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Abstract

The intial release of the Pentium™ processor has
a flaw in its radiz-4 SRT division implementation. It
is widely-known that five entries were missing in the
lookup table, yielding reduced-precision quotients oc-
casionally. In this paper, we use mathematical tech-
niques to analyze the divisors that can possibly cause
failures. In particular, we show that Bits 5 through
10 (where Bit 0 is the MSB) of such divisors must be
all ones. This result is useful in compiler-level soft-
ware patches for systems with unreplaced chips; and
we believe that the techniques used here are appliceble
in analyzing SRT division as well as other hardyare
algorithms for floating-point arithmetic.

1 Introduction

SRT is a widely used algorithm for binary floating-
point division [1, 2, 3]. Given a dividend/divisor pair
p/d, 1 < p,d < 2, the SRT algorithm generates a
sequence of partial remainders and quotient digits,
(pi') qi)’ i= 0,1,2,.. B sa.tisfying

Pi+1 = radix(p; — gid), |pi4+1/d] < threshold

where podéfp. The “threshold” is defined once we
choose the two key design parameters of a particu-
lar SRT implementation, namely, “radix” and the set
of allowable quotient digits g;’s.

A common implementation for radix = 4 is vo al'ow
lg:] < 2, that is, ¢; € {-2,-1,0,1,2}. Tk:s gi.es
threshold = 8/3 (cf. [4], p. 134). Clea:ly, then, g en
any p;, |pi| < $d, we must choose |g;| < 2 such that
|4(p: — gid)| < 3d. The following check for legitimacy
of quotient choices can be easily verified:

] 2
D<o+l

2
d<2 if ¢—2<
la:l < OK if ¢ <7 3

- )

For example, ¢; = 0 is legitimate when —2d < p; <
24, and ¢; = 1 is legitimate when 3d <pi < 8d. The
fact that some values of p; allow for two legitimate
choices of quotient digits is a well known advantage of
SRT. The main reason is that ¢; can now be decided
based only on approximate values of »; and d. For a
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Table 1: Quotient Selection P-D Table

¢ when P lies in

2 [ %D+ ’ %D+ )

1] §D+ ; §D+ )

04 ( —% - §D+ ) §D+ )
-1 ( -5~ §D+ ) —% - §D+ ]
-2\ ( -i—3D+ » —3-3D:+ ]

specific case, we choose P= £ and D=1+ ﬁ'to be
integer multiples of } and % such that
1
P<p; <P+idéfP+&D5d<D+EdéfD+.

We illustrate how g; can be decided by P and D alone.
Clearly, we have —% — 8D, < P < §D, and

< pi/d < P, /D for OLZP

P/D, < <
"< m/d < PD, for 0>P,

P/D

Combining these inequalities with (1) and using a con-
vention that the quotient digit of larger magnitude is
tavor>d whenever two legitimate choices exist, we ob-
‘ain ¢ digit selection table (P-D table) exhibited in
Table !{. To implement the quotient selection rule,
one simply stores the quotient digits in a P-D table
where

D
P

One common approach in implementing the division
iterations is to keep the partial remainders p;’s in a
carry-save format. Mathematically, p; is represented
as the sum of a truncated part P;, a carry part C;,
and a sum part S;:

P: k

N 8
p.-=sumof C,' 0.0006465...61,
S, 0.0008435...81,



Figure 1: Carry-Save Implementation of SRT
P; k/8
Ci 0.000cscs5 ce6cCr ...
Si 0.0003485 S$6 87 ...
—-q.'d eaezeleo.h.--fs f6f7-~-
Pt sum above + chey ...
'+ carry(c, s, f)s sysg ...
Initially,
po=p = lpp2...pL
P, = l.pipaps,
So = 0.000p4ps...pr, and
Cy = 0.00000...0.

Calculation of p;+1 = 4(p; — g:d) is straightforward for
g; <0: Let

—qid=e3ezerep. f1 fa... fL.

