It Takes Six Ones To Reach a Flaw

Tim Coe

Vitesse Semiconductor Corporation
741 Calle Plano
Camarillo, CA 93010

Abstract

The intial release of the Pentium™ processor has
a flaw in its radiz-4 SRT division implementation. It
is widely-known that five entries were missing in the
lookup table, yielding reduced-precision quotients oc-
casionally. In this paper, we use mathematical tech-
niques to analyze the divisors that can possibly cause
failures. In particular, we show that Bits 5 through
10 (where Bit 0 is the MSB) of such divisors must be
all ones. This result is useful in compiler-level soft-
ware patches for systems with unreplaced chips; and
we believe that the techniques used here are appliceble
in analyzing SRT division as well as other hardyare
algorithms for floating-point arithmetic.

1 Introduction

SRT is a widely used algorithm for binary floating-
point division [1, 2, 3]. Given a dividend/divisor pair
p/d, 1 < p,d < 2, the SRT algorithm generates a
sequence of partial remainders and quotient digits,
(pi') qi)’ i= 0,1,2,.. B sa.tisfying

Pi+1 = radix(p; — gid), |pi4+1/d] < threshold

where podéfp. The “threshold” is defined once we
choose the two key design parameters of a particu-
lar SRT implementation, namely, “radix” and the set
of allowable quotient digits g;’s.

A common implementation for radix = 4 is vo al'ow
lg:] < 2, that is, ¢; € {-2,-1,0,1,2}. Tk:s gi.es
threshold = 8/3 (cf. [4], p. 134). Clea:ly, then, g en
any p;, |pi| < $d, we must choose |g;| < 2 such that
|4(p: — gid)| < 3d. The following check for legitimacy
of quotient choices can be easily verified:

] 2
D<o+l

2
d<2 if ¢—2<
la:l < OK if ¢ <7 3

-)

For example, ¢; = 0 is legitimate when —2d < p; <
24, and ¢; = 1 is legitimate when 3d <pi < 8d. The
fact that some values of p; allow for two legitimate
choices of quotient digits is a well known advantage of
SRT. The main reason is that ¢; can now be decided
based only on approximate values of »; and d. For a

1063-6889/95 $4.00 © 1995 IEEE

140

Ping Tak Peter Tang

Mathematics and Computer Science
Argonne National Laboratory
Argonne, IL 60439

Table 1: Quotient Selection P-D Table

¢ when P lies in

2 [%D+ ’ %D+)

1] §D+ ; §D+)

04 (—% - §D+) §D+)
-1 (-5~ §D+) —% - §D+]
-2\ (-i—3D+ » —3-3D:+]

specific case, we choose P= £ and D=1+ ﬁ'to be
integer multiples of } and % such that
1
P<p; <P+idéfP+&D5d<D+EdéfD+.

We illustrate how g; can be decided by P and D alone.
Clearly, we have —% — 8D, < P < §D, and

< pi/d < P, /D for OLZP

P/D, < <
"< m/d < PD, for 0>P,

P/D

Combining these inequalities with (1) and using a con-
vention that the quotient digit of larger magnitude is
tavor>d whenever two legitimate choices exist, we ob-
‘ain ¢ digit selection table (P-D table) exhibited in
Table !{. To implement the quotient selection rule,
one simply stores the quotient digits in a P-D table
where

D
P

One common approach in implementing the division
iterations is to keep the partial remainders p;’s in a
carry-save format. Mathematically, p; is represented
as the sum of a truncated part P;, a carry part C;,
and a sum part S;:

P: k

N 8
p.-=sumof C,' 0.0006465...61,
S, 0.0008435...81,

Figure 1: Carry-Save Implementation of SRT
P; k/8
Ci 0.000cscs5 ce6cCr ...
Si 0.0003485 S$6 87 ...
—-q.'d eaezeleo.h.--fs f6f7-~-
Pt sum above + chey ...
'+ carry(c, s, f)s sysg ...
Initially,
po=p = lpp2...pL
P, = l.pipaps,
So = 0.000p4ps...pr, and
Cy = 0.00000...0.

Calculation of p;+1 = 4(p; — g:d) is straightforward for
g; <0: Let

—qid=e3ezerep. f1 fa... fL.

