A GaAs IEEE Floating Point Standard Single Precision Multiplier

S. Cui, N. Burgess, M. Liebelt & K. Eshraghian’

Dept. of Electrical and Electronic Eng. & *Dept of Electronics, Computer and Communication Eng.
The University of Adelaide, SA 5005, Australia & TEdith Cowan University, WA 6027, Australia

Abstract
This paper presents a GaAs IEEE floating point standard
single precision multiplier. A modified carry save array is
used in conjunction with Booth’s algorithm to reduce the
partial product addition and interconnection. A special
rounding technique called Trailing-1’s Predictor is used to
speed up the final addition and rounding. The combination
of the fast arithmetic architecture and compact layout style
achieves 4ns multiplication time with 3.5W power dissipa-
tion at 75°C giving 14 mW/MHz. The area is 2.43mm by
3.77mm (excluding pads) and uses 28,000 transistors to

give a density of 3056 transistors/mm?® for 0.8-pum GaAs
technology.

1 Introduction

High-speed and high-precision computation are
required for many digital signal processing, computer
graphics, model simulation and image processing applica-
tions. Floating point computation is most suitable for these
applications because it maintains high precision operation
over a wide dynamic range. For microcomputer systems,
not only high-speed but also small-sized floating point
devices are in great demand.

Usually floating point chips are designed using silicon-
based technology [1]-[3]. Advances in fabrication processes
have significantly improved the performance of silicon
devices [4, 5]. However, GaAs has inherent superiority in
electron mobility and saturation velocity, high-temperature
operation, and radiation hardness. In a research and devel-
opment environment, GaAs digital circuits have clearly a
better power-delay performance than silicon circuits [6]. In
recent years GaAs ICs have become increasingly attractive
due to their high speed. Also, the yield of GaAs ICs has
increased dramatically. However, the relatively low layout
density compared to CMOS has tended to limit the utiliza-
tion of GaAs VLSI circuits.

In this paper, we describe a fast, compact 32-bit GaAs
floating point multiplier using a new design and layout strat-

1063-6889/95 $4.00 © 1995 IEEE

egy which takes advantage of the superior performance of
GaAs and improves the layout density.

A modified carry save array is used in conjunction with
Booth’s algorithm to reduce the partial product addition and
interconnection. A special rounding technique called Trail-
ing-1’s Predictor is used to speed up the final addition and
rounding. The chip supports IEEE standard 754 single preci-
sion format and provides overflow/underflow flags. The chip
measures 2.43x3.77mm and contains 28,000 transistors. The
simulated result of the multiplication time for the chip is
4ns, with 3.5W power dissipation at 75°C.

2 Chip Architecture

A block diagram of the floating point multiplier is
shown in Figure 1. The chip consists of an exponent block
and a mantissa multiplier block. The exponent block evalu-
ates the sign and exponent in floating point multiplication
mode, and detects overflow/underflow.

(
EXPONENT) [5ign]

BLOCK detect
ovffunf

modified carry save
adder array

Booth recording

MANTISSA <
BLOCK

[22-bit CSAdders |

| 26-bit CSAdders |

L rounding 1
\ { final format adjust |}

Figure 1. Architecture of the floating point
multiplier.

91

2.1 The Multiplier Array

The mantissa multiplier is a 24x24-bit parallel multi-
plierwhichconsistsoftwopaﬂs:anmyandaﬁnaladder.
The array uses the radix-4 modified Booth’s algorithm to
reduce the number of partial products from 24 to 13.

