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Abstract
We investigate the efficiencies attainable
pursuing Booth recoding directly from redundant
binary input with limited carry propagation. As a
digit conversion problem we extend the important
result that each radix 4 Booth recoded digit can be
determined from 5 consecutive input signed bits to
obtain that each radix 2% Booth recoded digit can be
determined from 2k+1 consecutive input signed bits
and prove this to be the minimum possible Jor any
k 2 2. Analysis of alternative bit pair encodings of
signed bits yields the improved result that each radix
Booth recoded digit can be determined Jrom only
2k encoded bit pairs employing sign and magnitude
bit encoding, a result which does not extend to
conventional borrow-save or carry-save redundant
binary digit encodings.
Radices 4 and 8 gate level designs are illustrated
Jor alternative encodings, with our signed bit design
shown to yield smaller depth and fewer gates than
existing redundant binary Booth recoding circuits
Jrom the literature.

L Introduction and Summary

Multiplier recoding by various extensions of the
original Booth recoding have been developed over
some 40 years in the literature [2, 8, 10, 12, 13, 14,
15].  Multipliers employing Booth recoding from
conventional binary to radices 4 and 8 are common in
implementations, and even higher radices have been
argued to be competitive [13].

Numerous current floating-point unit designs
incorporating an expensive fast multiplier make
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iterative use of the multiplier for implementing fast
algorithms for division, square root, and/or
transcendental function computation by extended
polynomial approximation [3, 5, 6, 12, 14, 15]. When
multipliers are to be used iteratively in hardware or
under microcode control, it is advantageous for the
multiplier to accept redundant binary coded input for
at least one of the arguments. This similarly pertains
to the direct input of redundant binary seed
reciprocals as described in our companion paper in
this proceedings [7]. Direct use of redundant binary
input avoids the carry completion delay attendant to
intermediate conversion to conventional binary
representation for each of an iterative chain of
dependent multiply or multiply-add operations. Fast
multipliers where the multiplicand (hence the input
partial products to be summed) is redundant can be
found in [3, 6). Implementations where the input to
the multiplier recoding unit is redundant are
described in [5, 8, 12, 14].

Radix 4 Booth recoding directly from redundant
binary input has been investigated in [5, 8, 12, 14,
15], but higher radices appear not to have been
pursued in the literature. It is useful to recognize that
redundant binary Booth recoding is essentially a digit
set conversion from maximally redundant to balanced
minimally redundant digit sets. Digit set conversions
have been investigated more generally in [1, 9, 11].
Our purpose here is to explore the efficiencies
attainable for redundant binary Booth recoding for
any higher radix 2K, k > 2, with particular regard to
minimizing the number of encoded input bits of the
redundant binary input on which each output Booth
recoded digit is dependent.

In Section II we investigate Booth recoding as a
problem in digit set conversion. It has been shown
for both signed bit and carry-save redundant binary
input [8, 12, 14, 15] that each radix 4 Booth recoded
digit can be determined from just 5 redundant binary



input digits. Our principal result in Section II is to
extend tlus result proving for any k 2 2, that each
radix 2K Booth recoded digit can be determined as a
function of at most 2k+1 consecutive redundant
binary digits (with signed bit or carry-save input), and
furthermore that this is the minimum possible in that
an output digit can depend on no less than 2k+1
signed bits.

In Section I, muitiplier recoding is then
considered at the more atomic level of the conversion
from the encoded redundant binary digits to the Booth
recoded output format. Note that the digit set {1, 0,
1} has two popular alternative encodings, sign
and magnitude (sign-mag) and borrow-save. For
sign-mag, each digit has a sign bit and a magnitude
bit, and for borrow-save, each digit has a positive
(sum) bit and a negative (borrow) bit as shown in Fig.
1. Our principal result in Section III is that the 2n
bits of an n signed bit encoding may be partitioned
into Ln/k }+1 disjoint 2k bit windows such that each
2k bit window generates a umque resxdue digit” in
the range {2‘ k'1+1 2‘-1}andacarry
bit in {0, 1} where the sum of resxdue and next lower
carry is then in the desired mnumall redundant
(Booth) digit set {-2k-1, k-l | It is
further noted that this result isa pameular advantage
of sign-mag encoding as neither borrow-save nor
carry-save encodings yield such reduced dependence.

