A New VLSI Vector Arithmetic Coprocessor for the PC

Christoph Baumhof
Institut fir Angewandte Mathematik
Universitat Karlsruhe
D-76128 Karlsruhe, Germany

Abstract

A new vector arithmetic coprocessor MIM
XPA3233 with integrated PCI bus interface has been
developed in CMOS VLSI technology. The chip per-
forms dot products of vectors with components of the
IEEE DOUBLE data format to full accuracy or with
only one final rounding. Details on the realisation of
the multiplication, accumulation and carry resolution
processes are discussed. Performance data and some
details about the actual VLSI realisation are presented.
Software support for the coprocessor is available in the
programming languages PASCAL-XSC and C-XSC or
from a special C subroutine library. Programming ez-
amples are shown using PASCAL-XSC and C.t

1 Introduction

In high-performance numerical and scientific com-
putation the summation of products is a frequent task.

The dot product is a basic operation in higher math- -

ematical spaces such as vectors and matrices. In ad-
dition, an exact dot product operation s = a-b =
3 i=1 @i *b; is an invaluable tool for verified solutions of
numerical problems by means of enclosure methods. A
uniform mathematical foundation of computer arith-
metic and verifying algorithms has been developed by
Kulisch [13].

Considering single floating-point operations, the
result defined by the IEEE arithmetic standards [1, 2]
is the best possible result. However, the composition
of a dot product operation from elementary floating-
point operations permits accumulation of rounding er-
rors and catastrophic cancellation of leading digits.
Cancellation of leading digits is inherent in iterative
refinement and defect correction methods.

Using interval arithmetic and an accurate dot
product which are available in scientific programming
languages like PASCAL-XSC [8] or C-XSC [9], enclo-

YThe research and development project presented in this
paper is supported by the Volkswagen-Stiftung, Hannover
{Gemany).

1063-6889/95 $4.00 © 1995 IEEE

210

sure algorithms have been developed for a variety of
numerical problems [6, 12]. IEEE arithmetic supports
the basic operations needed for interval arithmetic.
This paper describes the design of a scalar product
unit (SPU) providing an accurate dot product opera-
tion on a VLSI chip for use in standard microprocessor
systems. The basic operation principle has been pre-
sented in [10].

In PASCAL-XSC and C-XSC, dot product expres-
sions are evaluated using a software library. The SPU
has been projected to replace some of these software
routines by fast hardware operations. One goal of the
VLSI implementation was to achieve the same com-
putational performance of the dot product computa-
tion as the i486 microprocessor using its IEEE floating-
point instructions would have delivered. To fulfill the
requirements of the standard 32 bit PCI bus [15), the
chip operates at a clock rate of 33 MHz. This results
in a peak performance of 6 MFLOPS. Furthermore,
the design was guided by the requirement of a small
gate count to make possible a cost-efficient semicustom
VLSI implementation.

2 Dot product computation using a
Long Accumulator

Many algorithms for the computation of an accu-
rate dot product have been proposed in the past, but
the easiest and most flexible algorithm for a hardware
implementation is the Long Accumulator (LA). The
LA is basically a fixed point register long enough that
the entire dot product computation can be executed
without error. To achieve this, the LA length must be
L = k+ 2emax + 2|€min| + 2! digits of the base b of the
input floating-point format with mantissa length I and
exponent range €min t0 €max. k additional digits are
provided to catch intermediate overflows. After the
accumulation, the exact dot product value in the LA
is rounded once to the destination floating-point for-
mat using one of the four rounding modes described
in the IEEE standard.

In the SPU implementation, the IEEE DOUBLE

2emax l

l 2Ieminl

| JL]

L |

Figure 1: Long Accumulator with double length products

carry (000xxx | xxxxxx | Xx00000 ; 106 bit product
before 0001104110110 ¢111111 111111 {111111{111010110111 010001 { 000000 | LA words
=1 =1 =1 =0 ﬂag bits
after 000110110111 { 111111 {111111 111111 | 000xxx | xxxxxx | x10001 |{ 000000 | LA words
=0 =0 =0 =0 ﬁag bits

Figure 2: Accumulation and carry resolution

data format is used where | = 53 bits, ey, = —1022
and emax = 1023. Choosing k = 92 bits, the LA length
becomes L = 4288 bits. This accumulator is repre-
sented in hardware by a 67 x 64 bit dual ported RAM.

