-redundant arithmetic. In order to
obtain the simultaneous prediction of g, 01, ..., On/a
the condition (3) with j = 0 and £ = n/4 must be
met. As a; = tan~!(27%) condition (3) is not verified
and the prediction cannot be carried out this way. In
order to solve this problem, we select microrotation
angles with multiple shifts, that is

a; =tan T (27 45 27h g 07 b2 4 ) (5)
with s5;; € {=1,0,+1} and i < d;j; < n. The values
of s; ; and d; ; are selected in order to reduce the dif-

ference between 27* and «;, and to meet condition (3)



1 n=16 n=24 n =32

0 (0,1 éO, 1,4) (0,1,4)

1 1) 1,5,6) (1,4,-6)

2 2 2; (2,8,10)

3 3 3 3)

4 4 4 4

5 5 5; 55;

6 6 6) (6)

T n =40 n =293

0 (0,1,4,-8) (0,1,4,-8,~-10)
1 (1,5,6) (1,4,-6,-11,-14)
2 (2,7,-9,-11) (2,8,10,11,-15)
3 (3,11,13) (3,11,13,15)
4 4 (4,14, 16)

5 5 (5)

6 6) (6)
(a,b,...,~c) means tan=1(2-% +2-% .. . — 2-¢)

Table 1: Microrotation angles for parallel prediction

for j = 0 and k = n/4. For example for the microro-
tation i = 1, [tan"!(2-1) — 2-1| = 0.0363523. This
difference can be reduced introducing multiple shifts,
that is, |tan=1(2"! + 2-% + 2-5) — 2-1| = 0.000441.
For seeking this microrotation angles we also impose
the condition of minimizing the number of shifts (the
number of additions) in order to obtain the solution
with the minimum hardware cost.

In table 1 we display the microrotation angles (only
for ¢ < 6) obtained for 16, 24, 32, 40 and 53 bit pre-
cision. As the precision increases, the number of mul-
tiple shifts grows due to the fact that it is necessary
to predict a larger number of o/s without updating
the z coordinate. Furthermore, we see that the multi-
ple shifts are only needed in the first microrotations,
where the difference between a; and 2~* is larger.

Simultaneously to the radix—2 microrotations with
multiple shifts, we perform the updating of z in carry-
save representation so that z, /441 is obtained as a sum
word (z7,44,) and a carry word (2 /4+1)- In order
to obtain the next prediction, a redundant radix-2
signed-digit addition [5](12] of z; ,,, and z; ,,, is
carried out. This way, we obtain z,/441 in radix-
2 signed-digit redundant representation with digits
in the range {—1,0,+1}. As in these microrotations
i > n/4, we can use o; € {—1,0,+1} while main-
taining a constant scale factor. Then, the prediction
of the o}s is obtained by simply assigning the digits
of z,/441 to the o}s. We avoid this way the conver-
sions from carry-save to non-redundant arithmetic.
For subsequent predictions we can use the same tech-
nique. However, in order to reduce the number of
stages, we use radix 4 microrotations in the next pre-
diction.
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3.2 Radix—4 Microrotations

In order to reduce the number of microrotations of
the CORDIC algorithm it is possible to combine two
radix—-2 microrotations to obtain one radix—4 micro-
rotation when the approximation tan=!(2-%) = 2% is
verified within n bit precision [3](;10][13]. Then the o;
coefficients are obtained by recoding in a similar way
as the Booth multiplication, and take values from the
radix-4 redundant digit set {—2,...,2}.

In [10] radix-4 microrotations are employed when
i > n/2 in order to reduce the number of microrota-
tions of the CORDIC algorithm while maintaining a
constant scale factor. However, as for i > (n — 1)/3
we have that tan~!(27*) = 2~* within a precision
of n bits, in the CORDIC algorithm with parallel
prediction we use radix-4 microrotations from i =
[(n— 12{3] + 1. Consequently, radix-2 microrotations
are used for 0 < ¢ < [(n — 1)/3] and radix—4 microro-
tations for [(n — 1)/3] < i < [(n—1)/31 4+ (n— [(n ~
1)/31)/2. The shifts of the radix—4 microrotations are

g =2—([(n-1)/3]+1) (6)

Observe that the shifts are radix—4, that is, the shift
increases by two in each iteration. The number of mi-
crorotations of the CORDIC algorithm has been re-
duced from n + 1 to approximately [2n/3] + 1.