In Section IV we employ the results of Section ITI
as a foundation for efficient logic design of redundant
binary Booth recoding circuits. The designs are
illustrated at the gate level employing negative logic
and exclusive-or (nor) gates which are preferred for
VLSI implementation. Radix 4 Booth output
recoding has a four gate delay and octal Booth output
is obtained with a five gate delay. Comparison with
other designs from the literature is included (8, 12].

Sign-mag encoding
Sign bits: 0o 0 1 1
Mag. bits: 0 1 1 0
Digit values 0o 1 -1 X
Borrow-save encoding
Borrow bits: 0o 1 0 1
Sum bits: 0o 1 1
Digit values: 0 0 1 -
Carry-save encoding
Carry bits: 0o 0 1 1
Sum bits: 0 1
Digit values 0 1 1

Fig. 1 Redundant binary encodings
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II. Redundant Digit Set Conversions

The digit values {d | -2K+1 < d < 2K-1} comprise
the maximally redundant digit set radix 2X. A digit
d e {T,0, 1} is termed a signed bit and a signed bit
sting TO11100T110T denotes a signed bit number.
Conversion from signed bit to a maximally redundant
higher radix digit set is simply accomplished by
partitioning the signed bit number into k-digit
windows and evaluating each window as a higher
radix digit. For example, 101 110011 10T becomes
3613 in octal. Booth recoding employs conversmn
to the smaller digit set {d | -2k"] < d < 2k-1}
comprising the balanced minimally redundant
(Booth) digit set radix 2", e. g. for our preceding
example 3613g = 22 13 Conversion from
signed bit to a redundant radix 2k digit set is termed
digit parallel if each converted digit is a function of
some constant number of consecutive signed bits
independent of the length of the number. Thus digit
parallel conversion to a maximally redundant digit set
radix 2K has each output digit being a function of just
k consecutive input signed bits, which is clearly
minimum. Digit parallel conversion from signed bit
to Booth radix 4 has been shown [5, 8, 12, 14, 15] to
be attainable with each Booth recoded digit a function
of just 5 signed bits. The following extends this result
to higher radices and confirms the minimum number
of signed bits needed to determine a Booth recoded
output digit.

Theorem 1: Digit parallel conversion from signed bit
to minimally redundant (Booth) radix 2¥ digit
representation for any k > 2 can be obtained with each
radix 2K recoded digit a function of at most 2k+1
consecutive signed bits and 2k+1 is the minimum
possible.

Proof: Partition an n signed bit number into Ln/k }+1
disjoint k consecutive signed bit strings (windows)
starting up from the lowest signed bit, where k 2 2.
For any given k-digit string let -2X+1 < d < 2K-1 be
the value of that string and let -1 < b < 1 be the value
of the leading signed bit of the adjacent lower string.
Determine a residue digit value -2 -l< r<ok-land

%zled cany bit-1<c<1 such that-2K+1<d =

+r<2k] according to Table 1.

Now for each k-digit string, add in the carry from
the adjacent lower string to the residue digit for that
string to obtain the converted digit d'. Note that the
leading string of the |n/k}+1 disjoint k-signed bit
strings has a leading zero and generates a carry of
zero by Table 1 so the resulting converted radix 2k



Maximally redundant | 2K-I+1<d | -2K-l+1<d<ok-11 | d<ok-l.) | [d|=2k-1 | |g|=2k-]
digit range db<0 db>0
Residue digit d-2K d+2K d d-2%b
Carry digit 1 -1 0 b

Table 1 Residue and carry digit generation for conversion from maximally redundant
digits to balanced minimally redundant (Booth) digits radix 2K

Extended | 0sd<2k-1) | 2k-lggaanak-ly | 3uokrlgd | a=2k-1.1 | a=2k-11 | a=3x2k-l) | a=3x2k1
|_digit value b=2 b=0,1 b=2 b=0,1
Residue digit d a2k a2kl | okl d 2kl %1