The variables P;11,Cit1, and S;4+; are produced as in
Figure 1 where carry(b, bg, b3) is 1 if the three input
bits consist of two or more ones; and carry = 0 oth-
erwise. When ¢; > 0, one can form —gq;d as the one’s
complement of g;d = e €g. f1 f2 ... fi plus 271, that
is —qid =& & . f1 f2 ... fr plus 2~ L. The value 2~
can be put into the corresponding positions of C; or
of Ci;+1 (by deferring the action). One can verify that
these positions are always zero before accepting 2~ L.
The techniques discussed here are actually quite stan-
dard (cf. [5], pp. 268-270, or [6] Chapter 3).

2 Description of Problem

The previous section in fact functiona.léy describes
the SRT implementation on the Pentium™ processor.
Due to a by-now famous mishap, in the processor’s
initial release, the five quotient digits stored in the
P-D table for the five (P, D) pairs

D
P

1+ &, €=1,4710,13

8 1def
3Dy — §=Praa

were 0 when in fact they should have been 2. Conse-
quently, for divisors d lying in the five corresponding
regions of [D, D,), reduced-precision quotients (fail-
ure) are delivered occasionally (cf. Corollary 1). More
precisely, for these divisors d, failure occurs whenever
during a division process, at some ¢ prior to comple-
tion, we encounter P; = Py,,. (According to empirical
studies, divisors and dividends uniformly distributed
in [1,2) give a probability of failure in the orcer of
1079)

Since for any d lying in one of the five crit.cal re-

gions, %d lie outside of them, a compiler-level patch
can replace occurrences of x/y where |y| = 2"d,

141

Figure 2: Compiler Patch S:

If d is in one of the 5 regions

calculate (x * (15/16))/(y * (15/16))
else

calculate x/y
End if

Figure 3: Compiler Patch F:
If d is in one of the 5 regions AND

ds=d¢=---=dio=1

calculate (x *(15/16))/(y * (15/16))
else

calculate x/y
End if

1 < d < 2, by Figure 2. However, executing
(x*(15/16))/(y*(15/16)) not only involves extra mul-
tiplications but also requires the saving and restoring
of several status variables (such as precision control)
in order to ensure full IEEE compliance [7]. Thus,
this replacement is considerably more expensive than
it might seem. The patch in Figure 2 requires the slow
substitute with probability 5/16 in general, degrading
performance noticeably. Our main result is that in or-
der for a failure to occur, the divisor d = 1.d;ds . ..dy,
not only has to satisfy the obvious requirement that
l.didzdsdy = 1+ & for £ = 1,4,7,10,13, but that
ds through djp must all be ones. Thus the patch
can be modified by a faster version given in Figure 3.
Consequently, the slow substitute is invoked only with
probability 278 x 5/16, rendering the performance
degradation practically zero.

To derive our result, we analyze in the next section
the (P;,q;) sequence just prior to the first reference
t0 Pg... In the following section, we analyze the bit
patterns of the corresponding carry and save vectors,
(Ci, S;). Inferences can then be drawn on d’s bit pat-
tern. Finally, we present two examples to illustrate
our results.

3 Digit Sequence Analysis

In order to analyze the last few steps just prior to
i.ferencing the fatal P-D entries Py,q4, we first examine
*he evolution of the P;'s. From Figure 1, we see that

1
P = 4P —qd)+ goarry + 0.0cqcs + 0.08455
= 7
< 4P -qd)+ 3’

Table 2: Upper Bounds on P;;;

gi I Bounds on Py,
Py1<3Dy+3
Py < §D+ +1
Piy1 < 3D, + %
Pip1 £ 3D, -

Py < §D+—%

(=2

-1
-2

where d is approximately d, taking into account the
truncation and one’s complement. For example,

1.d1dad3dsds
1.dyd2d3dsdsdg + 26

for ¢; = —1, and
for g =2.

R K

Combining the bounds for P; in Table 1 and the
inequality just obtained for P;;, we obtain a table of
upper bounds, Table 2, on P;;; for each of the five
possible values of g;.