For a dot product computation, the products a; *b;
are evaluated to double length, i.e. with 106 mantissa
bits, aligned to the LA according to their exponents
and then added into the LA (fig. 1).

A 106 bit product mantissa touches at most three
of the 64 bit LA words. The product addition is thus
done in three steps using a 64-out-of-128 bit shifter to
extract the matching product part and a 64 bit carry-
select adder. The carry handling is done with a block
carry-lookahead scheme as proposed in [11, 14]. Each
LA word carries two flag bits indicating “all bits are 0”
and “all bits are 1” for this LA word. So the address
where a carry will be resolved can be generated from
the flags when the start address of the additions is
known (fig. 2). This is performed in parallel to the
three additions.

The flag bits have to be updated on each write
access to a LA word to reflect the current state, and
at each accumulation if a carry is generated and has to
be resolved. In this case, for the LA words that switch
from “=1" to “=0” and vice versa, only the flag bits
are updated to the new value. So on read accesses
to the LA, the flags must be checked first before the
RAM contents is read.

For the rounding, the flag bits are used to quickly
find the two leading nonzero LA words where the 53
result mantissa bits are extracted, and to indicate if

211

there are bits left in the LA to the right of these two LA
words. This information is needed to get the correct
rounding in all four rounding modes.

3 Coprocessor architecture

In fig. 3, the block diagram dot product coproces-
sor is shown. The main components are the PCI bus
interface and a 4 x 64 bit register file for the commu-
nication to the main processor, the multiplier, shifter
and adder to do the multiplication and accumulation
and the LA RAM with the carry resolution logic to
hold the dot product value.

I/O-Interface: The SPU uses the standard PCI
bus to connect to PC’s with Intel 1486 or pentium pro-
cessors. To the main processor, the SPU is a memory-
mapped device. This simplifies the integration of the
SPU into the system. The processor just performs a
sequence of memory read and write instructions which
are interpreted and executed by the SPU. For test pur-
poses, a Weitek EMC interface is also included.

Register file: The register file acts as the inter-
face between the 32 bit PCI bus and the 64 bit ar-
chitecture of the SPU. It consists of four 64 bit words
which are seen by the processor as eight 32 bit regis-
ters. The register file is used to store the operands and
the result of a dot product operation.

Multiplier: The multiplier circuit performs the
53 x 53 — 106 bit multiplication of the input man-
tissas. To achieve a minimum gate count, the multi-
plication is partitioned in four pipeline steps. In each
step, a 27 x 27 bit multiplication is performed, the

PCI bus interface, 32 bit, 33 MHz

32 bit
instruction register file
decode 4 x 64 bit
64 bit
multiplier
/ exponent add
data path shifter
control \ rounding logic
add/subtract
carry logic LA RAM
flag memory 67 x 64 bit

Figure 3: SPU block diagram

four partial products are added in order to get the 106
bit product. The 27 x 27 bit multiplier core uses the
Modified-Booth algorithm and a Wallace tree adder
structure. The partial product addition is done to-
gether with the multiplication steps in the same clock
cycles using a 54 bit feedback input into the Wallace
tree. Thus the 53 x 53 bit multiplication takes 4 clock
cycles total. The addition of the 11 bit exponents is
done with a simple ripple-carry adder.

Shifter: The shifter’s task is to extract the three
parts of the product mantissa for the three additions
into the LA. Three steps are performed: an input
multiplexer switches the right portions of the prod-
uct mantissa to the two 64 bit inputs of the barrel
shifter. The shift width is generated from the product
exponent. The shift is partitioned into a coarse and a
fine shift. Each part is built up with tristate inverters
which are connected like an eight input multiplexer.
The first level shift performs a shift in multiples of
eight bits, the second level shift performs the fine shift
of 0 to 7 bits.