Canry digit 0 1 2 1 0 2 1

Table 2 Residue and carry digit generation for conversion from k-extended-bit string values to balanced
minimally redundant (Booth) digits radix 2k

number has Ln/k}+1 digits. It remains to show that
-2k-1 < @ < 2K~ holds for each converted digit after
the mn'y absorbing addition. Note that if originally
|d|¢2 -1 thcnthcrsulnngkmduedxgnof'rable 1
isin (-2k"1+1, 2k1+3 _ 2%-L1} and so adding in
ean‘fmm 1,0, 1} yields 21 < ¢ < 2k, I
2k-1, then our choice of residue digit is opposite
magntothesngnofanynon—woanydxgttthat
could be generated in the adjacent lower order string,
so d' in this case satisfies || = 2k-! or |d' = 2k-1.].
Hence a balanced minimally redundant (Booth) digit
radix 2K number is obtained where each output digit
depends on its input k-signed bit string generating the
residue digit and the next lower (k+1) signed bits
determining the adjacent lower string carry, or in total
at most 2k-+1 consecutive input signed bits.

To show the necessity for dependence of an
output digit on at least 2k+1 consecutive input signed
bits, we show a particular case for octal conversion
(k = 3). Examples for all other values of k > 2 can be
similarly generated. Consider that the three following
signed bit numbers, x, y, and z have unique balanced
minimally redundant octal representations as shown:

x=110100111=123 18
y=010T100111= 2318

=010 TOO TTT =131

Consider the determination of the third lowest
octal digit d from a string bgb7bgbsbgbsbabibg of
consecutive sngndbltposmonsofx, y, and z. This
digit mustbed=2 forx,d=2fory,andd =1 for z.
Since x and y differ only in the leading signed bit
position bg, determination of d must include this
position. Since y and z are the same for the six
positions bgbsbgbsbsbs, determination of d must
include inspection of at least some signed bit of
byb1bg. Hence the consecutive signed bit sub-string

bgby...by must at least be employed to determine d.
Hence 2k+1 is the minimum number of consecutive
signed bits for which digit parallel conversion is
possible. ]

To visualize the use of Table 1, we can convert
the 9 signed bit string for x from the proof of
Theorem 1, employing evaluation first to maximally
redundant octal digits.

Example 1:
110 | Too | 111 | signed bit
6 4 7 | max redundant octal
2 | 4 | T | residuedigit
11 0 1 carry digit
11 7 3 T | carry absorbing sum yielding
Booth recoded octal

An alternative redundant binary digit set is the
extended bit set {0, 1, 2} corresponding to carry-save
encoded digit values. A result similar to Theorem 1
extending the radix 4 result from [9, 15] can be
obtained using the conversion residue and carry digits
shown in Table 2, where the input of k-extended-bit
stnngsaredcnotedasvalumofdmthemnge {0, 1,
venes 2(2 -1)}, and where b denotes the leading
extended bit in the next lower order string.

Use of Table 2 is illustrated in the following.
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Example 2:
211 | 020 | 212 | extended bit
B 4 extended octal
(in hexadecimal)
3 Iy 4 | residue digit
1 1 2 carry digit
1 2 | 4 | carry absorbing sum yielding
Booth recoded octal



II.  Converting Redundant
Encodings to Booth Encodings

Binary

For purposes of implementing redundant binary
to higher radix Booth 2K multiplier recoding, it is
relevant to consider the detailed encodings of the
redundant binary inputs and of the desired Booth
recoder output. Encoding of the signed bits {-1, 0, 1}
requires two bits for each digit, and may be realized
in either borrow-save or sign-mag encoding formats.
Another popular redundant binary encoding is carry-
save which represents the redundant extended set {0,
1, 2}. These encodings were given in Fig. 1. Each
digit of the representations is encoded by two bits.
Sign-mag has a unique encoding for each digit 0, 1
and T. For carry-save and borrow-save, the bit
encodings introduce a second level of redundancy -
that is, redundant encodings of the same digit value
from a redundant set of digit values.

Booth encoding is comprised of a sign bit and a
set of magnitude select bits, one for each possible
digit magnitude. Thus for radix 4, the Booth
encoding is a sign bit and 3 magnitude select bits
corresponding to selecting magnitude 0, 1, 2. Radix 8
Booth encoding has a sign bit and 5 magnitude select
bits for the values of 0, 1, 2, 3, and 4. The total
number of input bits and output bits has a direct

relation on the number of input and output terminals
of a Booth recoder.

