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Abstract

Several systematic design approaches are known to be
representatives of the techniques well adapted for testing
sequential circuits (partial and full scan, LSSD ... ).
However in some cases, like for the test of on-line
operators, ad-hoc DFT (design for testability) schemes
become more suitable. Indeed, on-line arithmetic are used
Sor high precision numbers resulting on high length
operators. Thus the length of a test sequence for a scan
design approach can grow quite large due to the shift in
(shift out) of test values (test responses) and therefore the
test application time would become prohibitive. Moreover,
the arithmetic nature of these operators imply that some
errors detected locally are masked before their observation at
the primary outputs.
In this paper we describe an analytic approach for testing
on-line multipliers that allows to avoid error masking
without adding extra hardware Jor internal state
observability while maintaining a 100% Jault coverage.
Compared to a DFT approach using parity trees, this
method leads to a reduction of the area overhead from 7% to
1% and of the extra pins count from 6 to 3 in the case of
the on-line multipliers considered in this paper.

1. Introduction

On-line arithmetic principles were introduced by Ercegovac
and Trivedi in 1977 [1,2]. In this arithmetic, operands are
serially introduced starting from the most significant digit
MSD. Consequently, the MSDs are first obtained in the
result, and can thus be exploited while computation is still
in progress. This allows dynamically pushing the
computation precision to any extent as well as a high
degree of parallelism when many operators are pipelined.
The interest of serial operators, whether most significant or
least significant digit first, in signal processing applications
has been widely published [3-8]. However serial least-
significant-digit-first operations are limited to addition and
multiplication, whereas on-line arithmetic allows the
computation of the most common mathematical functions
[9-13].
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The test of on-line multipliers was first investigated in
[14]. Due to the serial nature of the inputs and outputs, the
observability and the controllability are very low and that
linear test lengths (j.e. proportional to the operands size) are
necessary when traditional test techniques of sequential
circuits are to be used (partial and full scan path [15-17]).
Since the size of the operands is generally large, the test
application time would be unacceptable.

Moreover, some errors detected locally in the multipliers
cells can be masked before been observed at the primary
outputs.

Efficient ad-hoc DFT (design for testability) techniques can
be used to cope with the problems of observability and
controllability at a low area overhead price (close to 7% of
the original circuit) and few additional pins (three inputs and
three outputs) [14]. In these schemes, most of the area
overhead involved is due to the addition of parity trees
utilised for avoiding error masking.

We propose in this paper a mathematical model and
analysis for the error masking occurring in this class of
multipliers. In this model, an arithmetic value is associated
to each error and the condition of error masking is described
by an equation called Error Masking Equation.

Then, we give the necessary conditions to be verified by the
test patterns in order to avoid error masking (repetition of
test vectors) and we derive test pattern structures such that
all the possible errors cannot belong to the space of
solutions of the Error Masking Equation. From these
structures, actual test patterns are determined.

This way, the parity trees used in the previous DFT scheme
[14] can be totally suppressed and only DFT for enhancing
controllability (i.e. reducing test length) is required.

This analytical approach results in an area overhead lower to
1% and in adding only three extra inputs while maintaining
a 100% fault coverage.

2. On-line multiplier

An on-line operator performs a serial operation starting
with the most significant digit first. The on-line n}gloﬁpﬁer
(Fig. 1) multiplies an n-digit multiplicand A = X a; 21
by an n-digit multiplier B = ::(1) b; 21, Bach a; and b;
(0<i<n-1) is a Signed Binary Digit (SBD) € {-1, 0, +1}
coded as a difference of two bits. So the three values of aj



and bj are -1 (0,1), 0 (0,0) or (1,1) and +1 (1,0).
This representation allows carry-propagation-free addition.
The on-line multiplier is composed of three main parts :

a Partial Product Generator, a Sequential Array of Parallel
Adders and a Serial Adder (Fig. 1).
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Figure 1- The on-line multiplier
The partial product generator contains: the latches, the flip-
flops FF and the SBD multipliers (® Fig. 2). The latches
store, one after the other, the signed digits inserted serially
in the primary inputs A and B; the flip-flops are arranged in
a string where the control pulse "Run" is propagated to
command the latches, and the SBD multipliers perform, at
each clock pulse, the partial products of the signed digits
(stored in the latches) by the incoming digits.
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Figure 2- The partial product generator

The sequential array of Parallel Adders "PA" is represented
in Fig. 3. In this figure, all the signal lines represent two
bits. The basic cell of the array is a parallel adder composed
of four PPM cells represented in Fig. 4a The equations of a
PPM are given by Fig. 4b. The delay elements of the array
(boxes with A) store the intermediate results.