Now consider a divisor d that belongs to one of
the five critial regions of [D, D,). Let Py be the first
reference to Ps,, = $D, — 1. Clearly, J > 1 because
Py < po < 2 < Py, for all five possible Pp.,'s. Our
result in this section concerns the evolution of the few
P;’s just prior to P;y.

Lemma 1. There is an integer m > 1 such that
J 2 m + 2 and that the evolution of (P;,q;) from
t=J—-m-—1toi=J is given by

1 P; gi
Fpaa Qbaa
J-1
tO PBM—% 2
-m
—-4p L _o
+
J-m-1 ::or : or
—3D+-3 -1

Proof of Lemma 1. From Table 2, in order for Py =
Py.4, the only possible choice for g7_; is 2. Since Py
is the first reference to Ps,,, we must have Fj_; <

Pp.s — §. Because the partial remainder p; satisfies
8
P;<p;= zé-a @20,
and that p; = p;4; /4 + ¢id, we have

8 a
pJ—1=§d'ZZPJZPa.d-

142

Consequently,

1 1
Py, >pJ—1_ZZPBnd—Z'
The strict inequality and the fact that the P;'s are
integer multiples of § imply that in fact Py_; > P,y —
§. Moreover, we clearly have J—1 > 0 because py_; >
Pj_; which is bigger than 2 for all five possible values

OfPB.d—-%.

Examining Table 2 again tells us that g;_2 can only
possibly be 2, —1, or —2. Using the previous analysis,
we see that if

Q-m =Ql-mp1 = - =qj_1 =2

for some m > 1, we must have

Pi-m 2 DJ-m+1 2 *** 2 PJ-1,

forcing

1
PJ—m=PJ—m+1="'=PJ—-1=PB-d_§,

as well as J — m > 0. Consequently, there exist an
integer m > 1 such that J —m > 0, qj_n—1 # 2, and

(Pi,Q:') = (PBud_l)2)a

3 i=J-m,J-m+1,...,J-1.

Using Table 2 one more time, we must have
qj-m--1 = —2 or —1. since pg > 1, we must have
go > 0 and thus J—m—1> 0, that is, J > m+2. Fi-
nally, Table 2 shows that in order for P;_m = Paua— 3
with ¢j_m—1 = —2 or —1, we must have P;_,,_,;
to be the corresponding maximum possible values.
Thus, Py_m-1 must be —} —~ 4D, or -1 — 1D, for
qJj-m-1 = —2 or —1, respectively. This completes the
proof of Lemma 1.

We further comment that in fact when D = 1 +
(4 or 10)/16, —1D, is not an integer multiple of £ and
thus ¢; = —1 implies P; < —§D+ - %. Consequently,
¢7-m-1 = —1 is possible only when D is one of the
other three values.

4 Bit Pattern Analysis

We first show that the digit sequence established in
the last section implies Bit 5 through 8 of d must be
ones. This result in turns implies that m = 1, that is,
g¢j—2 = —1 or —2, and that the carry and sum vectors
at J -2, (C, S)s—2, must each have at least 5 leading
ones. This result then easily implies, in fact, that Bits
5 through 10 of d must all be ones.

Lemma 2. Bits 5 through 8 of d must be all ones
and that C;_; and S;_; must each have at least three
leading ones.

Proof of Lemma 2. We consider the evolution of P;
from i = J — m — 1 through J. It is easy to see that
because of the carry-save implementation, Py_,_; to-
gether with the leading bits

def

Crom—1 = 0.000c4cs...C43m0...0

ef 0.0008485 e 36+3m0 ...0

SJ—m—l

of Cj_m—1 and Sy_,,_; determine the evolution of the
Py’s from J —m —1 through J. Thus, if we (re)initiate
the division process at Step J —m — 1 with

ﬁJ—m—ldéf(P + é + g)J—m—la
then, we still have
P,

P Pous~g,i=J-m,...,J
Py

PBad'

Clearly,
Piom—1 = Pj_pm_y + £27(6+3m),

where 0 < ¢ < 24¥3™ _ 2 Now, consider the case
qj—m—1 = —1. We have

Pi-m = 4(Psj-m-1+d)
Pin = 4pi—2d),i=J-m,...,J -1,
giving
. - 1
Pr=4""p; o + (4™ +8)d.