Observation 1: Booth recoding of an n digit sign-
mag, borrow-save, or carry-save encoded input to a
Booth encoded output has an input size of 2n bits in
any of these encodings and an output size for radix 4
of either 2n+2 or 2n+4 bits, and an output size for
radix 8 between 2n+2 and 2n+6 bits. [ |

Implementation of a digit level Booth recoder
radix 4 from redundant binary input suggests by
Theorem 1 that overlapping windows of 5 redundant
binary digits or a total of 10 encoded bits are required.
Closer inspection of the alternative sign-mag, borrow-
save, and carry-save encoding reveals a further
simplification particular to the signed bit encoding.

Observation 2: Writing the sign bit and magnitude
bit pairs for sign-mag as two bit numbers, we have 00
=0, 01 =1, 11 =-1, 10 = undefined. For the three
defined pairs, it is possible to interpret these bit pairs
as 2 bit 2's complement representations, which allows
that the sign bit may be given a weight of -2 and the
magnitude bit a weight of 1. [ |
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Observation 2 allows that in forming k-signed-bit
windows for interpretations of signed bit as radix 2k
digit values, we may simply skew our windows
including the sign bit of a leading encoded digit of
each k digit window with the next higher window,
obtaining conversion to the "semi-max redundant”
digit set {-2k-1, -2k-1+]  2K.1} at essentially the
same cost as conversion to a maximally redundant
digit set. For radix 8, the skewed windows yield
digitsin {4, 3, ..., 6, 7} as illustrated in Fig. 2.

A digit d of the proposed semi-max digit set
{2k, ok-ley . 2K1} may be written in carry
bit ¢ and residue r form d = c2K+r with c=1 for d >
2k-landc=0 otherwise, yielding the residue digit r
e {2kl oklyp  ok-l1y We thus obtain
unique residue and carry digits independently from
each window as shown further in Fig. 2, where the
carry absorbing sum then simply yields our desired
Booth octal digits. Generalization of the preceding
argument provides the proof of the following theorem,
the details of which are omitted for brevity.

Theorem 2: The 2n bit sign-mag encoding of an n-
signed bit number can be partitioned into [n/k}1
disjoint 2k bit windows where each window
determines a unique residue digit re{-2k-1, 2k-lyy
., 2K"L.1} and single carry bit ce{0, 1} such that the
carry absorbing sum of each residue digit and the
carry from the next lower window yields an output
sting of Lovk }+1 Booth radix 2K digits.

Corollary: It is possible to convert the 2n bits
comprising an n signed bit encoded number to an
Ln/k +1 Booth radix 2K number where each output
digit depends on at most 4k of the 2n input bits for
any k 2 2. In particular on 8 encoded input bits for
Booth recoded radix 4 output and 12 encoded input

bits for Booth recoded octal output.
1010111101  Signed bit number
e 0 (1 g/vo 1100 Sign bits
ee V0101 1V10 Mag. bits
1 3 4 5 Semi-max. digit values
1 3 34 3 Residue digits
0 0 1 1 Carry bits
0o 1 2 3 3

Fig. 2 Radix 8 Booth recoding with skewed windows



By 15 BmBos Window i ‘Window Gi-1) Booth recoder outputs

Value | RoRooRI Ry Canry Sign | My | M, | My | PP.

-3 1111 0 X x X X -

1 X x X X -
BZ 2 1100 (] 1 1 0 0 | -2X
1 1 1 0 1 0 | X

0 -1 1101 0 1 0 1 0 | X
1 x 0 0 1 ] ox

1 0011 0 1 0 1 0 | X
1 x 0 0 1 | ox
0 0000 0 x 0 0 1 | ox
1 0 0 1 0 | +x
1 o111 0 0 (] 1 0 | +x
1 0 1 0 0 | 2x
0001 0 0 0 1 0 | +X
1 0 1 0 0 | 2x
0 1 2 0100 0 1 1 0 0 | -2x

1 1 0 1 0 | X

Fig. 3 An OBDD for 3 o101 0 1 0 1 o | x
radix 4 carry generation 1 X ] 0 1 | ox

Table 3 Truth table of a signed bit radix 4 Booth recoder

The results of Theorem 2 and the corollary do not
extend similarly to either conventional borrow-save or
carry-save encodings. It still does not extend even if a
unique form of carry or borrow-save is employed,
such as by excluding the 11 pair as an alternative
encoding (see [12]). To see the difficulty one may use
borrow-save to encode the signed bit digits of x, y,
and z from the proof of Theorem 1 along with w =
110100111=23Tg

IV. Logic Design of Redundant Binary
Booth Recoders

Our approach will be to derive an efficient gate
level design for transforming sign-mag encoding to
Booth encoding for both radix 4 and 8 using distinct
preprocessing and core logic sections. Input of
borrow-save and carry-save encodings will then be
handled by revising only the preprocessing section of
the resulting design.