Aﬂerthepartialproductshavebeengenmted, there
areomertechniqueswhichcanfurthetimprovethespeedof
multipliers, of which Wallace tree reduction is one of the
fastest. In general, the number of stages required to reduce n
partial products to 2 is [7]:

T =log,5(n/2) = 2.4664 In(n/2) €Q.1)

For our case, n=13, T~4.6. Therefore, at least 5 stages
areneeded.ForWallaceueereducﬁon,ewhstagehasone
full adder. This means that for IEEE single precision format
with modified Booth’s encoding, the partial-product tree
height reduces from 17 to 5 full adders. However, the total
delay depends not only on the number of stages 7, but also
on the delay associated with the interconnection wiring
capacitance. Since Wallace tree reduction is not regular, the
delay of the interconnection is significant and the method is
not suitable for VLSI implementation. There are other
reduction schemes which use (n, m) compressors with n
inputs and m outpuits [7). A full adder is a (3, 2) compressor.
Other useful compressors are (4, 2) and (7, 3) [8, 9].
Figure 2 shows a 24x24-bit modified Booth multiplier using
(4, 2) compressors. It can be seen that it needs 3 stages i.e. it
is6fnlladdets®ep,butthelayoutmgulaﬁtyisstilloom-
promised, which is a disadvantage in ultra high-speed GaAs
technology.

Piid
4,2)

14
“4,2)

L
ol
“2)
R

biid
4,2)
K]

Figure 2. A 24x24-bit multiplier using (4, 2)
compressors.

s

i
3,2)

In order to maintain both regularity and high speed, a
modified carry save array [10] was used for our multiplier.

92

Figure 3 shows the structure of this method which adds even
rows with even rows, odd rows with odd rows and at the end
adds the two rows together. The partial product reduction
tree is 7full adders deep for 24>24-bit multiplication, which
is comparable to a multiplier using (4,2) compressors (6 full
adders deep) while using a simple and regular structure,
necessary for minimizing delays due to interconnect in
GaAs technology. Figure 4 shows the HSPICE simulated
results of the critical path of these two multipliers. The
modified carry save method is slightly faster than (4, 2)
compressor method because of shorter interconnection
wires. The (4, 2) compressor also has larger power dissipa-
tion due to larger buffers required to drive longer wires.
Therefore, mCS is preferred due to faster, easier layout and
lower power. However, for double precision multiplication,
the (4, 2) multiplier is faster than the modified camry save
multiplier, because the former is 8 full adders deep, whereas
the latter is 14 full adders deep.

‘~' '1\";\.'.1\“;\'.1\‘;\.-1 ‘:\
> 7n-1 1]]]]
e)
3 '1\‘. '1\\l r} 1\\| : 1\\|
12)
57\..1\‘%‘.;\‘7\.1\‘7\..1\‘73
]
:T\.' I N~ T ' TN ; 'f\F
In+2-e }]]]]
L= i ==l
— [mux
I FA
Figure 3. A Modified Carry Save Array.
B
g1 AVAW A
§ E'E— - ol \" /l ; mCS
l:::;::: 'l' ‘\‘I Vl ' -
5 i Ill:lll% F/\N’\/ \'—_'n.(.4’.g).
§ siz III.ON§ N :A.l—nQ.S_

0N - s.00
.. TINE €LIND

Figure 4. The HSPICE simulated results of two
multipliers.

2.2 The Final Adder

To obtain maximum speed, both the array and the final
adder part must operate at the highest possible speed. In
GaAs technology all of the logic functions have to be
implemented by inverters and NOR gates because of noise
margin problems [11]. Pass transistor logic is also restricted
in GaAs. Sarmiento et al. studied a variety of adders and
concluded that the Binary Carry Look-ahead adder (also
called Brent and Kung adder) and carry-select adder are the
fastest adders in GaAs [12). However, the Brent and Kung
adder contains long wires which require buffing.

60

!
55 J
§
o /.
ashod /.
!

40 i
2™) £
E\J.o i / // " Pl
225 ! / //,...‘_--'"""

[Pt
20}t NI Y
| et

Ls)-F a .= Ripple Canry Adder

10 ?f_f © —— Binary Camry Look-ahead Adder

’ ¢ -~ Camy Select Adder

05 . Carry Skip Adder

0 H & —— Camry Look-shead Adder

0. -

[L] 16 24 32 40 4 56

Figure 5. Adder cltaIay"’é"&”a‘ff’ifsyt“s number of bits.