However, as the radix—4 microrotations start from
i = [(n — 1)/3] + 1, the scale factor is not constant.
The non—constant scale factor generated in the radix-
4 microrotations from ¢; = [(n—1)/3] +1 to ¢; = n/2
must be incorporated to the constant and known be-
forehand factor that is generated in the radix-2 mi-
crorotations. In order to calculate the contribution of
these radix—4 microrotations to the scale factor we use
the approximation

(14 0727%0)7 12 = | — gPp~%0"! Q]

with ¢; > [(n— l)/31, being ¢; the radix—4 shift. This
way, the final scale factor is obtained by multiplying
the scale factor generated in the radix-2 microrota-
tions times the factor (1 — ¢?2729~1), which is the
scale factor introduced in each radix—4 microrotation,
by means of addition and shift operations controlled
by the value of o;. This operation can be carried out
in parallel with the microrotations.

It is interesting to note that in some cases is better
to begin the radix-4 microrotations from i = n/2+ 1
to have a constant scale factor. For example for mod-
erate n the reduction achieved by introducing radix—4
microrotations for i < n/2 seems to be low in compari-
son with the complexity of a non-constant scale factor.
On the other hand to compute sines and cosines the
final multiplication by the scale factor is avoided if
this factor is constant, by just introducing zo = 1/K
and y = 0{12]. Here we consider the more general case
where the input coordinates are not known in advance
and the scale factor must be compensated.

When we introduce radix-4 microrotations we
make the approximation tan~!(27%) = 2~*. This
means that the circular CORDIC is approximated by
the linear CORDIC in the rotation mode, so we are



performing a Booth multiplication. Hence an alter-
native to the radix-4 microrotations (iterative mul-
tiplication) is to make a fast parallel multiplication
(fast termination algorithm [1]). Here we consider the
radix—4 stages but our algorithm also can incorporate
the fast termination methods.

3.3 Parallel Prediction Algorithm

Figure 1 summarizes the parallel prediction algo-
rithm we have developed. Initially, starting from
the value of 29, we carry out the prediction of
00,01, ..., 0n/4, taking values from the set {—1,+1}.
In order to insure the convergence of the algorithm it
is necessary to introduce multiple shifts in the evalu-
ation of the z and y coordinates. Simultaneously we
update the 2 coordinate in order to obtain Znfa41 IN
a carry-save representation. It is necessary to repeat
microrotation n/4 in order to correct prediction errors.

Zy
TREE OF
Co G000 G, 4T0-2 CARRY SAVE
ADDERS
s [
Zoiast [Zosnr
CARRY SAVE TO
RADIX 2 SIGNED DIGIT
TREE OF
Onia Onias1 888 O 117 | 4702 cargy save
ADDERS

zt z;
[ “lonps
CARRY SAVE TO

RADIX 4 SIGNED DIGIT

!

°r<n..ynu

Figure 1: New parallel prediction algorithm

To predict the coefficients Onjay Onjatl, ---
O[(n-1)/3], We perform a signed digit radix-2 addition
of the sum , z:/4+1, and carry, z,";/“_l, words of 2, /441.
This way, 2,441 is coded into a signed digit radix-2
representation with digits in the set {—1,0,1}. From
this value of the 2 coordinate we directly obtain the
ois with n/4 <i < [(n—1)/3], which can take values
from the set {—1,0, 1}. It is not necessary to introduce
a correcting microrotation as the subsequent radix-4
microrotations correct the error in the prediction.