The variables P;11,Cit1, and S;4+; are produced as in
Figure 1 where carry(b, bg, b3) is 1 if the three input
bits consist of two or more ones; and carry = 0 oth-
erwise. When ¢; > 0, one can form —gq;d as the one’s
complement of g;d = e €g. f1 f2 ... fi plus 271, that
is —qid =& & . f1 f2 ... fr plus 2~ L. The value 2~
can be put into the corresponding positions of C; or
of Ci;+1 (by deferring the action). One can verify that
these positions are always zero before accepting 2~ L.
The techniques discussed here are actually quite stan-
dard (cf. [5], pp. 268-270, or [6] Chapter 3).

2 Description of Problem

The previous section in fact functiona.léy describes
the SRT implementation on the Pentium™ processor.
Due to a by-now famous mishap, in the processor’s
initial release, the five quotient digits stored in the
P-D table for the five (P, D) pairs

D
P

1+ &, €=1,4710,13

8 1def
3Dy — §=Praa

were 0 when in fact they should have been 2. Conse-
quently, for divisors d lying in the five corresponding
regions of [D, D,), reduced-precision quotients (fail-
ure) are delivered occasionally (cf. Corollary 1). More
precisely, for these divisors d, failure occurs whenever
during a division process, at some ¢ prior to comple-
tion, we encounter P; = Py,,. (According to empirical
studies, divisors and dividends uniformly distributed
in [1,2) give a probability of failure in the orcer of
1079)

Since for any d lying in one of the five crit.cal re-

gions, %d lie outside of them, a compiler-level patch
can replace occurrences of x/y where |y| = 2"d,
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Figure 2: Compiler Patch S:

If d is in one of the 5 regions

calculate (x * (15/16))/(y * (15/16))
else

calculate x/y
End if

Figure 3: Compiler Patch F:
If d is in one of the 5 regions AND

ds=d¢=---=dio=1

calculate (x *(15/16))/(y * (15/16))
else

calculate x/y
End if

1 < d < 2, by Figure 2. However, executing
(x*(15/16))/(y*(15/16)) not only involves extra mul-
tiplications but also requires the saving and restoring
of several status variables (such as precision control)
in order to ensure full IEEE compliance [7]. Thus,
this replacement is considerably more expensive than
it might seem. The patch in Figure 2 requires the slow
substitute with probability 5/16 in general, degrading
performance noticeably. Our main result is that in or-
der for a failure to occur, the divisor d = 1.d;ds . ..dy,
not only has to satisfy the obvious requirement that
l.didzdsdy = 1+ & for £ = 1,4,7,10,13, but that
ds through djp must all be ones. Thus the patch
can be modified by a faster version given in Figure 3.
Consequently, the slow substitute is invoked only with
probability 278 x 5/16, rendering the performance
degradation practically zero.

To derive our result, we analyze in the next section
the (P;,q;) sequence just prior to the first reference
t0 Pg... In the following section, we analyze the bit
patterns of the corresponding carry and save vectors,
(Ci, S;). Inferences can then be drawn on d’s bit pat-
tern. Finally, we present two examples to illustrate
our results.

3 Digit Sequence Analysis

In order to analyze the last few steps just prior to
i.ferencing the fatal P-D entries Py,q4, we first examine
*he evolution of the P;'s. From Figure 1, we see that

1
P = 4P —qd)+ goarry + 0.0cqcs + 0.08455
= 7
< 4P -qd)+ 3’



Table 2: Upper Bounds on P;;;

gi I Bounds on Py,
Py1<3Dy+3
Py < §D+ +1
Piy1 < 3D, + %
Pip1 £ 3D, -

Py < §D+—%

(=2

-1
-2

where d is approximately d, taking into account the
truncation and one’s complement. For example,

1.d1dad3dsds
1.dyd2d3dsdsdg + 26

for ¢; = —1, and
for g =2.

