High Speed DCT/IDCT Using a Pipelined CORDIC Algorithm

Feng Zhou*

and

Peter Kornerup!

Dept. of Mathematics and Computer Science
Odense University
Campusvej 55, DK—5230 Odense M, Denmark

Abstract

This paper describes DCT (IDCT) computations
using the CORDIC algorithm. By rewriting the DCT,
Jor a 1x8 DCT only 6 CORDIC compulations are
needed, whereas a 1x16 DCT requires 22 CORDIC
computations. But these can all be pipelined through
o single CORDIC wunit, so 16x16 DCT’s becomes
feasidble for HDTV compression. Only some simple
adders, registers and o more complicated carry look-
ahead adder are needed, and the computing speed can
be very high. Limiied only by the delay of a carry
look-ahead adder, the delay time of the pipelined siruc-
ture 18 2—10ns and the dala raie is 100—500MHz for
an 8x8 DCT/IDCT and 72.2—366.6MHz for a 16x 16
DCT/IDCT when using two units.

1 Introduction

The discrete cosine transform &ll)C’;[‘l) is being
widely used in image compression. It has already been
introduced into international standards, such as rec-
ommendation H.261[1], J PEGL2], MPEG(3]. Recently
the DCT has become one of the main components of
the compression techniques in HDTV video coding[4].
Many DCT chips have been produced‘}S]- [9]. Because
the sampling rate is very high in HDTYV, it is necessary
to solve the computing speed problem of the DCT and
IDCT(10] , [11]. For %DTV pictures, the correlation
among the picture elements is far stronger than that
of common video pictures, so 16x16 DCT/IDCT is
more suitable for HDTV video coding.
Ahmed et al.[12] first introduced DCT and computed
the N point DCT/IDCT using a 2N point FFT in
1974. Since then many fast algorithms for DCT/IDCT
have been propoeed[13]-[17]. In order to accelerate
the DCT/IDCT computation, some algorithm used
the FFT, some used FHT (fast Hartley transform),
some directly decomposed the DCT itself. Their
common aim i8 to reduce the number of multipliers
and adders using a butterfly structure and to obtain
O(NlogN) running time. Another approach[16],[17]
is to convert the DCT/IDCT to a skew-circle convo-
lution. The DCT/IDCT can be computed using dis-
tributed arithmetics[18],{21] which uses memories to

*On leave from Dept. of Information and Electronic Engi-
neering at Zhejiang university in P.R.CHINA, supported by the
Bao Yu-kong and Pac Zhao-long Scholarship.

tSupported by the Danish Research Councils, grant number
5.21.08.02

1063-6889/95 $4.00 © 1995 IEEE

180

replace multipliers which are required in any butter-
fly type of implementation of the DCT/IDCT. Sev-
eral other attempts regarding VLSI realisation for 2-D
DCT for HDTV coding have been reported. Miyasaki
et al.[11] presented an 8x8 DCT/IDCT processor for
HDTYV using an extended version of DSP Silicon com-
piler to which a matrix-vector product module com-
posed of multiply-accumulations is added. The pro-
cessor worked at a 50MHs data rate.

This paper presents a high speed DCT using the
CORDIC algorithm. The CORDIC (Coordinate Ro-
tation Digital Computer) is an arithmetic technique
developed by Volder[19] to solve trigonometric prob-
lems that arise in navigation applications. Walther([20)
later developed it into a unified algorithm to compute
a variety of transcendental functions. The reason that
the CORDIC algorithm now appears in many applica-
tions is that it uses only primitive operations such as
shifts and additions to implement relatively complex
functions. Using the CORDIC algorithm, we can si-
multaneously complete four coefficient multiplications
including the computation of the trigonometric co-
efficients. In 1974 Despain[22] suggested the use of
CORDIC rotation for the Fourier transform. In 1990
Duh and Wu[23],[24] reported architectures for DCT
based on index partition and the use of multiple, it-
erated CORDIC structures, requiring 108 CORDIC
computations for the 16-point DCT. In 1995 Hu and
Wu([25] proposed a systolic structure of N(N + 2)/4
cells, each performing a complex multiplication us-
ing a pipelined CORDIC unit. Here we use a fairly
straightforward approach where the complexity of a
1x N-DCT is still O(N?), but with small constants.
Exploiting some symmetries in the DCT/IDCT defi-
nitions, we find that only 6 CORDIC computations are
needed for a 1x8 DCT/IDCT, and 22 CORDIC com-
putations for a 1x16 DCT/IDCT. A CORDIC com-
putation can be realized using a pipelined structure,
which only uses some simple constant time adders and
registers. We rewrite the DCT/IDCT computation
into a structure where butterfly computation are ei-
ther very simple add/subtract structures (no multipli-
cations), or more complex butterflies corresponding to
rotations which can be realizsed by the CORDIC algo-
rithm. However, the structure is such that the result
of a complex butterfly is never used as input for an-
other complex butterfly operation. This implies that
the latency of the complex butterfly only affects the