Later, z is evaluated again in order to ob-
tain  z[(n_1)/3]4+1 In a carry-save representation.
Z[(n-1)/31+1 is coded into a signed-digit radix-4 rep-
resentation using the set of digits {-2,...,+2}. A
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recoder of this type is described in {7]. This way, as
the ois with i > [(n — 1)/3] + 1 can take values from
the set {~2,...,+2}, the prediction is obtained set-
ting the o}s equal to the radix—4 digits of z[(n_1)/3141-
With the last prediction we obtain the o}s up to the
last microrotation (it is not necessary to reevaluate z).

X0 Yo Z

| 1 l

RADIX-2 MICROROTATIONS

Gp eee Og
SCHEME
FOR
T PARALLEL
PREDICTION
O3 ee0 7))

6 ={-1.+1)

PRECOMPUTED K RADIX-2 MICROROTATIONS

0; ={-1.0,+1
=11 i ={-1.0+1}
. 1 ¥
oi2f compuration | =12
a3 ADIX4 MICROROTATIONS o o
A 1200004
P K ] 0; 21-2,-1,0.+1,92}
14 i=l4 T i I
1 =S Cljs5e00 0
CARRY-SAVE
TO
RADIX4
IRADIX-4 MICROROTATIONS

G ={-2.-1.0.41,42}

=272

MULTIPLICATION
AND
FINAL CONVERSION
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Figure 2: Architecture of the CORDIC processor
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Figure 3: Slice of a 4-to-2 CSA

With the prediction algorithm we have developed,
it 1s only necessary to make three predictions of the
ois,for0<i<n/4,fornfd+1<i<[(n—1)/3] and
for i > [(n — 1)/3] + L. In order to obtain these pre-
dictions it is not necessary to obtain the z coordinate
in non-redundant representation. We have to recode
the carry-save representation of z in a signed-digit
radix-2 or radix—4 representation. In these codings
there is no carry propagation, and they are thus fast
and their hardware complexity is similar to that of a
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Figure 4: Radix-2 microrotation with multiple shifts

4-to-2 carry-save adder. In addition, it is only neces-
sary to update coordinate z twice. These updates are
carried out with tree structures of 4-to-2 carry-save
adders. As all the operations are performed without
carry propagations, it is possible to pipeline this ar-
chitecture in order to obtain a high throughput.

4 Architecture

In figure 2 we display the architecture of the radix-
2-4 CORDIC processor based on the parallel predic-
tion for 32 bit precision. The microrotations from
i = 0 to i = 8 are radix-2 with o; € {—1,+1} and
multiple shifts (see table 1). Microrotation i = 8 must
be repeated in order to correct the errors in the pre-
diction of the ; coeflicients. From i = 8 (repetition)
to-i = 11 we perform radix-2 microrotations with
o; € {~1,0,+1} and simple shifts. It is not necessary
to repeat microrotation i = 11 because the prediction
errors are corrected with the radix-4 microrotations.

In the radix-4 microrotations we can distinguish
between two groups: microrotations 12, 13 and 14
for which the contribution to the final scale factor
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must be calculated and the remaining microrotations,
15,...,22, which have no bearing on the value of the
scale factor. In parallel with microrotations 12, 13
and 14 there is a calculation of the scale factor in
carry-save representation by means of three addition
stages with hardwired shifts and multiplexers in order
to choose the appropriate term as a function of the
value of o; (see equation 7?. The complexity of these
stages is similar to the implementation of a coordinate
in the radix-4 microrotation. In order to compensate
the scale factor we convert the scale factor obtained to
radix-4 signed-digit format. We subsequently carry
out the multiplication in each of the coordinates, z
and y, with two multipliers, one for each coordinate,
organized in 4-to-2 carry-save adder trees. Finally
there is a stage for the conversion from redundant to
non-redundant arithmetic.