Long Accumulator: The LA together with the
add/subtract unit and the carry logic performs the
accumulation of the shifted product mantissa parts as
explained in section 2. For the add/subtract unit, a
64 bit carry select adder is used.

Rounding: The rounding of the LA contents to
an IEEE DOUBLE number is performed by the same
functional units. The flags are used to find the two

212

leading nonzero LA words. In the 64 bit adder, this
value is converted from the 2’s complement LA repre-
sentation to the sign-magnitude representation needed
for the result. Using a “leading 1” detection circuit,
the shifter is used to extract the first 53 bits that form
the result mantissa. From the LA address and the shift
width, the result exponent is computed. The rounded
value is then put into the register file where the main
processor picks it up.

Control units: The instruction decode unit and
the data path control unit have been designed so that
during a dot product computation, the different func-
tional units of the coprocessor operate in parallel. The
pipelining can be divided into three parts: operand
loading, multiplication and accumulation. All three
parts take roughly the same time, so this results in an
efficient pipelining. The detailed pipelining of a dot
product accumulation is shown in fig. 4.

The main processor does the operand loading (sec-
ond column). The minimum time per 32 bit transfer is
2 clock cycles. Once the four transfers for the two 64
bit operands of a product accumulation are completed,
the coprocessor starts the processing.

In the third column, the operand check and the
mantissa multiplication is performed. In two clock cy-
cles, the two 64 bit operands are checked for IEEE
exceptional values such as NaN or infinity, in a third
clock cycle the necessary action is performed if such
an exception is detected. If both operands are valid
numbers, the four multiplication cycles follow and the
product mantissa is transferred into the shifter input
latch.

In the fourth column, the product shift and accu-
mulation are shown. During the three addition cycles,
the carry resolve address is computed using the flag
values. If the third add generates a carry, the flag bits
are updated with their new values and a fourth addi-
tion cycle is performed for the carry resolution. If no
carry has to be resolved, the carry add cycle is omit-
ted and the “load into shifter” operation in the third
column can be performed two clock cycles earlier than
indicated.

So, the peak performance of the SPU will be one
multiplication and addition every 9 or 11 clock cycles,
at a clock rate of 33 MHz this equals 6 MFLOPS.
The actual performance will depend on the time the
main processor needs to fetch the operands from some
operand source and to transfer them to the SPU.

4 Hardware Design

The SPU chip design has been done using the
Compass EDA tools. As a first step, a VHDL be-

cycle | read exception and mult. | shift and accumulate
1-4 | read z;
5-8 | read ¥y
9-12 | read z, decode+exceptions;
13-17 | read y, multiply,
18 | read z3y, | instruction decode; | shift+load;
19 . test Z2 dl
20 | read z3y | test y2 store; shift+load;
21 . test exceptions add
22 | read y3 1, mult LL, store, shift+load,
23 . mult LH2 addl
24 | read y3 u mult HL, store; update flags
25 . mult HH, load cy;
26 add cy;
27 store cy,
28 load into shifter
29 | read z,41, | instruction decodes | shift+load,

Figure 4: Product accumulation pipelining

havioral model of the SPU has been developed. This
model has been verified by extensive simulations using
the PASCAL-XSC software dot product implementa-
tion as a reference. The gate-level description of the
control logic has been obtained through logic synthe-
sis of the VHDL code. The data path has been con-
structed using standard cells and cell generators.

Large and dense layout blocks (e.g. RAM) consti-
tute a routing barrier for the place and route soft-
ware tools. To improve the routing capabilities of
large functional blocks, a layout compiler with stretch-
able feed-through regions has been written. The im-
proved layout compilers for the dual port RAM and
the carry select adders are able to provide additional
wiring tracks between the bit slices and compacted
building blocks.