total latency of the DCT/IDCT. A simple pipeline
implementing this operation can then be kept busy ir-
respective of the granularity of the pipe, and can thus
reach a high throughput.
Since the CORDIC pipeline performs the work of four
multipliers a comparison between such alternative im-
plementations is carried out. It is found that the com-
binational circuitry needed is about the same, but the
multiplier approach requires more space for constants,
and more latches when deeply pipelined.
Section 2 briefly introduces the CORDIC algorithm.
Then Section 3 and 4 explains how to perform DCT
IDCT) computations using the CORDIC algorithm.
ection 5 discusses the pipelined DCT/IDCT using
the pipelined CORDIC structure. Finally Section 6
concludes on 2D DCT/IDCT.

2 The CORDIC Algorithm

Consider the problem of rotating a vector (R, B8
through an angle . The original vector is expresse
in terms of its rectangular components X and Y. After
rotating, the components X’ and Y’ of the rotated
vector are

X' = Xcosf — Y sinf = (X — Ytan8)cosd
Y' =Ycos + Xsinf = (Y + Xtanb)cos6.

The CORDIC algorithm is an iterative procedure
in which each step rotates the vector in one or the
other direction through an angle of magnitude a; =
atan2™?, that is:

Xjp1= Xj—Yjtano; = X; —6;¥;x277 (1)
Yisi= Yj+Xjtana; = Yj+6;X;x277 (2)
9j+1= 0j+6jaj: 1=0,1,2,---,

where Xy, Yy are the original components X and Y,
6o = 0, and §; € {-1,+1}. The direction 4; for each
a; is chosen as +1if6 —6;_; > 0 and —1if 6 — 0i_1
< 0. Continuation of the above iterations until §; is
suitably close to @ therefore produces X and Y com-
ponents that are K, times as large as the true X’ and
Y’ where K, is given by K .~1.646760255- - - which is
Volder’s value through j=24. According to the above
iterative algorithm, a block diagram of the logic struc-
ture for CORDIC is shown in Figure 1. Note that
when using the CORDIC algorithm, every computa-
tion can use the same number of iterations, so that a
common value of the factor K. can be used.

In many situations, we want to compute X’ and Y’

to;

Adder

Figure 1: A block diagram of the logic structure for
CORDIC

181

for some given angle. When the angle 8 is known in ad-
vance, the signs §; can be computed in advance, since
6= EJ(—I)‘J’ o;. Using the above iteration structure,
the computation time is determined by the cycle time
and the the number of iteration steps. To accelerate
the data rate, we can use a pipelined CORDIC struc-
ture as shown in Figure 2.

S0

Sn—1

Figure 2: A pipelined CORDIC_structure

Observe that in each stage of the pipeline the
amount of shift needed is now constant and can be
implemented by a wiring. Assuming the delay time
between two steps is 7 and the number of iteration
steps is p, then pr is the latency. It is sufficient to use
simple (redundant) carry-save or borrow-save adders
(SDA) internally in the pipeline, only at the end of the
computation the results then have to be converted to
non-redundant using more complex carry-look-ahead
adders (CLA). The speed of these CLA adders will
then determine the delay time 7. Using suitable and
fast technology for these adders, 7 is 2—10 ns, and data
can be processed at the rate 1/7 = 100 — 500M Hz.