Finally the Serial Adder "SA" of Fig. 3 has nearly the same
structure as the PA since it is composed of the same basic
cell but has no vertical inputs and only two outputs. It is
also the single element that has observable outputs.
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Figure 3- Array of Parallel Adders and Serial Adder
3.

The fault models adopted for each element are as follows:
- For flip-flops and latches we consider a fault model which

Fault model and testing requirements
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includes stuck-at faults and transition faults.

-For PPM and SBD multiplier cells we consider a
functional model such that under a fault the function of the
cell can be modified to any other logic function. The model
considers however that the combinational function of the
cell cannot be transformed into a sequential one.

We also assume that the fault is permanent , and that at
most one element of the circuit is faulty at the same time
(The Single Faulty Cell Model is widely used for the test of
regular arrays).

Covering the fault model requires to test exhaustively all
the PPMs and SBD multipliers and to propagate the
eventual errors to the primary outputs.
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Figure 4- (a) The Parallel Adder (b) The PPM cell table

4. The DFT approach

In the following, we first describe briefly the DFT
techniques proposed in [14] for the test of the multiplier.
The observability and controllability of the circuit are very
low, since it has few inputs and outputs on the one hand
and on the other hand, the serial structure of the partial
product generator is not useful for application of periodical
test patterns (i.e. deep sequentiality). A way to increase
these two factors is to modify the on-line multiplier for
improving its testability (Design for Testability).

Controllability : Some slight modifications have been made
to the partial product generator originally designed, in order
to enhance the parallelism of this structure (Fig. 5). These
modifications allow to provide to the sequential Array of
Parallel Adders, a set of partial products that offers a regular
structure in terms of test patterns : all the partial products
are equal or every two partial products are equal. These
modifications are :

- two extra inputs SET and TEST, and two latches TA and
TB, which are added in order to store during the whole test
the neutral element of the SBD multiplication. This
modification, added to the duplication of bus B, allows to
provide regular patterns to the inputs Din and Ein of the
Paralle] Adders.

- an AND gate is also added to allow the temporary
inhibition of sequential array's flip-flops.

- three multiplexers, a scan path chain with six flip-flops
and an extra input are inserted to allow the controllability of
the lateral inputs Aing, Bing and Cing of the parallel adder
PAy. In the unmodified array these inputs are grounded.
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Figure 5- The DFT modifications

Observability : The errors can be recombined and masked
before they reach the observable outputs since several clock
cycles are needed to propagate them. An error masking
occurs in the sequential array of Parallel Adders when a
manifestation of a fault is deleted by another error produced
by the same fault activated some clock cycles later.

An example of error masking is shown in Fig. 6. We can
see that the faulty cell PPM2 of PAi, generates two faulty
values at two successive clock cycles (1 — 0 in output s at
cycle jand 1 — 0 in output c at cycle j+1) resulting in an
error masking at PPM4 of PAi+1 in cycle j+1. We can see
in Fig. 6 (cycle j+1) that the outputs of PAi+1 are fault
free.
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Figure 6- Example of error masking

A way to avoid this kind of masking is to insert parity trees
that catch errors before masking. The considerations that
determine the number of trees and the nodes to observe are
exposed in [14].

The area overhead (in terms of transistors) and the extra pin
count of the DFT modifications used for enhancing both
observability and controllability are given in column 3 of
table I.

Most of this area overhead is due to the parity trees added
for enhancing observability. If we use only the circuitry
added for enhancing observability, the area overhead
becomes insignificant. In this paper we propose an analytic
approach that aliows to derive test patterns avoiding error
masking so the required DFT area overhead becomes less
than 1%.
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Design For Testability
Contmol + Gbsary. Control
Area n=1024 6.84 % 0.64 %
overhead | n=512 6.86 % 0.66 %
n=128 6.89 % 0.69 %
Extra input pins 3 3
Extra output pins 3 0
Table I

5. The analytic approach

In this section, an analytical approach of error masking in
the sequential array is presented.