R K

Combining the bounds for P; in Table 1 and the
inequality just obtained for P;;, we obtain a table of
upper bounds, Table 2, on P;;; for each of the five
possible values of g;.

Now consider a divisor d that belongs to one of
the five critial regions of [D, D, ). Let Py be the first
reference to Ps,, = $D, — 1. Clearly, J > 1 because
Py < po < 2 < Py, for all five possible Pp.,'s. Our
result in this section concerns the evolution of the few
P;’s just prior to P;y.

Lemma 1. There is an integer m > 1 such that
J 2 m + 2 and that the evolution of (P;,q;) from
t=J—-m-—1toi=J is given by

1 P; gi
Fpaa Qbaa
J-1
tO PBM—% 2
-m
—-4p L _o
+
J-m-1 ::or : or
—3D+-3 -1

Proof of Lemma 1. From Table 2, in order for Py =
Py.4, the only possible choice for g7_; is 2. Since Py
is the first reference to Ps,,, we must have Fj_; <

Pp.s — §. Because the partial remainder p; satisfies
8
P;<p;= zé-a @20,
and that p; = p;4; /4 + ¢id, we have

8 a
pJ—1=§d'ZZPJZPa.d-
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Consequently,

1 1
Py, >pJ—1_ZZPBnd—Z'
The strict inequality and the fact that the P;'s are
integer multiples of § imply that in fact Py_; > P,y —
§. Moreover, we clearly have J—1 > 0 because py_; >
Pj_; which is bigger than 2 for all five possible values

OfPB.d—-%.

Examining Table 2 again tells us that g;_2 can only
possibly be 2, —1, or —2. Using the previous analysis,
we see that if

Q-m =Ql-mp1 = - =qj_1 =2

for some m > 1, we must have

Pi-m 2 DJ-m+1 2 *** 2 PJ-1,

forcing

1
PJ—m=PJ—m+1="'=PJ—-1=PB-d_§,

as well as J — m > 0. Consequently, there exist an
integer m > 1 such that J —m > 0, qj_n—1 # 2, and

(Pi,Q:') = (PBud_l)2)a

3 i=J-m,J-m+1,...,J-1.

Using Table 2 one more time, we must have
qj-m--1 = —2 or —1. since pg > 1, we must have
go > 0 and thus J—m—1> 0, that is, J > m+2. Fi-
nally, Table 2 shows that in order for P;_m = Paua— 3
with ¢j_m—1 = —2 or —1, we must have P;_,,_,;
to be the corresponding maximum possible values.
Thus, Py_m-1 must be —} —~ 4D, or -1 — 1D, for
qJj-m-1 = —2 or —1, respectively. This completes the
proof of Lemma 1.

We further comment that in fact when D = 1 +
(4 or 10)/16, —1D, is not an integer multiple of £ and
thus ¢; = —1 implies P; < —§D+ - %. Consequently,
¢7-m-1 = —1 is possible only when D is one of the
other three values.

4 Bit Pattern Analysis

We first show that the digit sequence established in
the last section implies Bit 5 through 8 of d must be
ones. This result in turns implies that m = 1, that is,
g¢j—2 = —1 or —2, and that the carry and sum vectors
at J -2, (C, S)s—2, must each have at least 5 leading
ones. This result then easily implies, in fact, that Bits
5 through 10 of d must all be ones.

Lemma 2. Bits 5 through 8 of d must be all ones
and that C;_; and S;_; must each have at least three
leading ones.