3 1-D DCT Using CORDIC

To rewrite the discrete cosine transform we ggetli to
observe some trigonometric identities. For cos—;NLmr

and sinZtlyx let u = N — u’, we have
2N])

2i+1 n ol 2l
cos— (N —u')xr = (-1)'sin aN %" (3)
241 , . %41,

- = (- . 4
sin—- (N —u')xr = (—1)*cos o v (4)

fi=N/K-1-4,K=1,2,4,8,16,---, when u =
0,K,2K,3K,-- -, we have
2E -1-i)+1 2¢' +1 (5)
2N 2N
and when u = K/2,3K/2,5K/2,---, K > 2 we have

cos ur = (—1)¥cos ur

AF-1-N+1 L exp 241
cos 5N ur = (=1)" % sin oN Uur (6)

K _1-i+1 =K/ 2 4+ 1
sin2(N N ?) + ur = (_1) : zcos i ; ux. (7)

Now we analyze the one-dimensional DCT. The co-
sine transform is defined as follows

N-1 .
F(u) = \/% E C(u)cos(21'2;1u1r)f(i),

=0

v=0,1,2,---,N -1,

where C(0) =1/v2,C(u)=1,u=1,2,---,N—1. In
the following we will assume that N is a power of 2,
N = 2™. Because \/2/N is a constant, we presently do

not consider it for simplicity. After removing /2/N
the above formula may be divided into two parts, using
formula (5) for the second part (K = 1), then

N/2-1

Z C(u)cos(

=0

N-1
+ Z C(u)cos(
i=N/2
M 2% +1
g C(u)cos(IN
x[F@) +(-1)*F(N -1-4)]. (8)

Now we define two sets of functions fx (i) and f(i
to express the above function. For K =K1(, let ¢)

ff6) = £ (6) = £(3),
and for K = 2,4,8,16, .-

2

i+ 1
2N

F(u)

ux) f(3)

2i

i+ 1
2N

ur) f(3)

ur)

i=0,1,2,---,N—1.(9)
'1N/2ti=011:233:"':N_

K/2, let
Ix () faad) - fx2(2N/K —1-3) (10)
k() = fE0)+ f£,@N/K - 1-3) (1)

so formula (8) may repeatedly be split into two
parts. In general, let K = 2,4,8,..-,N/2, when
u=0,K/2,K,3K/2,2K,---, N — K/2, we obtain
-1
Flu) = Y C(u)cos(

=0

Xk + (D2 15,2 _1- 1)

%i+1)
2N *

2i+1
2N

g-1
+ Z C(u)cos(
i=fe

{0 + (02 rE T —1-)a2)

Observe that the value of the right hand side does not
depend on K, but it can only be used to compute the
value of F(u) for a set of values of u which depends
on the value of K. For u = K/2,3K/2,5K/2,---,N —
K/2,C(u) = 1, using formula (6) and (10), the above
expression reduces to

ux)

L e : -X/3
F) = Y feoo(XE umfz() + (-1)*F2
=0
. ,2i+1 -, N .
xsin(—-un)fp(F -1-9} (13)

182

For u = 0,K,2K,---,N — K, using formulas (5)
and (11), then (12) becomes
-1 .
_ 2i4+1
F(u) = 2 C(u)cos(2N uw)

i=0
. N p

x{FEG)+ ()RR —1- O}14)
which again can be split as in (12) until there is only
one term left in the sum (i,e. for X = N/2), allow-
ing the computation of F(0) and F(N/2). Note that
C(0) = 1/v/2 = cos(x/4) = sin(x/4), therefore

F(0) = cos($)f1(0) + sin(§)f% (1).