5.1. The Error Masking Equation.

Let us consider a fault in a PPM cell for a given input test
vector T. The arithmetic values of the error on one output
can be +1, -1 or 0 (e.g. in the case of an error 0—1 in an
output with positive sign the error is +1). For each cell, the
weight of the output ¢ (carry output) is twice the weight of
the output s (sum output). For a PPM cell belonging to the
mth cell (PAm) these values are multiplied by 2™. Thus,
the arithmetic value of the error produced on the outputs of
the faulty PPM cell when the vector T; is applied on the
cell inputs can be written (s;+2c;)2™ with s;,c; € {-1,0,+1}.
The weight of the arithmetic value of a signal produced by a
cell at time t: is twice the weight of the arithmetic value of
the same signal produced at time t;, ;. Thus if we consider
a test sequence ToTT5...Ty_ Ty, the arithmetic value of
the errors produced by the fauity cell can be written
2M[(s0+2co)+21(s+2¢ )+22(sy+2¢))+.... +2K(s, +2¢p ).
The error will be masked when this value is 0. Thus we
obtain the equation : '
(So+200)+2 (Sl+2(:1)+22(82+202)+...+2k(Sk+20k) =0 (1)
which will be called the Error Masking Equation.

If there is a fault such that : when one applies the test
sequence, the error vector produced by the faulty cell
belongs to the space of solutions of the error masking
equation, then, the error will be masked and the fault is not
detected. For instance, in Fig. 6 the error masking occurs
since s; =0, ¢; =+1, s;,1 =-1 and ¢;,; =0 verify the equation
(1). Several other solutions exist for this equation (e.g.
s; =0, ¢; =+1, s;,1 =+1, ¢4 =-1; 5§ =0, ¢; =-1, s;4) =+1,
Ci41 =1, 8i42 =1, cjyp =+1,...etc). In order to avoid this
kind of situations, we can use some constraints on the error
values c; and s; of the equation (1). These constraints can be
obtained from the fault model, the function of the cell and
the test sequence.

Fault model error constraints : For a given fault model like
for instance the stuck-at fault model and for a given cell
implementation, it should be possible to derive error value
constraints. However, the fault model considered in the
paper admits that, under a fault, the cell function can be
changed to any possible function. Thus the fault model does
not imply any constraint on the error values.

Functional error constraints : Let us consider, for example,
that the output c of a cell has a positive sign and the output



s has a negative sign. For an input vector T;j let ¢;=0 and
si=0, then, the error values of c;j can be +1 (error 0—1 on ¢)
or 0 (no error on c), and the error value of sj will be -1
(error 0—1 on s) or 0 (no error on s). Then the input vector
T; for which the correct outputs are 00 can be represented as
Top and the possible error values on ¢ and s are {0,+1} and
{-1,0}. This can be written as T {0,+1}{-1,0}. Similarly
we can derive the possible errors for input vectors
generating the correct output 01 and so as for the correct
outputs 10 and 11. The complete list will be :
Too{0:+1}{-1,0}; T {0,+1}{0,+1}; T;({-1,0}{-1,0} and
T11{-1,0}{0,+1}. Similarly we can obtain the error
constraints for the cells for which ¢ has a negative sign and
s has a positive sign, and so on.

Proposition 1 : If no test vector is repeated in the test
sequence, then, the functional constraints can not avoid the
error masking.

Proof : Let us consider that the ¢ output of the faulty cell
has positive sign, and the s output has negative sign (the
proof is similar for the other cases). Let us consider a fault
such that the faulty cell produces output error only for the
test vectors Tj and Tj;1. Then the error masking equation
giVCS (Si+20i) + 2(Si+1+2Ci+1) =0 » 8i» Ci» Si4+1> Ci+1 €
{-1,0,+1}. This equation has the following solutions :

${ =Cit1 =0, ¢cj=-5;41 € {-1,41} (2)
$i =0, ¢{ =8j41 =-Cj41 € {-1,+1} (3)
From the functional error constraints, the couples i and i+1
which do not verify the solutions described in (2) are
TooTo1- TogT11> To1To1: To1T11: T1gTog. T10T 10
Ty1Tgg and T T} and within these couples the only one
which do not satisfy the solutions described in (3) are
T00T01’ T01T01, TIOTIO and TllTIO' Therefore, any two
consecutive vectors must form one of the couples TpoTpy,
To1To1» T19T 19 or T11T1g- This corresponds to the
transition diagram of Fig. 7. A sequence which follows this
diagram can not include all the input vectors of the cell. But
for the considered fault model the cell must be tested for all
the input vectors. Q.E.D.