Radix 4 Sign-mag Booth recoder

Implementation of a sign-mag to radix 4 Booth
recoder using Theorem 2 has two steps. The
preprocessing step starts by aligning the weight of
the sign and magnitude bits in a skewed style as
shown in Fig. 2. The magnitude bit By, (in ith
position) and the sign bit B(i-l)s (in (i-1)th position)
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have the same weight and cancel out each other in
place if they both are 1's. A new sign-mag number
with encoded digits designated R;gRip,, is formed.
This new signed bit number has the property that the
first non-zero signed bit after a T must be 1. There is
no substring 100--01. The possible digit values of a
radix 4 window are within [-2, 3] and therefore no
carry of T to the higher window is needed. A leading
bit L = OR(Ryg, Ropy) = NAND(B,p, B ) replaces
leading R;¢ in each window to simplify the core logic
section computation of the carry as apparent from Fig.
3. The core section then accepts LRy R 1R q and
needs only to generate a single carry bit € {0, 1} to
the higher window, along with the residue digit of the
current window, and absorb the carry from the lower
window to form the final Booth value. The Ordered
Binary Decision Diagram l(OBDD) [4] in Fig. 3,
where i = 2, explains the logic design of the carry
generation process.

Table 3 lists the radix 4 recoding process for the
core Booth digit select logic . From this table, several
observations can be made. 1) If we make the sign of

1A OBDD is directed acyclic graph in which each Boolean variable is
represented by a vertex. A outgoing arc from a vertex is labeled as
Boolean value 0 or 1 that corresponds to the assigned value of the
varisble in the vertex. Any Boolean function can be represented as an
OBDD. The function equals to 1 if the terminal label equals T, or 0 if
it terminates in F. The order of the variables in an OBDD directly
affects the efficiency of the function evaluation. Taking Fig. 3 as an
example, variable By, should be inspected first. Ifit is 0, the function
terminates in 0.



My a don't-care, the final sign digit is independent of
carry. 2) My is 1 only if the exclusive-or of Rim»
carry) is 1. 3) If My is O, either My or My is 1. 4)
Exclusive-or of (Ryp, Ry ¢) if 1 represents a weight of
-2 and if 0, 0. Together with Ry, and Carry, both
having a weight of 1, form the final Booth value. 5)
Rys is a don't-care. It is not needed in the process.
Fig. 4 shows the gate level implementation. The
design has a total gate count of 10 2-input gates and a
depth of 4 gates and inverters. The gate count can be
further decreased by one if we allow Mg to be
represented by the condition that both My and M are
0's. This is the form of Booth digit selection encoding
in [8] and [12]. We have restricted our design to use
only negative-logic and exclusive-or (nor) gates
which are preferred for CMOS technology.

In Fig. 4 we can observe the carry and residue
generation portion of the conversion as comprising
six gates of the first two levels generating the three
outputs termed Carry, Sign, and Ryp,,. The four gates
at levels three and four comprise the carry absorption
and magnitude select recoding portion. The following
can be verified employing Table 3 along with the
carry output of window i (not shown).

Observation 3: Given that the input string
BZmBlsBlmBOS has respective weights 2, -2, 1, -1,
and digit value d = 2Byp-2B1s+B1-Bgs With
encoding guaranteeing -2 < d < 3, the three outputs
Carry, Sign, and Ry, available after two logic levels
form a unique encoding of d in the mixed radix
system with weights 4, -2, and 1. That is d = 4Carry-
2Sign+R 1y, with SignR |, being the 2's complement
representation of the residue digit -2 <r< 1. [ |

B lBlsB lBOS
2m 1m|
Preprocessing
LY 15;7 Rigd’ Rim
0
NV
Carry Carry

Core

Sigpn. M, M; M,
Fig. 4 Radix 4 signed bit Booth recoder
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Radix 4 carry-save and borrow-save Booth
recoders

