Sign Detection and Comparison Networks with a Small Number of Transitions

Milo$ D. Ercegovac!

Tomés Lang?

t Computer Science Department, University of California, Los Angeles, CA 90024
1 Dept. of Electrical and Computer Engineering, University of California, Irvine, CA 92717

Abstract

We present an approach to reducing the average
number of signal transitions (T},) in the design of sign-
detection and comparison of magnitudes. Our approach
reduces T,y from 21n/8 (n - operand precision in bits)
to 4.5 in the case of iterative implementation, and from
about n to roughly k + n/2%~! in the tree network im-
plemented with k-bit modules. We also discuss com-
parison of small numbers. The approach is applicable
to other arithmetic problems.

1 Introduction

We are initiating a research effort in the develop-
ment of numerical computing systems which require a
small amount of electrical power to operate. The total
power dissipation in a chip is due to a variety of sources,
including input/output circuits, buses, clock genera-
tion and distribution, on-chip memories, and computing
structures. We concentrate on the computation struc-
tures and, in particular, on arithmetic structures. Con-
sequently, the methods of power reduction we propose
have to be complemented with others dealing with the
rest of the system.

The computation structures can be represented at
various levels of abstraction. In this study, we view the
structures as gate networks and latches. In this domain,
we explore the effectiveness of selecting several features,
such as number representations, algorithms, and struc-
tures, to reduce the power consumption. These results
are related to the circuit level of implementation by
making suitable assumptions on the power dissipated
by the gates and the latches. The methods proposed
have to be combined with techniques applied to other
levels, such as the use of low-power technologies and
power-down strategies [3].

To evaluate the power dissipation of the proposed
structures, it is necessary to utilize a model. We concen-
trate on a model suitable for CMOS technology because
this is the prevalent technology today and it is predicted
that it will continue to be so in the near future. For

1063-6889/95 $4.00 © 1995 IEEE

59

this case, the static power dissipation is negligible and
the dynamic power dissipation is related to the number
of signal transitions [3]. Consequently, in this research
we concentrate on the reduction of the number of sig-
nal transitions and assume the proportionality between
this measure and power dissipation.

CMOS implementations use two types of gates:
static and dynamic, which have different characteris-
tics in terms of the transitions produced [3]. The op-
eration model is simpler for the case of dynamic gates
because the gate outputs are reset at the beginning of
each cycle and because there is at most one transition
per output per cycle. On the other hand, static gates do
not have these constraints, so the transitions depend on
the previous state of the outputs and there can be mul-
tiple transitions per output per cycle. We will consider
static gates here.

In this paper we describe the development of arith-
metic modules which performs the operation with a
small average number of transitions. The main tech-
nique used is to modify a conventional implementation
to eliminate unnecessary transitions. We calculate the
average number of transitions under the following as-
sumptions:

1. The input vectors are applied simultaneously (all
bits).

. The transitions at the input of the circuit are not
included.

. The sequence of inputs are independent and ob-
tained from a uniform distribution. We also con-
sider a special case in which the operands are small
integers (Sec. 3).

. The gates are static CMOS.
All gates have the same delay.

. We count the sum of high-to-low plus low-to-high
transitions.

. If two or more transitions arrive simultaneously at
the inputs of a gate, at most one transition is pro-

duced at the output. To determine whether a tran-
sition is produced we consider the output value be-
fore and after the occurrence of the simultaneous
transitions. On the other hand, glitches can occur
(and are accounted for) when transitions at the in-

put of a gate are separated by one or more gate
delays.

We consider here a class of functions in which there
are one or more operand bit-vectors and a single bit re-
sult which depends on the bits of the operand vectors
with a decreasing probability. That is, the result z de-
pends on the subvector (zy,z,...z;) with probability
P; and P; > P; for j < k. Examples of these func-
tions are sign detection of the sum of two fractions in
the 2’s complement system, sign detection of a fraction
in signed-digit representation, magnitude comparison,
pattern detection.