The implementation of the microrotations and the
prediction algorithm is based on the use of 4-to-2
carry—save adder/subtracters. We have adapted the
4-to-2 carry-save adder described in [7] for the evalu-
ation of 2’s complement subtraction where two of the



four operands must be complemented. The structure
of a bit slice of the 4-to-2 carry—save adder/subtracter
is shown in figure 3. Two XOR gates have been in-
cluded in order to complement, as a function of the
add/sub signal, bits a and b in the production of the
transfer bit z. The production of the addition bit, z,
does not change, as two of the four inputs are comple-
mented, and the calculation of the carry bit, y, does
not change either because we are using bit d and the
transfer bit e. To complete the 2’s complement we in-
troduce a 1 in the e bit of the least significant bit slice
and another 1 in the least significant bit of the carry
output. The delay is still the same as in the case of a
4-to-2 carry-save adder.

In figure 4 we present the structure of the radix—2
microrotations with multiple shift and o; € {—1, +1}.
Figure 4(a) corresponds to the architecture of the first
microrotation (for the case n = 32). For each co-
ordinate we just have to add four operands (three
hardwired shifts) because the input data are in non-
redundant arithmetic. As three of the operands may
be subtracted, we have had to use a 3-to-2 carry-
save adder and a 3-to-2 carry-save adder/subtracter
per coordinate. Figure 4(b) corresponds to a microro-
tation with three hardwired shifts in which the input
operands are in redundant arithmetic. Although the
hardware cost is three times that of the case of mi-
crorotations with a single shift, the delay is only dou-
ble (two 4-to—2 carry-save adder/subtracter levels).
On the other hand, the radix-2 microrotations with
o; € {—1,+1} and simple shift are similar to the one
shown in figure 4(b) with the difference that it uses a
single 4-to-2 carry—-save adder per coordinate as there
is a single shift.

In figure 5 we display the architecture of a radix-2
microrotation with simple shift and o; € {~1,0,+1}.
The 2-to—1 multiplexers permit selecting the appro-
priate operands in order to alternatively carry out the
microrotation when o; = +1 or o; = —1 or the scaling
when o; = 0 so as to maintain a constant scale factor
(see equation (4)).

0t 4-TO-2 CARRY-SAVE 4-TO-2 CARRY-SAVE A
2 A{_r_/mm‘ ADDSUB A '

~—— SINGLE BUS
== DOUBLE BUS (CARRY-SA YE)

Figure 5: Redundant radix-2 microrotation

The structure of a radix—4 microrotation is similar
to that of figure 5. In this case the 2-to~1 multiplex-
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ers are only used for the selection of the appropriate
value of the shifted coordinate according to the value
of o; (i.e. 0,279,2-27%). We have assumed that the
control inputs to the multiplexers are already decoded
and that they are implemented with NAND gates [7].
This way there must be as many control inputs as
operands to be selected. If all the control inputs are
zero then no operands are selected and the output of
the multiplexer is zero. When the control inputs at-
tack a large number of multiplexers we have assumed
the use of buffers in order to strengthen the signals.

This particular architecture for n=32 bits can be
generalized to any precision. We must take into ac-
count that the number of stages with multiple shifts
varies with the precision and so does the number of
multiple shifts per microrotation (see table 1). How-
ever, the number of reevaluations of the z coordinate
will be the same, that is, only two.

We have considered carry—save arithmetic in our
design. However there are one conversion from carry-
save to signed-digit in z coordinate. An alternative
to carry-save arithmetic is to use radix-2 signed-digit
[6][12], so this conversion will be avoided. As the com-
plexity of this conversion is low we consider that in
both cases (carry-save and signed-digit) the hardware
cost should be similar.

4.1 Timing Analysis

The architecture based on the prediction algorithm
we have presented can be pipelined in order to obtain
a high throughput. In this architecture we obtain sev-
eral o}s in parallel in each prediction and the updating
of the z coordinate is carried out with 4—-to-2 carry-
save adder trees. For this reason each o; is available
before the corresponding microrotation has to be car-
ried out. The delay will be determined by path z/y
and not path z.

For the calculation of the delays we have used
the data corresponding to the ES2 standard cell li-
brary for 1gm CMOS technology [8]. The delays are
given based on the delay of a two input NAND gate
(tnand—2) and with a fanout of three NAND gates.
A more detailed description of the delays assumed for
each basic element can be found in [7]. We employ the
following nomenclature: t,.4 is the delay of a register,
to—1mur 15 the delay of a 2—to—1 multiplexer, £4_9.54
is the delay of a 4-to-2 carry-save adder/subtracter
and ty, s is the delay of a buffer.