Let d =D, - 6, 6 > 0. Using the facts that

1 1 . 8 1
Pj_m-1= _§D+ - Z’ Py = Pgaa = §D+ - gv
we have
8 1 1 1
’D. - > < m+l [2 _ —-(6+3m))
3P+—3 = 4 (3D+ 1 + €2 ’
1
+3 (4™*1 +8) (D, - 6).

Using £ < 24t3™ _ 2 we arrive at

3(1—2-m),
6 < S A 27°.
Thus § <277 form =1and § <28 for m > 1. The
gound 8 < 277 for all m clearly implies ds = dg =
7= 1.
Repeating the analysis for the case ¢j_m_1 = —2,
that is, Py_,n—1 = —$D, — 1, gives 6 < 278 for all

m > 1. Thus ds through dg are all ones. Therefore, at
this point, we know that except for the case of m = 1
with ¢y_s —1 where we only know that we must

143

Figure 4: From J —2to J -1

Pj_2 k/8

Cy_2 0.000c4cs c6CrCs ...

SJ_2 0.0003435 S6 8788 ...

—qJ_zd €3€2€; eo.f1 f5 fG f7 fs
1 C4C5Cg - -

P11 Poaa — 5 848586 ...

have ds through d to be ones, ds through dg must in
fact be all ones for all other cases.

Using the fact that ds through d; are ones for all
cases, we now show that C;_; and S;_; must each
have at least three leading ones. This is derived by
considering the generation of P;. Refer to Figure 1
withi = J—-1landi+1=J. Let (cj,s;), j = 4,5,6, be
the three leading bits of (C, S);_1. Because ¢;j_; = 2,

Py 4PJ_1—8(D+d5/32+d6/64)—%+

0.0cscs + 0.0s485 + carry(cs, s¢,d7),

where the —% term is due to the one’s complement.
Becauseds =dg =d7 =1, Py = P,y = Pj_1 + %, the
equation simplifies to

7
3= 0.0c4cs + 0.08485 + carry(cs, ¢, 0),

implying ¢; = s; = 1 for j = 4,5,6 as claimed. Note
that this is true for all the possible choices of m’s and
qi-m-1.

Finally, we reconsider the case of m 1 with
gs—2 = —1. Previously, we have only proved that ds
through d; must be ones for this case. We now show
that in fact dg = 1 also. Consider the generation of
pj—1 from pj_, as depicted in Figure 4. We have just
established that ¢ = s; = 1 for j = 4,5,6. Clearly,
theu, we must have fs = 1. But fg = dg because
gj—-2 = —1. This completes the proof of Lemma, 2.

Lemma 3. The quotient digit 2 just prior to ¢; can
occur only once, that is, in fact, m = 1 and qj_2 = —1
or -2. Moreover, Cj_, and S;_5 must each have at
least five leading ones.

Proof of Lemma 3. We concentrate on the process

(P,C,S)J-Q q‘l_—z (P,C,S)_]_l

as shown in Figure 4. We have already established
that ds through dg to be ones and that c; = s} =1

for j = 4,5,6. Consequently, we must have ¢ =85 =
fi=1forj =78 Ifgqy_o>0,then f; = d; or dg
'mplies f; = 0. Thus, we must have ¢;j_, < 0. This

Figure 5: From J -3 to J —2

P;_3 k/8

Ci_3 0.000¢cqcs cCr ... Cio-..

SJ_3 0.0008485 8687 ... 810 ...

—qs-3d esezereo.fi...fs fefr... fiwo...
1 11... 1 ...

Pr-2 B B 11... 1 ...

fact, together with Lemma 1 forces m = 1, or in other

words, g2 = —1 or —2. Now,
-2
qj-2 =4 Or
-1
and
1 18 1
-3Dy— 5304
Pj_4,Py_, = L or)
—3D+ - 4304 — %
implies

0.0cqcs + 0.084385 = g, and carry(cg, 3g, f6) = 1.

This, together with s} = 1 implies ¢; = s; = 1 for
J =4,5,6. Thus, ¢; = s; =1 for j = 4,5,6,7,8 as
claimed and the Lemma is proved.

Theorem 1. In order for the SRT to reference Py.q,
Bits 5 through 10 of the divisor d must all be ones.
Moreover, q;_3 < 0.