Proof of Lemma 2. We consider the evolution of P;
from i = J — m — 1 through J. It is easy to see that
because of the carry-save implementation, Py_,_; to-
gether with the leading bits

def

Crom—1 = 0.000c4cs...C43m0...0

ef 0.0008485 e 36+3m0 ...0

SJ—m—l

of Cj_m—1 and Sy_,,_; determine the evolution of the
Py’s from J —m —1 through J. Thus, if we (re)initiate
the division process at Step J —m — 1 with

ﬁJ—m—ldéf(P + é + g)J—m—la
then, we still have
P,

P Pous~g,i=J-m,...,J
Py

PBad'

Clearly,
Piom—1 = Pj_pm_y + £27(6+3m),

where 0 < ¢ < 24¥3™ _ 2 Now, consider the case
qj—m—1 = —1. We have

Pi-m = 4(Psj-m-1+d)
Pin = 4pi—2d),i=J-m,...,J -1,
giving
. - 1
Pr=4""p; o + (4™ +8)d.

Let d =D, - 6, 6 > 0. Using the facts that

1 1 . 8 1
Pj_m-1= _§D+ - Z’ Py = Pgaa = §D+ - gv
we have
8 1 1 1
’D. - > < m+l [ 2 _ —-(6+3m))
3P+—3 = 4 ( 3D+ 1 + €2 ’
1
+3 (4™*1 +8) (D, - 6).

Using £ < 24t3™ _ 2 we arrive at

3(1—2-m),
6 < S A 27°.
Thus § <277 form =1and § <28 for m > 1. The
gound 8 < 277 for all m clearly implies ds = dg =
7= 1.
Repeating the analysis for the case ¢j_m_1 = —2,
that is, Py_,n—1 = —$D, — 1, gives 6 < 278 for all

m > 1. Thus ds through dg are all ones. Therefore, at
this point, we know that except for the case of m = 1
with ¢y_s —1 where we only know that we must
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Figure 4: From J —2to J -1

Pj_2 k/8

Cy_2 0.000c4cs c6CrCs ...

SJ_2 0.0003435 S6 8788 ...

—qJ_zd €3€2€; eo.f1 f5 fG f7 fs
1 C4C5Cg - -

P11 Poaa — 5 848586 ...

have ds through d to be ones, ds through dg must in
fact be all ones for all other cases.

Using the fact that ds through d; are ones for all
cases, we now show that C;_; and S;_; must each
have at least three leading ones. This is derived by
considering the generation of P;. Refer to Figure 1
withi = J—-1landi+1=J. Let (cj,s;), j = 4,5,6, be
the three leading bits of (C, S);_1. Because ¢;j_; = 2,

Py 4PJ_1—8(D+d5/32+d6/64)—%+

0.0cscs + 0.0s485 + carry(cs, s¢,d7),

where the —% term is due to the one’s complement.
Becauseds =dg =d7 =1, Py = P,y = Pj_1 + %, the
equation simplifies to

7
3= 0.0c4cs + 0.08485 + carry(cs, ¢, 0),

implying ¢; = s; = 1 for j = 4,5,6 as claimed. Note
that this is true for all the possible choices of m’s and
qi-m-1.

Finally, we reconsider the case of m 1 with
gs—2 = —1. Previously, we have only proved that ds
through d; must be ones for this case. We now show
that in fact dg = 1 also. Consider the generation of
pj—1 from pj_, as depicted in Figure 4. We have just
established that ¢ = s; = 1 for j = 4,5,6. Clearly,
theu, we must have fs = 1. But fg = dg because
gj—-2 = —1. This completes the proof of Lemma, 2.

Lemma 3. The quotient digit 2 just prior to ¢; can
occur only once, that is, in fact, m = 1 and qj_2 = —1
or -2. Moreover, Cj_, and S;_5 must each have at
least five leading ones.

Proof of Lemma 3. We concentrate on the process

(P,C,S)J-Q q‘l_—z (P,C,S)_]_l

as shown in Figure 4. We have already established
that ds through dg to be ones and that c; = s} =1

for j = 4,5,6. Consequently, we must have ¢ =85 =
fi=1forj =78 Ifgqy_o>0,then f; = d; or dg
'mplies f; = 0. Thus, we must have ¢;j_, < 0. This



Figure 5: From J -3 to J —2

P;_3 k/8

Ci_3 0.000¢cqcs cCr ... Cio-..