We are going to consider two different pipelining
levels of the architecture in order to obtain the delay
of the slowest stage and the latency for each pipeline.
Actually the processor can be pipelined at any desired
level. We first evaluate the architecture with a pipeline
scheme in which the delay of the slowest stages is sim-
ilar to the delay of a radix-2 microrotation with sim-
ple shift (simple pipelining). After that we evaluate
the architecture considering that each radix-2 micro-
rotation with simple shifts is divided into two stages
(double pipelining).

We denote as T the delay of a radix—2 microrota-
tion with o; € {—1,+1} and simple shift. T, is the
delay of a radix-2 microrotation with o; € {—1,0,+1}
and T3 is the delay of a radix—4 microrotation.



a) Simple pipelining. Assuming that the architec-
ture is pipelined so that the slowest stage is a microro-
tation with simple shift, the delay of the critical path
will be given by the largest of T}, T and Ts.

Tl = tre’ + t‘u! + t{—cha = 15.8
I, = t"‘! + tlm! + - imus + t4—2csa = 17.2 (8)
TS = treg + tbuf +ta-1mus + t4—2c0a = 17.2

So the throughput of the processor is 17.2¢n4nd—2.

Consequently, the microrotations with multiple shifts
must be pipelined in order to achieve the delay of
a microrotation with simple shift. For this reason
we pipeline the microrotations with multiple shifts
into several stages where the delay of each stage is
treg + tbufjer + t4_2¢5a-

he latency is given by the total number of stages.
This number does not coincide with the number of mi-
crorotations as we have pipelined the microrotations
with multiple shifts. For n=32 bits we have a total of
24 microrotations, but 3 of them present triple shift
(two of them pipelined into two stages) resulting in
a latency of 26 cycles for carrying out the microrota-
tions.

b) Double pipelining. For applications which re-
quire high speeds, we can pipeline the architecture
so that the delay in the critical path is reduced by
pipelining  each microrotation with simple shift into
two stages. For this we must pipeline the 4-to-
2 carry-save adder/subtracter as shown in figure 3
(dashed lines). The microrotations with multiplex-
ers for the selection of operands (radix-2 with o; €
{-1,0,+1} and radix-4) are pipelined so that the first
stage is made up of the multiplexers and the first part
of the 4-to—2 CSA, whereas the other stage is made
up of the second part of the 4~to-2 CSA. This way
the delays of all the stages are balanced.

If we denote as t4—2csa(a) the delay of the first part
of the 4-t0-2 CSA and ta—2csa(s) the delay of the sec-
ond part, the delay of the slowest stage is

treg + tbu] + t2-lmuz + t4-2c.m(a)
treg + t4—2c:a(b)

T = maz { (9)

This delay is 13.4t,4n4—2. With the double pipelining
of each microrotation the delay of each stage is reduced
by 22% with respect to the simple pipelining. This
moderate reduction of the delay is due to the fact that
the delay of the registers is very large as compared to
the processing elements. The latency in this case will
be double that of the previous case as we divide each
one of the stages into two. Consequently, for n=32 we
have a latency of 52 cycles.

5 Evaluation and Conclusions

In this section we evaluate the new prediction al-
gorithm with respect to the one proposed in [13]. We
also evaluate the architecture we propose with respect
to a high speed CORDIC architecture that was re-
cently proposed. When using the algorithm proposed
in [13], the prediction can only be obtained from i = 1
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on, and thus the convergence range in circular coordi-
nates is constrained to [-1,+1]. On the other hand,
in order to obtain the prediction, several conversions
from carry-save to non-redundant representation are
required for the z coordinate. In an unfolded archi-
tecture, such as the one proposed in [13], path z/y
is slower than path 2. However, it is not possible
to pipeline the architecture in order to obtain a high
throughput.