Figure 7- Test vector diagram

Test sequence error constraints : the test sequence can
introduce supplementary error constraints if some test
vectors are applied several times : if the test vector i is
equal to the test vector i+k, then we have the constraint s; =
Si+k and ¢; = 4. Since the fault model constraints and
the functional error constraints cannot avoid fault masking
it is necessary to introduce test sequence constraints. Thus

some test vectors.

The space of all the possible sequences is very large and an
exhaustive analysis of this space is very complex. In order
to limit this complexity we will consider here test
sequences with regular structures. An interesting regular
sequence is the Up/Down sequence: Ty, Ty.
100-12:T1,TgT, T, Ty, ....,Ty_ 1, T which applies one
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test sequence in a given order and then in the reverse order.
Another sequence is the n-replicant vector sequence :

TO{TO" . ‘TO’TI ’Tl gooe "Tl ,T2,T2,. "”ITZ’Tk-l ka-l yooany Tk—l_ ’Tk‘Tk”:’Tk m
which each vector appears n times in consecutive positions.

5.2. The Up/Down sequence.

Let us consider the Up/Down sequence. We can check easily
that this sequence does not verify neither the solutions (2)
nor the solutions (3) given previously. Thus the error
masking equation has no solution in the case where the
errors appear in only two consecutive vectors T;,Tj, . Also
we can check that there are no solutions in the case where
the errors appear in three consecutive positions.
Unfortunately there are solutions when the errors appear
within four or more consecutive positions. Following are
the ¢;'s and s;'s values corresponding to some of these
solutions; with k+4 being the consecutive positions in
which the errors occur (k > 0)

\ Tt T Tivk+1 Tivk+2
ci's D P P P o 5 e
si's 0 -p +p HPurverrn +p +p -p0

k positions (k > 0)

5.3 The n-replicant vector sequence.

Let us consider now the n-replicant vector sequence
ToTo-- ToT1,Ty... Ti T Ty... Tp Ty 1 Tieoq -+ T T Tk Tk
Proposition 2 : There is no solution of the error
masking equation of the n-replicant vector sequence (n 2 2).
Proof: The error masking equation of this sequence is

(s0+2c0)+2(sg+2c)+...+207 1 (sg+2c)+20(s  +2¢1 )+

2041 (5, 42¢ )+ 42207 1(s +2¢ )+

+2Kn(5 +2¢ )+ +2&FD01(5, 496,y = 0

e(XI=D 20)(A(+20A +220A 5+ +2K0A ) = 0 where

Aj =si+2ci & (AgH2PA+220A 5+, +2KNAL) = 0

We have that 3 i : ;#0/¢;#0 (otherwise the circuit is not
faulty), let r be the greater among these i. Then we must

have A0O+2nA1+22nA2+...42mAr=0 (4).

Since s#0/¢#0 and s;,c; € {-1,0,+1} then

A, #0and 2T0A | > 20 (5).

On the other hand IA(+20A | +220Ay+. +2(T-DRA |

< 3(1+2042204, 42(-Dny = 3[(2myr-1]/(20-1)

< 2™M.1 sincen>2 (6).

From (5) and (6), the equation (4) can never be satisfied.
Q.ED.

Note that the only constraint considered in the proof is that
the test sequence has the structure of a n-replicant sequence.
Thus there are no constraints concerning the sequence
TTT;... T Ty from which the n-replicant sequence is
derived. Any test vectors and any ordering can be used
within this sequence and some vectors can be repeated (e.g.
T =T or Tp=T1). A particular case of the n-replicant
sequence is the twin vector sequence in which n=2. This
sequence has the form ToToT T



5.4. The twin n-vector sequence.

Another regular sequence is obtained by duplicating a
subsequence of n vectors instead of duplicating each vector.
'I‘hissequencewillbecalledminn-vecuxsequence,andhas
the form (ToTl---Tn-lToTl---Tn-l)(TnTn+1---T2n~
lTnTn+l-~-T2_n-l) ""(TknTle-l"'T(k+l)n-l)' For the
shake of clarity the n-vector subsequences are put in
parenthesis. We can note that the twin sequence is also a
particular case of the twin n-vector sequence in which n=1.
The error masking equation of an twin n-vector sequence
can be written as :

@+ 1){[(sg+2c0)+2(s1+2cy)+.. 42071 (s, +2¢, )1+
2200(s 2 )+.. 4201 (55 1 42c50 ...