Traditional algorithms for this class do not take ad-
vantage of this probability of dependency and therefore
result in unnecessary transitions. We consider modifica-
tions in the algorithm to reduce this effect. We consider

in detail the case of sign detection and then comment
on the other cases.

Related Work

This research area is relatively new and quite active
because of the importance of this issue for future dig-
ital systems. As discussed in [1] the design of systems
for low power requires a combination of techniques at
four levels: technology, circuits, architectures, and al-
gorithms. We concentrate on the level of structures
formed by CMOS gates and latches. Moreover, from
the various techniques to reduce power dissipation, we
have chosen to reduce the number of transitions (and
will not consider, for example, the possibility of reduc-
ing the voltage swing; this is a complementary tech-
nique which can be used in addition to the reduction of
the number of transitions). Consequently, we limit our
review to this topic.

Brodersen et al. [1] discuss models for static and dy-
namic CMOS structures. Static structures, unlike dy-
namic ones, exhibit extra transitions due to the glitch-
ing effect, which depend on the logic design, delay skew,
and the number of logic levels.

Chandrakasan et al. [4] discuss transformations that
reduce the power dissipation. In particular, they sug-
gest that to reduce the number of transitions it is con-
venient to transform the system to balance the delay
of paths and to reduce the depth of the implementa-
tion. An example considers a multi-operand addition
and compares an unbalanced with a balanced tree im-
plementation; the conclusion, obtained by simulation, is

60

that the capacitance switched by the unbalanced tree
is a factor of 1.5 larger than that of the balanced tree
for a four-operand addition and 2.5 larger for the eight-
operand case.

Powell and Chau [7] propose an analytical model for
estimating power dissipation: the parameters used are
the number of gates, the clock frequency, the average
number of transitions per cycle per gate, and the gate
short-circuit current and dynamic current components.
They apply this model to parallel multipliers. The num-
ber of transitions is estimated as a fraction of the num-
ber of gates.

The research on arithmetic structures for low power
is new and little has been done. Callaway and Swartz-
lander [2] use a gate-level simulator to determine the av-
erage number of transitions and delay of several CMOS
adders and multipliers. The primitive circuits used are
limited to inverters and 2 to 4 input AND and OR gates.
The results are obtained by simulating the operation of
each scheme for 50,000 randomly distributed input pat-
terns. They conclude that, assuming a figure of merit
equally weighted on delay and number of transitions,
the carry-lookahead adder is the best for the consid-
ered operand lengths of 16, 32, and 64 bits. Similarly,
they compared multipliers of linear array and tree type
(Wallace and Dadda) and conclude that the best multi-
plier is a Dadda multiplier. There is neither a discussion
of the reasons for the difference in the transition counts
nor any suggestions regarding the changes in the logic
design which would influence these counts. No consid-
eration is given to multiple transitions per output.

Ko et al. [5] discuss a self-timed method to reduce
glitches in low power CMOS adder, yielding a 25%
reduction in power with a small delay overhead. Na-
gendra et al. [6] present simulation results for different
types of parallel adders, ranging form 8 to 64 bits. A
comparison of different adders is given based on power-
delay product.

Arithmetic structures have also been used as exam-
ples in more general studies of low-power structures.
For example, Brodersen et al. [1], consider an adder
and discuss the effect of its topology on the capacitance
switched and on the total delay. Chandrakasan et al.
[4] show the effect of path balancing and reduction of
delays on power dissipation in multi-operand adders.

2 Sign detection of z + y

This algorithm determines the sign of a number rep-
resented by the sum of two fractions in 2’s complement
representation. This is, for example, used in division
and square root to determine the sign of the last resid-

ual which is in a redundant (e.g., carry-save) form. An-
other application is the magnitude comparison of two
numbers, which can be performed by determining the
sign of their difference.

More specifically, we determine the sign of = + v,
where r and y are fractions in two’s complement rep-
resentation. The fractions are represented by the bit
vectors

X =z0.21,..,24,...,Tp

Y =y.4, ¥y Un
so that

n
z=-z9+ Z 227"
i=1

n
y=-v+ Y 2"
i=1
The sign of £ + y is obtained then by the expression

sign =TS Yo d co

where cg is the carry out of position 1 when z + vy is
performed.