With the prediction algorithm we have presented,
the convergence range in circular coordinates is larger
than S—w 2,47/2], because the microrotations are
started from ¢ = 0 and multiple shifts have been
introduced. On the other hand, the architecture
can be pipelined in order to obtain a high through-
put. Radix—4 microrotations are used in both designs.
However, in [13] they incorporate two adder tree struc-
tures, one for each coordinate in order to maintain a
constant scale factor. In the architecture we propose,
the scale factor is calculated, by means of addition and
shift operations, from the scale factor generated in the
radix—2 microrotations, eliminating the tree structures
in the z/y paths.

The prediction algorithm proposed here permits a
high level of pipelining of the resulting architecture,
making this architecture adequate for applications re-
quiring high speeds. The CORDIC architecture for
the rotation mode proposed in (4] is based on the cal-
culation of the absolute value in MSD first mode of
operation. The sign of z is propagated from the MSB
to the LSB. There is no sign estimation and thus no
additional microrotations are needed for insuring con-
vergence.

In table 2 we compare this design with the one we
present in this work. We have specified the cycle time,
the latency and the hardware complexity with preci-
sions 16, 32 and 53 bits. The hardware complexity is
given in terms of the number of microrotations over
z/y, the number of additions in z and the additional
hardware required for each algorithm. In the micro-
rotations with multiple shifts, we have assumed the
equivalent number of microrotations with simple shift
for the calculation of the hardware complexity (except
in the first microrotation in which the input operands
are not redundant). The additional hardware of the
architecture proposed in [4] corresponds to the regis-
ters needed for delaying coordinates x and y, and for
performing the skew of the z coordinate. The number
of register rows needed for delaying z and y are the
same as the wordlength of z, that is n + loga(n) + 2.
In the new architecture, the additional hardware cor-
responds to the number of addition and shift stages
needed for the calculation of the scale factor in the
first radix-4 microrotations. We have calculated the
latency assuming double pipelining. For the calcu-
lation of the throughput we have taken into account
that the critical path of the processor proposed in(}4]
is the sum of the delays for loading a register, the de-
lay of a full-adder and the delay of an element for the
calculation of the absolute value.

The cycle time of the architecture we have pre-
sented is less than that of the architecture in [4]. Even
if in our case we consider simple pipelining the cy-



Design stage precision [atency Microrot. Additions Additional Additional
delay x/y in z rows of reg. shift+add.
16 56 17 17 22(x/y) and 1T (2) -
Dawid & | 16.1 32 105 33 33 39(x/y) and 20 éz; -
Meyr [4] 53 169 54 54 61(x/y) and 31 (z .
16 26 I3 7 - 2
New 13.4 32 52 28 13 ~ 3
design 53 90 52 20 - 5

Table 2: Comparison with a high speed CORDIC processor

cle time would be similar, but with a very important
reduction in area due to the removed registers. On
the other hand, the number of stages has been almost
halved and, consequently, the latency is significantly
smaller in our design. The hardware cost of our ar-
chitecture is lower. This is due to the fact that the
architecture proposed in [4] must include many regis-
ter rows in order to delay the z and y coordinates and
to skew the z coordinate. We must take into account
that the area of a register cell is around 67 % the area
of a 4-to-2 carry-save adder [7]. In addition, the pre-
diction algorithm makes the number of additions in
the z coordinate small. On the other hand, the algo-
rithm proposed in [4] can only use radix-2 microrota-
tions with ¢; € {—1,+1}, and thus it is not possible
to reduce the number of microrotations by including
radix—4 microrotations.

Consequently, the algorithm we have presented for
the prediction of the coefficients of the microrota-
tions of the CORDIC algorithm, permits the design
of an architecture for the rotation mode presenting a
low latency and a high speed. The introduction of
radix—4 and radix-2 microrotations with coefficients
0i € {—1,0,41} has led to a reduction of the latency
and the hardware with respect to other implementa-
tions of the CORDIC algorithm. On the other hand,
the introduction of multiple shifts in the first microro-
tations in order to facilitate the prediction has led to
a highly pipelined architecture, achieving a cycle time
that is lower than other high speed implementations.
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