Figure 5 shows our simulated result of adder delay
against number of bits. It confirms Sarmiento’s results and
shows that for adders exceeding 8 bits in width, the carry
select adder as shown in Figure 6(a) is the fastest adder with
moderate area. Each block consists of a pair of ripple carry
adders and successive blocks increase in length by one bit.
However the number of m-bit ripple carry adders must be
chosen carefully. For n-bit addition, the total delay of the
adder of Figure 6(a) can be calculated roughly as follows:

Digrar = M- dgy, + (’%-1)-(1",” EQ.2)

total
where dm,,y is the carry in to carry out delay of a full adder,
dy is the delay of a multiplexer. Our simulated results
show that d;,,, = 0.25ns and d,,, = 0.3ns. For 24x24-bit

multiplication, n=48. m may be found by differentiating
EQ. 2 with respect to m:

0 n

'a—,;(total) = dcarry_ 2’ dmux =0 ®Q3
m

m = 2—'—'£-n=7.6 EQ. 4
carry
dmml d,, = 35ns EQ. 5

The relationship between d,,,,; and m is shown in

Figure 7. Figure 6(b) shows the final adder partitioning used
in our 32-bit floating point multiplier

m+4}e0 | m+3 a0] m+2le0|Mm+]|e0 _l mbitl

midfe1l | m43te1 | m42je-1 | mHl -1

A=)

m

Figure 6. The structuro of the final adder.

-~
o

-~
~N

~
Y

~
-

-
Y

~
-

~
N

-
H
-

Delay (ns)

O ~ N W A W &N & e

0 1 2 3 4 S 6 7 & 9 10 I 12 13 14 15 16 17 18 19 0

M bits
Figure 7. The total delay vs. m bit.

3 Rounding
Much delay in a floating-point multiplier may be taken

up by rounding the product in accordance with the IEEE
standard. Methods for speeding-up the rounding process

centre on using a pair of full-length adders to supply the un-
roundedpmduct.l’,andaninctementedptodwt,P+2’”.
Then the comrectly rounded result may be chosen by inter-
polation across the two results [13]). In GaAs technology,
intmductionofasecondfull—lengthaddatoachievemmd-
ing is overly wasteful of the limited available chip area and
so alternative techniques are required that use less circuitry
(and consume less power) but which are still capable of
accelerating the rounding process.

A simple algorithm for incrementing a number con-
sists of inverting bits in the number from the Ls.b. up to and
including the first zero. Hence, instead of employing a sec-
ond adder to compute P+223, a trailing-1's predictor would
examineﬂlepairofaddendstogmteasetofﬂagbits
indicating those bits that should be inverted in order to
increment P. A simple T1P, based on a carry-ripple princi-
ple, is shown in Figure 8,

b7a7 b6a6 bSaS bdad b3a3 b2a2 blal b2l

VAVIvIviVIVIVIY
1
Uvvivvielewe

1

-

1] 0

17 o r4 & n”

Figure 8. A simple 8-bit carry-ripple T1P.

Conceptually, the structure of the Trailing-1’s Predic-
tor rounding technique is illustrated in Figure 9, where the
output of TIP, r; is a set of flag bits indicating that those
sum bits that should be inverted. The control logic activates
the T1P by allowing the r; bits onto the XOR gate inputs if
P is to be incremented. If P is not to be incremented, all the
r; bits are forced to zero, so that p; = s;.

¢ lml

Adder

rl

Control| Sin
Logic

pi
Figure 9. The structure of T1P rounding
technique.

94

In order to discuss the rounding procedure Clearly,
Figure 10 shows the top 26 bits of the product, produced in
this multiplier by the three most significant blocks of the
carry-select adder. The square brackets “[]” indicate the bits
to be occupied by the correctly-rounded result.

-

22 bits ———p| 1] | sticky

b —

Figure 10. Labelling of bits in product P.

In the case of no overflow, 224 will be added at the r
bit position. If an overflow occurs, 223 will be added at the /
bit position. The T1P is designed to operate from bit posi-
tion / (at significance 2"23) upwards to accommodate round-
ing by adding 2. Rounding by adding 224 is then
achieved by activating the T1P if V-{C,, T + CppTs + Lr:5)
and r are both high, and inverting r in any case. Finally, the
act of rounding up may itself cause an overflow, but this
event would be detected by the most significant flag bit pro-
duced by the T1P going high, which could then provide a
right shift signal in concert with the overflow bit, v.