22O (ot 2y 420Uy 13 1421 190D} =0,
< Mo+220My +....+22inM;4+
where Mi = (Sin+20in)+...+2n'l(S(i+1 )n-l+2°(i+l)n-l)'

ie {0,1,..k} (7).
Proposition 3 : If there is an error masking with a twin
n-vector sequence it can only happen within the n-vector
subsequences.

Proof: We need to show that there is no solution of the
equation (7) except the solution Mg=M|=..=My=0 (8).
Let r be the greater i such that M;#0. The equation (7)
becomes Mg+220M +....+22i0M;+.....+22MM =0, Since
M0 we have [22r0M,| > 22m (9).
On the other hand IMjl < 3(1+2+...420-1)=3(2R .1) and
thus Mg+22M+...+22i0M;+. . +220-D)nM, ) < 3(20-1)
(142204 4220(-1))=320 _1)(220r.1y/(220. 1y<22m 1 ( (),
From (9) and (10) the equation (7) has no other solution
than the solution (8).

This means that errors can be masked in the twin n-vector
sequence, if and only if, they are masked within each
n-vector subsequence they occur. Q.ED.

Thus the solutions of the error masking equations of the
n-vector subsequences give the solutions of the twin
n-vector subsequences. It is desirable to minimise n, since
the greater it is, the larger are the number of solutions. For
n=1, we have the twin sequence for which there is no
solution (proposition 2).

5.5. Sequences concatenation.

Proposition 3 can be generalised as follows :

Proposition 4 : If we concatenate several twin n-vector
sequences (where the n can take any value), then, errors
detected within the twin n-vector sequences cannot be
masked when ing these sequences.

Proposition 5 : If any sequence is applied and then is
followed by any twin n-vector sequences, then the errors
detected within the twin n-vector sequences cannot be
masked in the whole sequence.

Proposition 5 is a generalisation of proposition 4 and thus
we only need to prove the former one.

Proof: Let consider the sequence S1S2.....Sq where S; is a
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twin nj vector sequence (with n;>2). Let Sr be the
rightmost sequence having error masking values different
from 0. By reusing the notation of (7) we can write the
error masking equation of Sr as follows:

(27+1)[Mq+2201M +... 42210004 422Kn0M, ] = 0
where Mi = (sinr+2cim')+"'+2n-1(s(i+l )nr-l+2°(i+l)m'- l)’
ie {0,1,...k},n, 22, k22,

The Error Masking Equation of the whole sequence
S$18S2.....Sr is thus: (so+2¢o)+2(s1+2c1)+...+2x(sy+2c
+2X+1 (2014 1) Mg+2200My +.....+22KA0N = 0 (7).
where x and y can hold any value. Now we have (12):
2%+1 (2074 1)[M+2200M ) +...+22knrM, )[>2%+1 (2054 1)>5,
2’“‘1I(s0+2co)+2(s1+2,c1)+...+2"(sy+20y)ls3(2"+l-l) (13).
From (12) and (13), the equation (11) has no other solution
than the solution of each twin n; vector sequence. Q.E.D.

y)

From the sequences presented above, the n-replicant vector
sequences allow complete avoidance of error masking since
their error masking equations have no solutions.
Unfortunately, as shown below, it is not possible to apply
a sequence which has this structure for all the PA cells of
the array. In the following we will represent by IS‘(i) and
OSX(t,), the input and output states of the Parallel Adder
cell P"Ai at the clock cycle t.

Proposition 6 : There is nio input sequence which apply
the n-replicant vector sequence to all the PPM cells of the
array and which tests these cells.

Proof : Let us consider the cells PAi and PAi+1. An input
sequence which applies a twin vector sequence to the PPM
cells of PAi and PAi+1 applies also a twin vector sequence
to PAi and PAi+1. Therefore it applies the same input state
ISi*1(t) to PAi+1 during clock cycles 9 and t;, tp and t3,
t4 and 5 etc,.. Thus IS1*+1(tg) = IS+ (1)), ISi+1(ey) =
1Si+1(t3), 1S1+1(ty) = ISi+1(t5) etc... Also it applies the
same inputs (external and state inputs) on PAi during ty and
t1, t2 and t3, t4 and t5 etc... The output states of PAi will
be therefore OS'(tg) = OS!(ty), OSk(tz) = OSI(t3), OS'(t4)
= OS(ts) etc... . )

Since due to the de_la{' elements A, 08‘{;;):18""10-,.1? we
find ISi*+1(1y) = ISH1 (1), 1S+ (t3) = 1S+ eg), 1851 5
=Ist*lg)etc : : :
Thus we have ISH1()=ISi+1 (1) = ISi+1(ty) = IST+1 (1)
= IS+ () = IS+1(ts) etc... Therefore we apply always
the same input state to PAi+1 and the PPM cells cannot be
tested. This proof can be generalised easily to any
n-replicant vectors sequence. QED.