The initial placement was done manually for the
big blocks like register file, multiplier, shifter, accu-
mulator and rounding. The other cells were placed
automatically by the place-and-route tool.

The SPU has been fabricated as a 0.8 u CMOS
sea-of-gates ASIC (Gate Forest [3]). The die size is
about 11 x 11 mm®. On this area, there are about
200000 active transistors. The largest blocks in the
layout are the accumulator memory and carry res-
olution logic with about 74000 transistors and the
27 x 27 bit multiplier and partial product summation
with about 50000 transistors.

5 Software support

The PCI interface on the SPU chip provides a
memory mapped connection to the main processor.

213

During startup of the system, the SPU requests a
memory block of 4K bytes. SPU instructions are en-
coded into the addresses in this 4KB block of memory,
so the main processor simply performs memory read
and write instructions to execute SPU commands.

The SPU instructions are basically read and write
access to the register file, to an internal status register
and to the LA memory, reset the accumulator to zero,
add or subtract a product, and rounding of the LA
contents. The read and write instructions are used to
save and restore the state of the SPU, while the “clear
LA”, “add product” and “round” instructions are used
to perform a dot product computation. To the main
processor, these instructions look like memory accesses
to different addresses in the 4KB SPU memory win-
dow.

In the programming languages PASCAL-XSC and
C-XSC, SPU support is directly available by using the
appropriate compiler. Whenever an accurate dot prod-
uct evaluation is requested, the compiler uses the SPU
to do the computation. In figure 5, a short program
excerpt to compute the dot product of two vectors is
shown using PASCAL-XSC in explicit and in operator
notation, in C using standard IEEE arithmetic, and in
C-XSC. The PASCAL-XSC and C-XSC versions use
an accurate dot product evaluation either in software
or on the SPU chip.

The first PASCAL-XSC example uses an explicit
notation for accurate dot product expressions using
the PASCAL-XSC # construct. This tells the com-

piler to evaluate the expression exactly, the asterisk
specifies round-to-nearest for the result. In the sec-

PASCAL-XSC: PASCAL-XSC:
var a,b: rvector(1..100}; var a,b: rvector[1..100);
c: real; i: integer; c: real;

c:=#=x(fori:=1to 100 c := axb;
sum afi]«b[i]);

C: XSC:
double af100],b[100],c; rvector a(100),b(100);

int i; real c;

for (c=0,i=0; i<100; i++) ¢ = axb;

¢ += afijebfi;

Figure 5: PASCAL-XSC, C-XSC and C dot product computation

ond PASCAL-XSC example, the operator notation is
used for the vector dot product. The vector multipli-
cation is a predefined operator in PASCAL-XSC. In
both examples, essentially the same code is generated,
so there is only one entry in the timing table below.

In the C-XSC example, the predefined vector data
type “rvector” is used. The multiplication uses the
accurate dot product operation either in software or
using the SPU, just like PASCAL-XSC.

The C example shows the traditional way of per-
forming a vector dot product. Here standard IEEE
multiply and add operations are used to calculate the
result. If n is the vector length, 2n — 1 roundings are
performed during this computation in contrast to one
rounding in the other examples using the accurate dot
product.

The following table displays execution timings for
the four example programs. The indicated time is the
time for one calculation of a dot product of the length
100. All times are in ms. The measurements have
been done on an Intel i486 PC system using Borland
C++ version 3.1 and the PASCAL-XSC and C-XSC
versions for this C compiler.

| software | SPU | IEEE

PASCAL-XSC 23.01 | 0.39
C-XSsC 21.71 | 0.39
C 0.38

Table 1: Example execution times

As can be seen, the accurate evaluation via the
SPU is about as fast as the (incorrect) evaluation via
standard IEEE arithmetic. The software implementa-
tions for the accurate dot product in PASCAL-XSC
and C-XSC are slower than the SPU by a factor of
about 60.

As another example, the verifying linear system
solver of PASCAL-XSC has been recompiled to make
use of the SPU. In this case, the SPU version of the
linear system solver is about 5-7 times faster than

the original version using the software dot product of
PASCAL-XSC.