Other faster, more sophisticated T1P’s are available
based on other accelerated addition techniques. We have
found that a carry-select version of the T1P is preferred in
GaAs technology for the same reasons as were discussed in
relation to the choice of adder. This structure is illustrated in
Figure 11.

bA7 b6 b%S 232 blal

7 © 5 ©¥ B n 1
Figure 11. An 8-bit carry-select T1P.

-

(=

0

Detailed layout and simulation showed that the T1P
was 25% smaller and 30% quicker than using one row of
half adders and a second carry-select adder to perform
rounding. The T1P can share its xor gates within the CSAd-
der. Thus, the T1P method occupies less area than CSA
method. Furthermore the T1P method implements round to
nearest/even directly, thus no round to nearest/up to round
to nearest/even conversion needed.

4 Circuit Design

Direct Coupled FET Logic (DCFL) was used to imple-
ment the logic because it is the simplest logic class in GaAs
with reasonable speed and power dissipation [15]. Source-
Follower Direct Coupled FET Logic (SDCFL) was used to
drive large loads and long wires. Figure 12(a) and (b) show
a DCFL inverter and a SDCFL 2-input nor gate, respec-

tively.
Vbp Voo
out
A B
in lout
GND " GND
() (b)

Figure 12. DCFL and SDCFL gates.

Because all the logic functions have to be implemented
using inverters and NOR gates, the size of the layout is
quite large, especially the multiplexer. In order to reduce the
area of the chip, we used a “Ring Notation™ approach to
implement the circuits. The “Ring Notation™ approach
(Figure 12(b)) showed that it has better performance and is
easier to implement than the nMOS-style (Figure 13(a))

layout for high-speed VLSI circuits [15].

* Va — T
— GND
LOGIC
LOGIC
GND
(a) (b)

Figure 13. (a) nMOS-style and (b) Ring-style.

5 Simulated Results and Conclusion

The multiplier was designed using Vitesse H-GaAs-1I
0.8um Technology. The SPICE simulated result of the 32-
bit multiplier for worst case is shown in Figure 14. The lay-
out of the chip (without pads) corresponding to Figure 1 is
shown in Figure 15. The chip measures 2.43x3. 77mm? and
contains 28,000 transistors. The simulated result of the
worst case multiplication time for the chip is 4ns at typical-
typical parameters with 100fF load. The power dissipation
is 3.5W at 75°C with 2V power supply giving 14mW/MHz.

Z~Ir «4rox<

Zur Aro0<

200 .0M

18.0867M
3.6947

wT

AODL
TTI
TAN

4 . 0ON
TIME CLIN)D

Figure 14. The HSPICE simulated results of the floating point multiplier.

95

Table 1. The performance of 32-bit multipliers

la Area Density | Power mW/
Techn Format et] Delay 2
ology Method s Transistors 2 W MHz
AT&T GaAsHFET IEEE32 4,2 9.25 8x9.5 49,700 654 7 74.75
lpm
Uof A GaAsMESFET IEEE32 m.CS 4 243x3.77 28,000 3056 35 14
0.8um
Table 2. The Performance of 16x16 Mulitipliers
Power mW/MHz
w
Sekiguchi
Sumitomo(1990) (0.7am) multi-chip 4X 375X 4X 3906 278 4X1.1 334
375
Singh et al GaAs CS 475 32X28 11708 1307 2.61 124
ITT(1990) (0.7um)
Kajii et al GaAs 41 63X 48 15000 496 62 254
(1988) HEMT
Cuietal GaAs m Booth 293 14X25 11562 3300 1.4 4.2
Uof A (1994) (0.8pm) &m. CS

Table 1 shows the comparison of our 32-bit multipliers
(U of A) with the AT&T GaAs heterojunction FET 32-bit
multiplier [16] which is the only other reference in this field.
In order to compare with other GaAs technologies, a 16x16-
bit fixed point multiplier has also been designed. Table 2
shows the comparison of our 16x16-bit multiplier with
other 16x16-bit multipliers. It can be seen that our chip has
better performance in terms of delay, area and power dissi-
pation. It suggests that the modified carry save array and the
trailing-1’s rounding technique work very well for a GaAs
multiplier. To confirm this architecture, the 16x16-bit paral-
lel multiplier is being fabricated to verify our simulation
results. If successful, the floating point multiplier will also
be fabricated.