First we consider a conventional iterative algorithm
and then we develop a modified algorithm that has a
small average number of transitions. Since these im-
plementations have a large worst-case delay, we use a
similar approach to tree-type networks.

2.1 Standard iterative algorithm
This algorithm is
Ci—1 = PiCi + gi

where p; = z; ® y; and g; = z;y;.

sign = 2o D Yo D o

The implementation is shown in Fig. 1. For each
cell, there are four gate outputs where transitions occur
(labeled g;, pi, ai, and ¢;). Transitions occur for the
generation of the p and g signals, the carry-propagation
chains. Fig. 2, shows an example of these chains.

We determine now the corresponding average num-
ber of transitions.

* Pair (p;, g:)
Consider the number of transitions in the pair
(vi, 9;). The three possible values of this pair are
(0,0), (1,0), and (0,1). Since the input values z;
and y; are uniformly distributed, the probability of
occurrence of these values is

61

*n In

sign

Figure 1: Conventional iterative network for sign de-
tection.

Value | Probability

(0,0) .25
(0,1) .25
(1,0) .50
Moreover, the number of transitions produced by
a change is
New value
Previous value | (0,0) (0,1) (1,0)
(0,0) 0 1 1
(0,1) 1 0 2
(1,0) 1 2 0

Consequently, the average number of transitions
per bit slice is

O0x27%4+1x27%+1x23
+1x27*4+0x27442x23
+1x2342x2340x22
7/8

Tay (Pi) gi)

Since there are n bit slices the total is

Tav(p,9) = (7/8)n

L,

We now determine the average number of transi-
tions for the variable ¢;. Consider the case in which

1
Pj={0

that is, there is a propagation chain of m bits to
produce ¢; (Fig. 2). In this case, ¢; settles to a
new value equal to gitm41, but will first receive
the old values of ¢;1; to ¢iym. Since for these old
values 0Os and 1s are equally probable, the average
number of transitions is (m + 1)/2. Since m can

fit1<j<it+m
ifj=i4+m+1

vary from 0 to n — i, and the probability of having
m consecutive p = 1 is 2~(™+1) (for no p it is 1/2),
we get the following average number of transitions
for ¢;

Tu(e) = 3 2msn(mt])
m=0

- f: g—(m+1) (M ;' 1)
m=0
_ i 2-(m+1).__(’";' 1)

m=n-i4+l
2—(n—i+2)2-(n-9)
2

So, for all i we obtain

n

Ta(c) = Y 2—(n—i+2)x2- (9

i=1 2
n . -—
2—(j +2)29
ICSC AN
i=1
ii+l i+m+]
pj 11110
& 00001
< 01100 initial state
11001
10011 intermediate
0111 states
1111
11111 final state

Figure 2: Example of carry transitions.

® a;

For the output of the AND gate producing a; =
pici, we consider two events:

1. The change of p; from old to new. There is
a transition when c;(old) = 1 and p;(old) #
pi(new). This occurs with probability 1/4, so
this event produces a total average number of
transitions equal to n/4.

2. The effect of the changes in ¢;. This change
propagates through the AND gate when
pi(new) = 1. Consequently, the correspond-
ing number of transitions is (1/2)T,,(c) =

(1/2)(n - 2).

Combining 1 and 2 we get (the number of transi-
tions are added because the events occur at differ-
ent times), ,

3
T,o(a) = T" -1

The total average number of transitions is

7 3 21
T¢v=§n+ﬂ—2+zn—1%—8—ﬂ

2.2 Low-transition iterative algorithm

Since only the most significant carry-propagation
chain affects co, we now modify the iterative algorithm
so that the transitions in the other chains are avoided.

As shown in Fig. 3, we produce a signal that prop-
agates left-to-right to determine j, the position of the
most-significant bit with p; = 0. Then ¢o = g;. This
value can be placed on a bus or propagated back to the
most-significant position.