6 Conclusion

The SPU chip presented in this paper is a vector
arithmetic coprocessor for use in PC systems. For the
data format IEEE DOUBLE, it provides the accurate
dot product operation and it supports the computa-
tion in vector and matrix spaces on the computer. The
chip architecture consists of a fixed point summation
register, the carry resolution is done in two steps. It
connects to the PC via the PCI bus or via the Weitek
EMC socket.

The SPU chip is the first hardware implemen-
tation of the arithmetic demanded by the GAMM-
IMACS “Proposal for Accurate Floating-Point Vector
Arithmetic” [5]. It fulfills all the requirements of this
proposal. The SPU processes IEEE exceptional values
such as infinity or NaN, IEEE traps or interrupts are
not supported at this time.

The coprocessor eliminates the speed penalty of
existing software algorithms for the computation of an
accurate dot product while it is always accurate com-
pared to dot product evaluation via IEEE floating-
point arithmetic.

References

[1] American National Standards Institute, Institute
of Electrical and Electronics Engineers: IEEE
Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Std 754-1985, New York, 1985.

[2] American National Standards Institute, Institute
of Electrical and Electronics Engineers: IEEE
Standard for Radiz-Independent Floating-Point
Arithmetic. ANSI/IEEE Std 854-1987, New York,
1987.

[3] M. Beunder: The CMOS GATE FOREST: An
Efficient and Flezible High-Performance ASIC
Design Environment. In: IEEE Journal of Solid-
State Circuits, vol. 23, no. 2, April 1988.

[4] G. Bohlender: What Do We Need Beyond IEEE
Arithmetic? In: Ch. Ullrich (ed.): Computer
Arithmetic and Self-Validation Numerical Meth-
ods, Academic Press, New York, 1990.

GAMM-IMACS: Proposal for Accurate Floating-
Point Vector Arithmetic. In: Mathematics and
Computers in Simulation, vol. 35, no. 4, IMACS,
1993.

R. Hammer, M. Hocks, U. Kulisch, D. Ratz: Nu-
merical Toolboz for Verified Computing. Volume
I: Basic Numerical Problems. Springer-Verlag,
New York, Berlin, 1993.

[7] J. Kernhof et al.: A CMOS Floating-Point Pro-
cessing Chip for Verified Ezact Vector Arithmetic.
20th European Solid-State Circuits Conference,
Ulm, 1994.

(8] R. Klatte, U. Kulisch, M. Neaga, D. Ratz,
Ch. Ullrich: PASCAL-XSC Language Refer-

ence with Ezamples. Springer-Verlag, New York,
Berlin, 1992.

[9] R. Klatte, U. Kulisch, C. Lawo, M. Rauch,
A. Wiethoff: C-XSC. A C++ Class Library for

215

Eztended Scientific Computing. Springer-Verlag,
New York, Berlin, 1993.

[10] A. Knofel: Fast Hardware Units for the Compu-
tation of Accurate Dot Products. In: Proceedings

of the 10th Symposium on Computer Arithmetic,
IEEE Computer Society, 1991.

[11] A. Knofel: Hardwareentwurf eines Rechenwerkes
fiir semimorphe Skalar- und Vektoroperationen
unter Bertcksichtigung der Anforderungen veri-
fizierender Algorithmen. Ph.D. thesis, University
of Karlsruhe, 1991.

[12] U. Kulisch, W.L. Miranker: A New Approach to
Scientific Computation. Academic Press, 1983.

[13] U. Kulisch, W.L. Miranker: Computer Arithmetic
in Theory and Practice. Academic Press, New
York, 1981.

(14] M. Miiller, Ch. Riib, W. Riilling: Ezact Accumu-
lation of Floating-Point Numbers. In: Proceed-
ings of the 10th Symposium on Computer Arith-
metic, IEEE Computer Society, 1991.

[15] PCI Special Interest Group: PCI Local Bus Spec-
ification, Revision 2.0. April 30, 1993.