6 Acknowledgements

The work described in this paper has been supported
by the Australian Research Council.

References

(1] C. Huntsman and D. Cawthron, “The MC68881 Floating-point
Coprocessor”, IEEE MICRO, Dec. 1983, pp. 44-54

[2] M. Uya, K. Kaneko and J. Yasui, “A CMOS Floating Point
Multiplier”, IEEE J. Solid-State Circuits, V. SC-19, No. 5, 1984,
pp- 697-702

[3] K. Takeda et al. “A Single-Chip 80-bit Floating Point Proces-
sor”, IEEE J. Solid-State Circuits, vol. SC-20, No. 5, 1985, pp.
986-992

{4] J. Fandianto and B. Y. Woo, “VLSI Floating-point Processors”,

Proceedings of Seventh Symposium on Computer Arithmetic, 1985,

Pp. 93-100

(5] T. Asprey et al. “Performance Features of the PA7100 Micro-
*, IEEE Micro, 1993, pp. 22-35

(6] I. Deyhimy, “Gallium Arsenide Joins the Giants”, JEEE Spec-

trum, Feb., 1995, pp. 3340

[7] S. Waser and M. Flynn, “Introduction to Arithmetic for Digital

Systems Designers”, New York: Holt, Rinehart and Winston, 1982

[8] M. R. Santoro and M. A. Horowitz, “SPIE: A Pipelined 64 x

64-bit Iterative Multiplier”, IEEE Journal of Solid-State Circuits,

Vol. 24, 1989, pp. 3594-3597

[9] R. K. Montoye, E. Hokenek and S. L. Runyon, ‘Design of the

IBM RISC System/6000 Floating-Point Execution Unit”, IBM

Journal of Research and Development, Vol. 34, 1990, pp. 59-70

[10] Y. Oowaki, ef al. ““A Sub-10-ns 16x16 Multiplier Using 0.6-

mm CMOS Technology”, IEEE J. of Solid-State Circuits, vol.sc-

22, No. 5, 1987, pp. 762-767

[11] Long, Stephen I. & Butner, Steven E. “Gallium Arsenide

Digital Integrated Circuit Design”. McGraw-Hill, Inc. 1990

[12] R. Sammiento, P. P. Carballo and A. Niilez, “High Speed Prim-

itives of Hardware Accelerators for DSP in GaAs Technology”,

IEE Proceedings-G, Vol. 139, 1992, pp. 205-216

[13] Knowles, S. “Arithmetic processor design for the T9000

Transputer”, ASPAAI-2, SPIE, 1991

[14] M. R. Santoro, G. Bewick and M. A. Horowitz,”Rounding

Algorithms for IEEE Multipliers”, Proceedings of 9th Symposium

on Computer Arithmetic, 1989, pp. 176-183

[15]) K. Eshraghian, R. Sarmiento et al, *‘Speed-Area-Power Opti-

mization for DCFL and SDCFL Class of Logic Using Ring Nota-

tion”, Microprocessing and Microprogramming 32, 1991,

NORTH-HOLLAND pp. 75-82

[16] Larry R. Tate et al. ““32 Bit GaAs HFET IEEE Floating Point

Multiplier”, GaAs IC Symposium 1992, pp. 85-88

3.77 mm

. ' '
TR T, .

o
2L
HE =

FA

j——————————— 152um

=0 S

|<—~ - 116pm ——>|

Figure 15. The layout of the 32-bit multiplier.

97