Note that the signal h also inhibits the computations
of p and g.

Xy 2 ¥ n In
bl §
ho =1 oo
h h
"o ;0 q] ! 92 ’ h"'l qn
¥
A 4 Yy
(.‘0 .
l hi=pihi_1 q; =gj h;

sign
Figure 3: Reduced transition scheme.
We define the binary variable h;, such that h; = 1
indicates that the most-significant propagation chain

includes bit ¢. That is, h; = 1 implies p; = 1 for k < 1.
So, the algorithm is

1. Initialize all h; = 0 for ¢ > 1.
2. h=z1y) + =i
3. Fori=1ton—2do
hiv1 = hizipayiy + izl v
4. co = o1y + OR M (hizigr1 i)

An implementation is shown in Fig. 4.

We now determine the average number of tran-
sitions. These transitions occur only in the most-
significant carry-propagation chain, that is up to the
most-significant cell for which h; = 0.

62

Xp Y1 XY 1%1y]

9n

sign

Figure 4: Implementation reduced transition count.

J: 12345
Xj 00111...
Yj 11001 ...
¢ hj 0000 initial state
0 10000
0 1 130 0 intermediate
0 11130 states
0 11110

1

Figure 5: Example of transitions in h network.

If this most-significant propagation chain has length
m, the number of transitions is (Fig. 5)

o For the h’s, we have 2(m) transitions (one for the
AND gate and one for the OR gate).

e For ¢y we have .5 transitions (one transition with
probability .5)

Since the probability of a most-significant chain of
length m is 2-(™+1) | the average number of transitions
is

n
To =) 27 x 2m) + 5~ 25

m=0

For the scheme to operate correctly, it is necessary
to clear the h's after each operation. Therefore, to ob-
tain the total number of transitions it is necessary to
add those due to the clearing. On the average, these
transitions equal to the number of transitions during
operation, resulting in

Tay = 4.5

Note that this average is a constant independent of
n.
We have shown a relatively simple modification of
the iterative algorithm that produces a reduction in the

63

average number of transitions from about (21/8)n to
just 4.5. This has been done by eliminating unnecessary
transitions. For example, for a floating-point represen-
tation of a 53-bit fraction the number of transitions is
reduced from about 130 to 4.5.

However, the iterative algorithms presented have the
disadvantage that the worst-case delay is proportional
to n. We now extend the approach to faster algorithms.

2.3 Tree-type algorithm

The previous iterative algorithms have a worst-case
delay that is proportional to n. Faster algorithms exist
with worst-case delay proportional to logn. We first
describe such an algorithm and then modify it to reduce
the number of transitions.

Consider a tree-type algorithm. The basic module
has k input pairs

(P67, (R GETY)

and produces one output pair P/,G/. These modules
are organized as a tree, as shown in Fig. 6, so that level
Jj consists of n/(k’) modules. Moreover,

e The inputs to level 1 are the bit-level p}s and g}s.
e The module function is described by the following
expressions

P} = AND:_ Pi™!

3

G =G+ PGy .+ Pj T Py PIT G

The value of ¢y corresponds to G of the last level.
The worst case delay in this case is

Delay = Delay(p, g) + logr(n) x Delay(module) (1)

We now determine the average number of transitions.
As indicated in the iterative scheme, the average num-
ber of transitions in the stage that computes the pairs
Pi, gi is

Tav(p,9) = (7/8)n

Performing the same type of analysis for the first
stage of modules we get for each pair P!, G! the follow-
ing probabilities:

Value | Probability

(0,0) | poo = 0.5(1—27F)
(0,1) | por = 0.5(1 —27%)
(1,0) | pro=27%

5(1) _!(I) gz) !(2) £(!I/k) x(n/k)
L |
L_re L,] Pg
k* kf k{ k{ k k
PG PG ses PG
22PG
kY &k
200 PG

X0 Yo k k

L 5

¢ =G

;

sign

Figure 6: Tree network for sign detection.