Similarly by considering the input and output states of the
PA cells, we can show that there is no input sequence
which applies the Up/Down sequence to all the PPM cells
and which tests these cells. As a matter of fact we will
construct the test sequence by using the twin n-vector
sequences with n 2 2. As we have seen before, error
masking cannot be completely avoided within these
sequences. Also we have seen that the error masking is
reduced if n is held low. Thus we will use preferable
sequences with n=2.



Our goal remains, however, to avoid error masking
completely. This goal will be reached as follows. We
concatenate a twin 2-vector sequence with a twin 4-vector
sequence such that :

a- the error masking equation of the resulting global
sequence can have, as solutions, only the solutions of the
error masking equations of the above two sequences.

b- none of the solutions of the error masking equation of
one sequence is also solution of the error masking equation
of the other sequence.

Concretely the point (a) has the following meaning : if we
concatenate a sequence with error masking equation A = 0
with a sequence with error masking equation B=0 then the
error masking equation of the new sequence is A+2TB=0
(r is the length of the first sequence). Thus the solutions of
A=0 and B=0 are again solutions of the new equation, but
we also have the additional solutions A#0, B#0 and A=-2TB.
The point (a) requires that there are no additional solutions
but from proposition 4 point a) is verified automatically
and we just need to construct the sequences in such a way
that point b) is also verified.

6. Test sequence for sequential array

Let us now present the strategy used for generating the test
sequence for all the PPM cells of the array. The first goal is
to test exhaustively the PPM cells of all the PA cells. A
way to do that is to generate a test sequence having this
property for a PA cell, and to apply this sequence to all the
PA cells of the array in parallel. This means that we will
apply at each time the same inputs (external and state) to all
the PA cells. Due to the relationships of the output state of
PAi with the input state of PAi+1, such a sequence cannot
test the PPM cells (see [14]). Another less constraining
technique is to derive a sequence for two consecutive PA
cells (e.g. PAi, PAi+1) and to apply this sequence to all the
couples of PAi cells in parallel.

Since in that case the output state of a couple of PA cells is
the input state of the next couple, the whole array can be
represented as an automaton composed of two PA cells and
a feedback loop (dotted lines corresponding to looped around
signals of the PAs) as shown in Fig. 8. The test sequence
will then be derived from the state transition diagram of the
automaton of Fig. 8. This diagram is complex, for
simplicity in Fig. 9a and 9b we present only the parts of
this diagram used for deriving the test sequence.

Fre Foen
Lodd lven 44
T ’ PAodd N PAeven :,
L :
- ) U, |

Figure 8-The automaton of two PAs

The problem is to design a twin two-vector sequence and a
twin four-vector sequence such that for each PPM cell none
of the solutions of the error masking equation of the first is
a solution of the error masking equation of the second. Each

solution of the first equation is obtained by concatenating
the solutions of each vector couple. This combined with the
functional constraints limits the number of solutions to 48
(the number of vector couples is 8). Similarly the number
of solutions of the twin four-vector sequence is 1042 (the
number of vector four-tuples is 2). Supplementary
constraints can be introduced by using the same PPM input
values in the two sequence. These constraints must ensure
the disjointness of the solutions of the two equations.

First we have constructed the twin two-vector sequence and
then, the twin-four vector sequence has been derived by
selecting the values that ensure this kind of constraints.