Proof of Theorem 1. We concentrate on the process

(P,C,8) -3 T3 (P,C,8) -2

as depicted in Figure 5. It is clear that f; through
fio must be all ones. Consequently, we must have
g7-3 < 0 for otherwise the fact that ds through dg are
all ones would imply f; = 0 for any choice of g;_3 > 0.
It follows immediately then that g;_3 = —1 or —2. In
either case, we have

f7=---=f10=1=>d9=d10=1
and the theorem is established.

Corollary 1. J > 8, that is, the first 8 quotient
digits generated are always correct despite the flaw
P-D table.

Proof of Corollary 1. Initially, we have C; = 0.
Therefore we can establish a lower bound on J by
examining the earliest possible occurrence of an ali-
zero pattern in the sequence C;,Cj_1,Cy_,,....

If we have L consecutive (c;j,$;+1) = 1 patterns in
(C, S)k, we must have at least L — 1 consecutive occur-
rence of such patterns in (C, S)i~1. Sincein (C,S);_2
we have 4 consecutive (¢;, $;41) = 1, we must have at
least 3 such patterns in J — 3; at least 2 in J — 4; at

least 1 in J — 5; at least 1 non-zero carry bit in J — 6.
Thus, J > 7.

If in fact J = 7, then the above argument shows
that indeed we can only have 3, and no more, such
patterns in J —3, only 2in J—4, and only 1 in J —5.
Consider now (C,S)s_3. Because (cj,sj+1) = 1 for
J =4,5,6,7and cg = 1, we must have (c;, 3;, f;)j—3 =
1for j = 7,8,9,10 in Step J — 3. Moreover, at least
2 of (c11, 811, f11) must be ones (in order to generate
cs = 1in J —2). This means that ¢;; = f1; = 1 and
811 = 0. Using the same argument, we conclude that
in Step J — 4, we must have (c;, 3, f;)j—4 = 1 for j =
10,11,12 and (c;, 85, fj)s—s = (1,0,1) for j = 13,14
(in order to generate c19 = ¢11 =1 in Step J — 3).

Continuing this argument, we conclude that there
must be a persistent five-consecutive-one pattern in
the f’s of Step J—3,J —4,...,J — 7. More precisely,

(fj’fj-}-l) . 'afj+4)K = (1’ 1, 1) 17 1)
for
(4,K)=(7,J-3),(10,J — 4),...,(19,T — 7).

Since f; = dj,dj41,d;, or d;y,, the overlapping con-
secutive ones forces q;_3, gj—4, up to gsj_7 to be of
the same sign. But ¢;_3 < 0 by Theorem 1. Thus
gs—7 < 0, implying that it cannot be the first quo-
tient digit after all. Thus J > 8 and the corollary is
established.

5 Relative Error Analysis

In this section, we provide an upper bound for the
relative error
absolute error
correct quotient
where absolute error is defined as

abs. err. = correct quotient — computed quotient.

Let
q0:91,---,97-1,97,9J41,- -

be the correct sequence of quotient digit generated had
there been no flaw; and let

d90,q1,- - 7qJ—1,§Jan+l7 v
be the sequence of flawed digits (from J onwards).
Note that, in particular, §; = 0.
Lemma 4. The magnitude of the absolute error is
bounded as

iy | 2 1 0 -1 =2

abs. err. 3.56 3.94 4.32 4.71 5.08
bound x107% x107% %1075 x107% x10~%

Proof of Lemma 4. The absolute error E is given

by
E=) q/¥ - §/¥,
i=J j=J
and J > 8 (Corollary 1). Thus,
=, 2 2
28(747 + 5v2)

J

where ¢; = 2, 45 =0,

du+1
|E| < SRVTRE
Substituting the various cases of §y+1 yields the tab-
ulated result.

An obvious way to obtain an upper bound for the
relative error is to divide the maximum entry of the
previous table by a lower bound on the correct quo-
tient:

correct quotient >

maxD,’

The bound obtained in this manner is roughly 10~*.
We can reduce this bound by exploiting the correlation
between §yy; and D,. This is the task of the rest of
this section.