For u = K = N/2 we get from (14)

F(3) = ~{cos()f (1) - sin(5)5(0)}. (16)

(15)

We can replace u in formula (13) with N — v/, using
formulas (3) and (4), when K ="2,4,8,---, N/2, so
for ' = K/2,3K/2,5K/2,---, N — K/2, we have an
alternative expression:

-1 .
F¥-v) = Y (-)sin(SE um fz)
=0
o -x/3 2i+1 ,
(1) F o2t u)

x (g —1- 9}

(tn)

Because —sind = sin(—0), cosd = cos(—0), the sign
term (—1)(*~X/2)/X in formulas (13) and (17) may
also be moved into the sin function. The angles

g—l)'—_g'&(h' + 1)ux/2N may be thus expressed as

ollows

(=1) %2 (2i + L)un/2N = m(i, u)x + (i, u),
m(i,u) = 0,£1,42,.--, -3 <0(G,u)< 3, (18)

so we have
(—1)"':xx ’ainzzzlmr = sin(-1) =xL 2‘2;11&1
= (-1)m(‘-')aino(f, u)
coazz-;lur = cos(—1) = 2’2;1141'

(- l)m(i")co"o(it u).

and (17) can compute the same set of values
when u ranges over v = K/2,3K/2,5K/2,---,
K/2. So with u from half the range, u

For a given value of K the two expressions 1(13;
u

K/2,3K/2,5K/2,---, (N—K/2?, F(u) and F(N —u)
together then provide the complete set of values:

N
k-1

2 (- l)m(i’“){fE (8)cosb(i, u)

=0

F(u) =

+f;((—z— ~ 1 —i)sinb(i, u)}

%1
:Z (__ 1)i+ lzgﬁ+'m(i,u)

i=0

F(N—-u) =

*{ff_f(% — 1 —14)cosf(i, u)
— fx(3)sinb(i, u)},

when v = K/2,3K/2,---,(N — K)/2 and K =
2,4,8,---,N/2, F(0) and F(N/2) are calculated ac-
cording to the formulas (15), (()16) Comparing
the above formulas with the CORDIC algorithm,
it is found that the N = 2" DCT F(u) (v =
0,1,2,3,---,N — 1) can be computed using the
CORDIC algorithm,

2 1 N/2K-1

F(u) ﬁ-I(—c Z Y(i,u)
i=0
21 N/2K-1

VK Y X(,u)
=0

for v = K/2,3K/2,5K/2,---,(N — K)/2,K =
2,4,8,---,N/2, and

F(N - u)

21 N 21

Here the values

F(0) =

X(i,u) = (1) SREHmEn X X(0,0) = — X,
Y(i,u)= (_1)m(i'u)Yqv Y(0,0) =7,

are computed from results of CORDIC computations
yielding the values X, and Y, after g steps, using

suitable initial values (for K = 0, X, = f;lz(l),
Yo = fi/5(0), and for K = 2,4,8,---,N/2, Xo =

fx(N/K —1—1), Yo = fg(3)), and rotation through
angles 8(%, u).

Now let us see how many CORDIC computations
are necessary in this algorithm for the DCT. For some
K,u = K/2,3K/2,5K/2,---,(N — K)/2, i changes
from 0 to N/2K — 1, hence there are NxN/(2K x2K)
CORDIC computations. When K changes from 2 to
N/2, the total number of CORDIC computations (in-
cluding computing F(0), F(N/2)) is (N? +8)/12. For
N = 8, only 6 CORDIC computations are needed,
whereas there are 22 CORDIC computations for N =

16. The functions fx (i) and f5 (i) can easily be ob-
tained from formulas (9—11). A block diagram of the

DCT computation using the CORDIC algorithm for
N =16 is shown in Figure 3.

7(15) —-'I; (0) X(0,1)4X(1,1)+X(2, 1)4X(3, 1),(“)\/;
119 5 X (0, 04X (1,)4X (3,)+X(3,3) p(18)v/5
1013) I;(’) X (0, 8)+X(1, 8)+X(3, 5)+X(I,I)’.(ll)ﬁ
102 — (s 16 X (0, T+X(1, N+X (2, N+X (3 D p(o)v/a
!:“; ;:_:‘; CORYIC ¥ (0, v (1, N4¥ (2, V4 (3, 7) ,2,;‘/;
17(10) N sdders |y (0, 8)4Y (1, 8)4+Y (3, 8)+Y (3, 5) FE)VE
1(9) ’2— (8) Y (0,38)+Y(1,8)+Y (2, 3)+Y(3,3) F(')\/i
7(8) 15 Y(0,1)4+Y(1,1)+¥(2,1)+Y(8,1) FO)VE
1) 1 —17 0 X(0D+X(13) __ ragve
1°(e) 1O 417) | conpre 2t X (18 pi0)vE
23 FAION W 5 Y I Y0¥, __ r(e)ve
7(9) FoXrr @ [| YO04vea) payve
103) PO 40 NO) 1 X(0:0) __ p(a)vE
1(2) FAde) ;j(:)%; o , E&9 raayvi
£(1) rFolArF oy st [corbiad ¥ (080 pgve
1) L Aol dsF @l Ao X0 o