If the expressions for P’s and G’s are implemented
as two-level gate networks, the number of transitions is

New value
Previous value | (0,0) (0,1) (1,0)
(0,0) 0 2 1
(0,1) 2 2 3
(1,0) 13 0

Therefore, the average number of transitions for the
(n/k) modules is

Tav(levell) =

+2 x (poopo1 + Po1Poo + Po1Po1))
+3 x (po1p10 + P10p01))

which can be approximated by
Tyy (levell) %(3 +2x2°F)

For a typical value of k = 4 we get Ty, (1) =~ (3/8)n.
For the second level the value is obtained by replac-
ing k by k2 in the expression above. That is,

n L3
Tov(level2) = 2—’07(3 +2x27F)
For k = 4 this is T, (level2) = (3/32)n. Since this is

about 10% of T4y (p, 9)+Tav (levell), it can be neglected.
Similarly for the rest of the stages.

(n/k)(0 x (p3o + p¥y) + 1 x (Poop10 + Pr0Po0)

Consequently, the average is

7 3+2x2°*
Tav & (g + —%—)n (2)

This is about n transitions. We now develop a low-
transition variation.

2.4 Tree-type algorithm with reduced
number of transitions

As before, we reduce the number of transitions by
eliminating unnecessary transitions. Consider the im-
plementation of Fig. 7 where the generation of p, g of all
the bits except the most significant k is inhibited when
Py (the P signal of the leftmost module) is 0. This is
correct since when this P is 0 the carry cg is equal to
G,. That is, only the most-significant chain determines
co and

¢o = P/Gi + PG

% Y P G

i

l

sign

Figure 7: Tree network with low transition count.

This modification has an effect on delay and on num-
ber of transitions. The new worst-case delay is

Delay = 2Delay(p, g) + [(logxn) + 1]Delay(module)

so that the increase in delay with respect to (1) is rel-
atively small.

Number of transitions

As shown above, the number of transitions in the left-
most module is

Ta(l) = (7/8)k + (1/2)(3 4+ 2 x 27F)

In addition, the rest of the network has transitions
when P; changes from 1 to 0 or when the new P, = 1.
That is, there are transitions except when the P, was
0 and remains 0. The probability of this transition-
producing event is

(1-(1-2"%%) 27k
Consequently,

7

-k
Too (rest) o 2—Ic+1[g + &

2k

The total number of transitions is

7
Tow = [g +

(n—k)

3+2x2°F
2k

As an example for k = 4 and n = 64 we get

J(k+27%*1n)

Taw =~ 15

which corresponds to a reduction by a factor of about
five with respect to (2).

3 Comparison of small numbers

The previous sections considered the case in which
there is a uniform distribution of input values. However,
in some practical situations this might not be the case,
one example being a sequence of comparisons in which
the inputs correspond to small numbers.

Specifically, consider that the input values have the
s most-significant bits equal to 0. In such a case, when
performing the subtraction for the comparison, the s
most-significant p signals have value 1. If s > k, the
scheme of inhibition presented in Section 2.4 would not
work since the enabling signal would be always 1 and
the p, g signals would be active. Consequently, to have
a low-power scheme it is necessary to introduce some
modifications.

A possibility is to make the inhibition dependent on
the size of the integers that are to be compared (maxi-
mum size in a sequence of comparisons). The enabling
signal is now produced by the most-significant module
for which all input bits can be nonzero.

An implementation is shown in Fig. 8. Register R
has one bit per k-bit byte of the operands. It is set to 1

65

if the corresponding byte of both operands to compare
are assured to be 0. Consequently byte j is the most-
significant byte which can have bits different than zero
if R;_ 1R = 1.