Lemma 5. Let the carry and save vectors at Step J,
C;,8S8J be

C;
Sy

0.0006405(:6
0.000348556

Then
0.0cscs + 0.0s455 + carry(cs, 56,0)/8 < 3/8.
Proof of Lemma 5. In the flawless situation, g; = 2

and

= 4P;-2(D+27%+27%-27%)
+0.0cqcs + 0.0s485 + carry(cs, 36,9)/8

Py

because ds = dg¢ = d7 = 1. Moreover P; = §D+
§ and Pyyy < 8D, — % since this is the maximum
P value possible. Putting these information to the
previous equation yields the result immediately.

Because of the flaw, we have §; = 0. Thus,
Pji1 = 4Pj 4 0.0cscs + 0.0s485 + carry(cs, s¢,0)/8.

Lemma 5 shows that the leading bit pattern o Py
is given exactly by 4Py = 4(3D, — 3). Note that over-
flow of 4P, leads P, tbe be interpreted as negative

in some cases. Using the bit patterns of Py;; and
Table 1, we derive the following table for ¢j41:

Dy |1+& 1+ 1+& 1+4 1+ 3

di+1 ? —2 0 1 2

145

When D, =1+ 1_26v Py is interpreted as between
—7.5 and —7.5+ 1/8 since

Py, =1000.1XXX....

This is clearly out of bound of the legitimate P values.
As far as an error bound is concerned, we can take
ds+1 to be —2. Theorem 2 is now obvious.

Theorem 2. An upper bound of the relative error is
6.7 x 10735,

Proof of Theorem 2. The result is obtained by com-
bining Lemma 5 and the previous table: The relative
error is bounded by 1075 times the maximum of

30 27 24 21
T x 3.56, 16 x 3.94, 16 x 4.32, 16 x 5.08.

This completes the proof.
6 Examples

We present two examples to show that both The-
orem 1 and Corollary 1 are sharp. We scale the
dividends and divisors so that they become integers
and represent them in both decimal and hexadecimal
forms.

Example 1.
dividend = 109249940 73628 9EF AC64 141C
divisor = 103 02563 26687 EF EOOF F81F
qgo,---,qs = +17_17"'7—27+27q14=q&3d

Note that the divisor corresponds to
1.dydodsdy = 1.1101,

with ds through dip to be ones and that d;; = 0.

Example 2.
dividend = 4195835 80 OBF6
divisor = 3145727 BF FFFC
q0,--.,95 = +1,-1,...,-1,+2,48 = gpaa

Note that indeed the ninth quotient digit can be
wrong. This case, however, is not associated with only
six ones in the divisor.

7 Acknowledgement

The authors thank the referees and Alan Edelman
for suggesting improvement on the presentation, es-
pecially for the latter in suggesting using a simple
table of upper bounds on the P;’s to describe digit
sequences. Edelman also suggested including the re-
sult given in Corollary 1. The authors thank Intel
Corporation for providing sufficient details of their di-
vision implementation to make the analysis possible.
The second author performed this work while on leave
visiting the Mathematics Department of the Chinese
University of Hong Kong. The generous support of
the department is also acknowledged.

References

(1] O. L. MacSorley, High-speed arithmetic in binary
computers, Proc. of IRE,, 49, pp. 67-91, 1961.

[2] J. E. Robertson, A new class of digital division
methods, TRE Trans. on Electron. Computers,
EC-7, pp. 218-222, 1958.

[3] K. D. Tocher, Techniques of multiplication and
division for automatic binary computers, Quart.
J. Mech. Appl. Math. XI, Part 3, pp. 364-384,
1958.

[4] 1. Koren, Computer Arithmetic Algorithms, Pren-
tice Hall, Englewood Cliffs, 1993.

[5] Amos R. Omondi, Computer Arithmetic Sys-
tems — Algorithms, Architecture and Implemen-
tations, Prentice Hall Series in Computer Science,
Englewood Cliffs, 1994.

[6] M. D. Ercegovac and T. Lang, Division and
Square Root: Digit Recurrence Algorithms and

Implementations, Kluwer, 1994.

[7] IEEE standard for binary floating-point arith-
metic, ANSI/IEEE 754-1985, also in Computer,
14, pp. 51-62, 1981.

146