The obtained sequences ToTT5...T14T15 (derived from the
diagram of Fig. 9a) and T1¢T17T18T19T20T21T22T23
(derived from the diagram of Fig. 9b) are used for deriving
the twin 2-vector sequence ToT1TgT1...T14T15T14T15,
and the twin 4-vector sequence

T16T17T18T19. T16T17T18T19T20T21 T2 T3 Too T2 T2o T3,

Each vector Tj includes the external inputs Eoqq and Eeyep,
the state input SRodq and SReyep, and the internal inputs
Iodd and Ieven applied to each PAodd and PAeven cell. The
values of these signals are given in table II for the twin 2-
vector sequence and in table III for the twin 4-vector
sequence. We note that the values of the signals SReyen
and SRyqq at time t correspond to the values generated by
PAodd and PAeven at time t-1. The values T;j' used in the
state transition diagrams of Fig. 9a and 9b are the values
(Eodd-Eeven) corresponding to the vector Ti. In Fig. 9a we
note that, starting from the initial state (SReyen,SRodd) =
(00,00) and applying the vectors T’ and T;', we come back
to the state (00,00). Thus, we can apply again T¢' and Ty’
and we come back again to the state (00,00). Similarly we
can apply twice the other couples of vectors Ty, T3'etc...
to obtain the whole twin 2-vectors sequence. At the end of
this sequence, we are again in the state (00,00) and, then,
from Fig. 9b we can check that we can apply the twin
4-vector sequence in a similar way.

Figure 9a- Transition diagram for the twin 2-vector

As we have shown previously (propositions 3 and 4)
masking can occur only inside each couple TgT{, T2T3 etc
and only inside each 4-tuple T16T17T18T19,.T20
T21T22T23 of the twin 4-vector sequence. To avoid this
masking, we must ensure that there is no any other
solution than the all 0's one, which satisfies all the error
masking equations corresponding to these couples and
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4-tuples. The solutions of the above equations for all the 8
PPM cells of the automaton of Fig. 8, have been computed
automatically. It results that none of the equations of the
above couples satisfies the equations of the 4-tuples. (These
results cannot be detailed here because of space reasons.)
Thus, point b given in the previous section is satisfied and
error masking is avoided.

Figure 9b- Transition diagram for the twin 4-vector

Finally we note that we have considered above that we were
having a complete controllability of the inputs Eodd and
Ecven of the automaton of Fig. 8. In practice the array is
accessed through the four primary inputs of the multiplier
(see Fig. 1). However the DFT techniques of Fig. §
enhance the controllability and allow to apply the test
sequences. As we have seen, these modifications require less
than 0,7% hardware overhead.

Coupleof| PA odd PA even
test vector Iodd | SRodd| Eodd Ievgn_s v n
To (1100 00 [1100[0011] 00 [1111
Ty (1010 00 |1010]/1010] 11 | 1010
{,2 0000 00 [0100[0001| 00 | 1100
3 [1010] 10 (11101110 01 [1010
T4 [0011] 00 [1001 | 1100| 00 |O110
Ts Jo110] 11 |1010[1000] 00 | 0001
Te [1001| 00 [0111[0110| 00 | 0010
T7 jo110| o1 |o0010]| 1000| 10 | 0000
Tg (0111 00 [1110[1001| 00 | 0101
To 11000| 11 |ooo01]o0110] 11 [1010
Tio (1100] 00 |1110[{0001| 00 | 1001
Tii [1000] 10 |1011)1110] 01 [1111
Ti2 [0001] 00 [0101]0100| 00 |0000
Ti3 [1110] o1 |1011f1010] 10 [1011
Ti4 [O111] 00 [0001] 0111 00 |0001
Ti5 10000] 11 [0000|/0000| 11 |0000
Table IT

7. Completing the sequence

The sequence derived previously tests the array of parallel
adders, and also detects any eventual error of the serial adder.
However, it does not test the partial product generator, since
the SBD multipliers are not tested exhaustively.

The sequence of this part must test exhaustively each SBD
multiplier cell of the partial product generator, and must
avoid also error masking. Each SBD cell generates a signed
binary digit encoded on two outputs A and B. The weights
of the signals A and B are respectively -1 and +1, thus
AB=00 and AB=11 encode the value 0, AB=01 encodes the
value +1 and AB=10 encodes the value -1. From this
representation it results that the arithmetic value of an error
on the output A has the value a € {0,+1}, and the
arithmetic value of an etror on B have the value be {-1,0}.
For a fault affecting an SBD multiplier cell, the error

masking equation corresponding to a test sequence
TOTITZ"'Tk-lTk is (a0+b0)+2(a]+b1)+...+2k(ak+bk). For
the twin vector se-quence TOTOTITI---Tk- 1Tk_1Tka we
have the equation 3.