SJ_3 0.0008485 8687 ... 810 ...

—qs-3d  esezereo.fi...fs fefr... fiwo...
1 11... 1 ...

Pr-2 B B 11... 1 ...

fact, together with Lemma 1 forces m = 1, or in other

words, g2 = —1 or —2. Now,
-2
qj-2 =4 Or
-1
and
1 18 1
-3Dy— 5304
Pj_4,Py_, = L or )
—3D+ - 4304 — %
implies

0.0cqcs + 0.084385 = g, and carry(cg, 3g, f6) = 1.

This, together with s} = 1 implies ¢; = s; = 1 for
J =4,5,6. Thus, ¢; = s; =1 for j = 4,5,6,7,8 as
claimed and the Lemma is proved.

Theorem 1. In order for the SRT to reference Py.q,
Bits 5 through 10 of the divisor d must all be ones.
Moreover, q;_3 < 0.

Proof of Theorem 1. We concentrate on the process

(P,C,8) -3 T3 (P,C,8) -2

as depicted in Figure 5. It is clear that f; through
fio must be all ones. Consequently, we must have
g7-3 < 0 for otherwise the fact that ds through dg are
all ones would imply f; = 0 for any choice of g;_3 > 0.
It follows immediately then that g;_3 = —1 or —2. In
either case, we have

f7=---=f10=1=>d9=d10=1
and the theorem is established.

Corollary 1. J > 8, that is, the first 8 quotient
digits generated are always correct despite the flaw
P-D table.

Proof of Corollary 1. Initially, we have C; = 0.
Therefore we can establish a lower bound on J by
examining the earliest possible occurrence of an ali-
zero pattern in the sequence C;,Cj_1,Cy_,,....

If we have L consecutive (c;j,$;+1) = 1 patterns in
(C, S)k, we must have at least L — 1 consecutive occur-
rence of such patterns in (C, S)i~1. Sincein (C,S);_2
we have 4 consecutive (¢;, $;41) = 1, we must have at
least 3 such patterns in J — 3; at least 2 in J — 4; at

least 1 in J — 5; at least 1 non-zero carry bit in J — 6.
Thus, J > 7.

If in fact J = 7, then the above argument shows
that indeed we can only have 3, and no more, such
patterns in J —3, only 2in J—4, and only 1 in J —5.
Consider now (C,S)s_3. Because (cj,sj+1) = 1 for
J =4,5,6,7and cg = 1, we must have (c;, 3;, f;)j—3 =
1for j = 7,8,9,10 in Step J — 3. Moreover, at least
2 of (c11, 811, f11) must be ones (in order to generate
cs = 1in J —2). This means that ¢;; = f1; = 1 and
811 = 0. Using the same argument, we conclude that
in Step J — 4, we must have (c;, 3, f;)j—4 = 1 for j =
10,11,12 and (c;, 85, fj)s—s = (1,0,1) for j = 13,14
(in order to generate c19 = ¢11 =1 in Step J — 3).

Continuing this argument, we conclude that there
must be a persistent five-consecutive-one pattern in
the f’s of Step J—3,J —4,...,J — 7. More precisely,

(fj’fj-}-l) . 'afj+4)K = (1’ 1, 1) 17 1)
for
(4,K)=(7,J-3),(10,J — 4),...,(19,T — 7).

Since f; = dj,dj41,d;, or d;y,, the overlapping con-
secutive ones forces q;_3, gj—4, up to gsj_7 to be of
the same sign. But ¢;_3 < 0 by Theorem 1. Thus
gs—7 < 0, implying that it cannot be the first quo-
tient digit after all. Thus J > 8 and the corollary is
established.

5 Relative Error Analysis

In this section, we provide an upper bound for the
relative error
absolute error
correct quotient
where absolute error is defined as

abs. err. = correct quotient — computed quotient.