Booth recoding from carry-save or borrow-save
can be done in a similar way. The only change is an
expansion of the preprocessing step. For carry-save
encoding, the additional preprocessing step would be
pass a 1 to the left bit position when both digits are 1's
or pass a 1 to the left bit position and compensate a 1
in the current bit position when either digit is a 1.
For borrow-save encoding, the additional step is
essentially just conversion from a borrow-save
encoding with weights, 1, -1 to a sign-mag encoding
with weights -2, 1. After this step, the number has
the same properties as in the radix 4 signed bit
approach. Fig. 5 shows gate level implementations
with the common core logic.

Cifz G5 G So_
Y

l Preprocessing
L RZHV Ris Rlﬁj_

- Core Logic -
Carry Carry

YYVYY
Sign My, M, M,
Fig. Sa Radix 4 carry-save Booth recoder

NER N OB N P(ﬁ

U

Preprocessing
. N
LT ®
- Core Logic -—
Carry Carry

VYUY
Sign M, M, M,
Fig. 5b Radix 4 borrow-save Booth recoder



Radix 4 SiEned bit Booth recoder Radix 4 Carry-save Booth recoder
Depth 5 4 4 5
(gate delay) (2-input gates) (2-input gates) (1@4, 2@3, and (2-input gates)
1@2-input gates)

Size 10 10(-1) 16 14¢-1)

(gate count) (2-input gates) (2-input gates) (@4-, 5@3-, 8@2- | (2-input gates)
input gates)
Reference [9] Kabuo, et. al. Fig. 4 [12] Quek, et. al. Fig 5a

Table 4 Comparison with other existing designs

Two recent publications/patents [8], [12] provide
gate level designs with which we can compare our
results. In [8] a form of borrow-save encoding
(excluding the 1, 1 pair) is used, and provides for a
convenient comparison with our sign-mag encoding
as both employ non redundant encodings of the three
signed bit values. In [12] carry-save input is used and
provides for comparison with our carry-save encoding
illustrated in Fig. 5a. Both [8] and [12] have radix 4
output of sign, My, and M and exclude generation of
My, and our gate count should be reduced by one for
comparison. In both cases, Table 4 shows our design
is smaller in size and also faster after compensating in
(12] for the 3- and 4-input gate delay effects.

Sign M,

My My My

M,

Fig. 6 Radix 8 signed bit Booth recoder

56

Radix 8 Booth recoding

A sign-mag to radix 8 Booth recoder can be
designed using the same methodology. Fig. 6 shows a
time efficient gate level implementation. The whole
Booth recoding process finishes in a depth of 5 gates.
This is only one level more than that for radix 4. The
outlined block in Fig. 6 can be used after appropriate
preprocessing for carry-save and borrow-save encoded
input.

Redundant binary Booth recoding can be
designed accordingly for a radix higher than 8 as
argued for conventional binary Booth recoders in
[13].

Applications and Conclusion

Higher radix redundant binary Booth recoding
based on digit set conversions and encodings for
signed bit, carry-save, and  borrow-save
representations are introduced. Multipliers based on
signed bit and carry-save Booth recoders are useful
for speeding up iteratively dependent multiplication.
Fig. 7 illustrates a typical speed-up mechanism. The

Multiplicand Multiplier

v * % Yy
% Yy
Partial
Generaior

Redundant

Binary
Recoder

YvY
Partial Products

Adder Tree
| ] e ——

= Intermediate result
in redundant format

Converter

Fig. 7 Multiplier with redundant binary Booth recoder



adder tree adds the partial products into a carry-save
or signed bit number that being the input of the
multiplier and hence the Booth recoder for successive
dependent multiplication. The borrow-save Booth
recoder also finds its application in processing a seed
reciprocal for division and square root algorithms [7].
A step requires X (B1-B,) where By and B, are from
a ROM table. A multiplier with a borrow-save Booth
recoder can combine the subtraction-multiplication
process by treating By and B, as positive and
negative digits of a borrow-save number.

Booth recodings of three different redundant
binary representations have been shown that are very
regular and suitable for high speed VLSI
implementation.  Multipliers based on redundant
binary Booth recoders have flexibility and can obtain
improved performance with no major change in the
numerical algorithms.
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