Module j produces the control signal

Qj = PiR;_1R;
so that the enabling signal for module 7 is

E; = Ri-1R; + OR;Z1Q;

Moreover, to have the most-significant disabled mod-
ules produce a propagate signal we make

P! =P+ R;
L I2TsTe T -T-T-] controt Register r
R R; R Ry Ry Ry Ry
A%
'——_ln O _[E]
7] %
[LF&M) [on]d? ¥ | [on]aOx”
El | E3} | E,
[Lee || e | ps
| L | L1
(e) e I e]| [re]
P P P P
R R; R Ry
OR OR OR| OR|
G LII_!’I P2t Lﬁ’f L]__:'"f

(PG tree as in Fig. 6)

X Yo PG
‘0 G
sign
Figure 8: Tree network for comparison of small
operands.

The following example illustrates the operation of
the scheme when comparing = and y:

1 0 1 2 3 4
R; 1 1 0 0
z |0 0000 0000 0011 1011
-y |1 1111 1111 1101 1001
E; 0 0 1 0
P; 0 0 0 0
Pr 1 1 0 0
Qi 0 0 0 0
G 0 0 1 0

P=1 G =0 G=1
Therefore, ¢p = 1, and sign = 0, ie.,z > y.

The mode of operation of this implementation is sim-
ilar to that of the system in Section 2.4, that is, most
of the time just the most-significant enabled module is
active (since the probability that for it P=1 is low).
Consequently, the average number of transitions is sim-
ilar to that of the scheme of Section 2.4.

Additional transitions occur when the contents of

register R is changed, but we assume that this occurs
infrequently.

4 Characteristics of the Schemes and
Other Examples

The schemes presented are based on the elimination
of unnecessary transitions. In particular, this idea has
been applied to an example in which the output is de-
termined by the most-significant carry chain. Moreover,
the probability of a long chain is low, so that it is ad-
vantageous to eliminate these unnecessary transitions.

Other examples of this type are

e Sign detection of a number in signed-digit repre-
sentation.

¢ Determination of the position of the leading 1 in a
word. This is used, for instance, for normalization
in a floating-point adder.

o Detection of a pattern. This is similar to the ex-
ample presented, but the reduction in the number
of transitions depends on the length of the pattern.

Acknowledgments. This research has been supported
in part by the NSF Grant MIP-9314172 “Arithmetic
Algorithms and Structures for Low-Power Systems.”

References

[1] R. Brodersen, A. Chandrakasan and S. Sheng,
“Low-Power Signal Processing Systems,” VLSI
Signal Processing V, Eds. Yao, Jain, Przytula, and
Rabaey, IEEE Press, 1992, pp.3-13.

[2] T. K. Callaway and E.E. Swartzlander, “Optimiz-
ing Arithmetic Elements for Signal Processing,”
VLSI Signal Processing V, Eds. Yao, Jain, Przy-
tula, and Rabaey, IEEE Press, 1992, pp.91-100.

[3] A. Chandrakasan, M. Potkonjak, J. Rabaey, and
R. Brodersen, “An Approach for Power Minimiza-
tion using Transformations,” VLSI Signal Process-
ing V, Eds. Yao, Jain, Przytula, and Rabaey, IEEE
Press, 1992, pp.41-50.

[4] A. Chandrakasan, S. Sheng, and R. Brodersen,
“Low-Power CMOS Digital Design,” IEEE Jour-
nal of Solid-State Circuits, Vol.27, April 1992,
pp-473-484.

[5] U. Ko, P.T. Balsara, and W. Lee, “A Self-Timed
Method to Minimize Spurious Transitions in Low
Power CMOS Circuits,” 1994 IEEE Symposium on
Low Power Electronics, pp. 62-63, 1994.

[6] C. Nagendra, R.M. Owens, and M.J. Irwin, “Low
Power Tradeoffs in Signal Processing Hardware
Primitives,” VLSI Signal Processing, VII, Eds. J.
Rabaey, P.M. Chau, and J. Eldon, IEEE Press,
1994, pp.276-285.

[7] S.R. Powell and P.M. Chau, “Estimating Power
Dissipation of VLSI Signal Processing Chips: the
PFA Technique,” VLSI Signal Processing, IV, Eds.
H.S. Moscovitz, K. Yao, and R. Jain, IEEE Press,
1990, pp.250-259.