Let
q0:91,---,97-1,97,9J41,- -

be the correct sequence of quotient digit generated had
there been no flaw; and let

d90,q1,- - 7qJ—1,§Jan+l7 v
be the sequence of flawed digits (from J onwards).
Note that, in particular, §; = 0.
Lemma 4. The magnitude of the absolute error is
bounded as

iy | 2 1 0 -1 =2

abs. err. 3.56 3.94 4.32 4.71 5.08
bound x107% x107% %1075 x107% x10~%



Proof of Lemma 4. The absolute error E is given

by
E=) q/¥ - §/¥,
i=J j=J
and J > 8 (Corollary 1). Thus,
=, 2 2
28(747 + 5v2)

J

where ¢; = 2, 45 =0,

du+1
|E| < SRVTRE
Substituting the various cases of §y+1 yields the tab-
ulated result.

An obvious way to obtain an upper bound for the
relative error is to divide the maximum entry of the
previous table by a lower bound on the correct quo-
tient:

correct quotient >

maxD,’

The bound obtained in this manner is roughly 10~*.
We can reduce this bound by exploiting the correlation
between §yy; and D,. This is the task of the rest of
this section.

Lemma 5. Let the carry and save vectors at Step J,
C;,8S8J be

C;
Sy

0.0006405(:6
0.000348556

Then
0.0cscs + 0.0s455 + carry(cs, 56,0)/8 < 3/8.
Proof of Lemma 5. In the flawless situation, g; = 2

and

= 4P;-2(D+27%+27%-27%)
+0.0cqcs + 0.0s485 + carry(cs, 36,9)/8

Py

because ds = dg¢ = d7 = 1. Moreover P; = §D+
§ and Pyyy < 8D, — % since this is the maximum
P value possible. Putting these information to the
previous equation yields the result immediately.

Because of the flaw, we have §; = 0. Thus,
Pji1 = 4Pj 4 0.0cscs + 0.0s485 + carry(cs, s¢,0)/8.

Lemma 5 shows that the leading bit pattern o Py
is given exactly by 4Py = 4(3D, — 3). Note that over-
flow of 4P, leads P, tbe be interpreted as negative

in some cases. Using the bit patterns of Py;; and
Table 1, we derive the following table for ¢j41:

Dy |1+& 1+ 1+& 1+4 1+ 3

di+1 ? —2 0 1 2
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When D, =1+ 1_26v Py is interpreted as between
—7.5 and —7.5+ 1/8 since

Py, =1000.1XXX....

This is clearly out of bound of the legitimate P values.
As far as an error bound is concerned, we can take
ds+1 to be —2. Theorem 2 is now obvious.

Theorem 2. An upper bound of the relative error is
6.7 x 10735,

Proof of Theorem 2. The result is obtained by com-
bining Lemma 5 and the previous table: The relative
error is bounded by 1075 times the maximum of

30 27 24 21
T x 3.56, 16 x 3.94, 16 x 4.32, 16 x 5.08.

This completes the proof.
6 Examples

We present two examples to show that both The-
orem 1 and Corollary 1 are sharp. We scale the
dividends and divisors so that they become integers
and represent them in both decimal and hexadecimal
forms.

Example 1.
dividend = 109249940 73628 9EF AC64 141C
divisor = 103 02563 26687 EF EOOF F81F
qgo,---,qs = +17_17"'7—27+27q14=q&3d

Note that the divisor corresponds to
1.dydodsdy = 1.1101,

with ds through dip to be ones and that d;; = 0.

Example 2.
dividend = 4195835 80 OBF6
divisor = 3145727 BF FFFC
q0,--.,95 = +1,-1,...,-1,+2,48 = gpaa

Note that indeed the ninth quotient digit can be
wrong. This case, however, is not associated with only
six ones in the divisor.
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