[(ag+bg)+4(ay+by )+...+4K(ay +b,)] =0 & X + 4X; + ... +
4kX, = 0 with X; = aj+bj and -1 S X;< +1 Vie
{0,1,...k}. Then we can check that this equation has an
unique solution which corresponds to (a;,b;) € { (0,0),
(-1,41) , (+1,-1) }. Therefore, either there is no error on the
signals Ai,Bi (output signals A and B of the SBD
multiplier of position i), that is when (a;,b;)=(0,0), or there
is an error 0—1 on both signals Ai and Bi (when (aj,b;) =
(-1,41)) or there is an error 1—0 on both signals Ai and Bi
(when (aj,bj)=(+1,-1)). These two last cases will change the
signals from 00 to 11 or from 11 to 00. As a matter of fact
the only masked errors are the errors which transform the
values from AB=00 to the values AB=11 and vice versa.
However, faults generating these errors do not change the
function of the multiplier since AB=00 and AB=11 are the
redundant representation of the arithmetic value 0. Thus, the
arithmetic result is not changed.

Consequently we will apply to each SBD multiplier a twin
vector sequence T24T24T25T25...T38T38T39T39 derived
by using the complete set Ty4T55T5¢...T3gT3g of the 16
input vectors of the SBD multiplier. This twin vector
sequence will be applied in parallel to all the SBD
multipliers. Thanks to the DFT modification of fig. 5 this
application is trivial and therefore the table containing the
set To4T25T56...T3gT3g is not shown. The application of
the twin vector sequence T24T24T25T25...T39T39 to the
SBD multipliers will generate at the outputs of these cells
the sequence T24T24T25T'25...T'39T'39 (inputs Eq4q and
Eeven Of the parallel adders).

Finally, the latches and the flip-flops of the partial product
generator of Fig. 2, do not require particular test sequence
since they are tested by the test sequences derived for the
other blocks.

Couple of] PA odd PA even

test v Iodd {SRodd| Eodd | Ieven SReveﬂ_Eem
Tie {1010 00 (1010 1010| 00 | 1010
Ty7 |1100} 00 (0000 | 0011 00 |1111
Tig | 1001 00 (01010111 11 1110
Tio0 11010 11 1010 1010 11 10 10
Tyo |1010| 00 (1010 1010| 00 | 1010
Tz | 0011 00 |1111]|1100| 00 (0000
Ty (0111 11 1110] 1001 00 | 0101
Tr3 11010 11 1010 ] 1010 11 10 10

Table III

8. Sequences concatenation

The test sequences derived in the previous sections are
concatenated as shown in Fig. 10. First is applied the twin
vector sequence (TV) testing the partial product generator,
then, are applied the twin 2-vector and twin 4-vector
sequences testing the sequential array and the serial adder.
Finally we apply the propagation sequence PS. This
sequence is used to propagate to the primary outputs of the
multiplier the errors stored in the flip-flops of the array.
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This sequence must have a length n' greater or equal to n in
order to propagate all these errors. Any vector can be used
to construct this sequence since the errors in the internal
flip-flops are propagated at least one position in each clock
cycle [14]. However this sequence must not mask the errors
produced by the other sequences. This is ensured by
designing PS as a twin 2-vector sequence and due to
proposition 4 error masking is avoided.

Let us now review the error masking for the whole test
sequence and the whole multiplier. Concerning the SBD
multipliers, TV is a twin vector sequence, the sequence T2-
V is a twin 2-vector one, T4-V is twin 4-vector sequence
and the sequence PS a twin 2-vector one. For the SBD
multiplier, one can show easily proposition 4. Thus error
masking is avoided for the SBD multipliers.

Concerning the PA cells of the sequential array the sequence
TV is not a twin vector sequence (due to the internal signals
of the parallel adder), the other sequences are twin 2-vector
and twin 4-vector sequences. According to proposition 5 the
errors detected in the sequences T2-V, T4-V and PS are not
masked within the whole sequence.

Fig. 10 represents the whole sequence resulting from the
concatenation of the TV, T2-V, T4-V and PS sequences. In
this Fig. the represented test vectors are the T'i
corresponding to the (Eodd, Eeven) couples (external inputs

of the parallel adders).
[ » |
TIME

Figure 10- The test sequences

9.

In this paper, we have presented an efficient analytic
approach ensuring the total avoidance of error masking in a
sequential circuit. In particular, this scheme does not require
enhancing the observability by means of additional hardware
and extra pins in the case of the on-line multiplier
considered here. The approach exploits only the arithmetic
properties and the serial nature of the on-line operator for
deriving and arranging regular test sequences . This strategy
can also be extended to the test of a wide class of serial
arithmetic operators.
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