Figure 3: A block diagram of the DCT using CORDIC

4 1-D IDCT Using CORDIC
The one-dimensional even inverse discrete cosine
transform (IDCT) is defined by

N-1 .
f6) = \/% uz:% Clu)eos(2 un)F(u),
1=0,1,2,3,.--,N -1
C(0)=1/v2,C(u)=1,u=1,2,---,N — 1.
We will initially not consider the constant /2/N for
simplicity. The above formula is also divided into two

parts, then replacing u with N — u' for the second
term, using formula %3), f(3) becomes

N/2-1 .

z C(u)cos(%mr)F(u)
u_N-1

+ Z C(u)cos(
u=N/2

= .1_;‘_(0_)4_(_.1

V2

N/2-1
+ Z {cos(
u=1

2i +
2N

£(3)

2i +
2N
yrip1 F(N/2)
V2
2i

2;, 1 ur)F(u)

1

ur)F(u)

1

+(—1)isin(ur)F(N —u)}

N/2-1

Z g(i, u) (19)

u=0

where for u = 1,2,---, N/2 and all i

9,0) = cos(PIF(O) + (- Flsin()F(3)

H 5 7 2 3 ry 0
o 9(0, 1) 9(0,3) 9(0, 5) 9(0, 7) 9(0,2) (0, 6) 9(0, 4) (0, 0)
1 9(1,1) 9(1,3) 9(1,5) 9(1,7) 9(1,2) g(1,6) 9'(0! 4) -"(0’ 0)
2 2,1) 9(3,3) 9(2,5) 9(2,7) | g(1,2) 9'(1,6) [—g'(0,4) —4'(0,0)
3 1(3! 1) g(sv 3) 2(3! 5) ’(3’ 7) g (0, 2) g'(oﬂ 6) _‘(0! 4) ’(01 0)
4 n,(3, 1) 9,(3,3) 9'(3,5 9(3,7) [-9(0,3) —g(0,6) [—g(0,4 9(0, 0)
51 9(1) 423 (25 7(2,7 [-9'(1,2) -g'(1,6) | —g'(0,4) —g'(0,0)
6 ’:(1' 1) !,(1- 3) #'(1,5) (1,7 | -g(2,2) —g(1,6) g(0,4) —g'(0,0)
7| ¢(0,1) g¢'(0,3) g'(0,5) g'(0,7) | -g(0,2) —g(0,6) 2(0,4 9(9,0)
8 -9(0,1) -9(0,3) -4'(0,5) -g3(0,7) | —g(0,2) -9(0,6) 9(0, 4 9(0,0)
9| -g(L1) -g(L,3) -g'(1,5) —g'(1,7) | -g(1,2) ~—g(1,6) g, 4) -¢'(0,0)
101 -9(31) -4/(3,3) -g'(2,5) -¢'(2,7) | -4'(1,2) -g'(1,6) [=g'(0,4) —g'(0,0)
111 -¢'(3,1) -¢'(3,3) -9'(3,5) -g'(3,7) | -g'(0,2) —g'(0,6) | —g(0,4) (0, 0)
12 | -g(3,1) -g(3,3) -g(3,5) -g(3,7) [¢'(0,3) g(0,6) | —g(0,4) 9(0,0)
13 -’(2! 1) "(21 3) _5(2' 5) _y(z’ 7) y'(ll 2) g'(ll 6) -y' 0,4 _” 0, 0)
14 -g(1,1) -9(1,3) -9(1,5) -9(1,7) 9(1,2) 9(1,6) 9 (0,4 -g(0,0)
15 —-g(0,1) -g9(0,3) —9(0, 5) -9(0,7) 9(0,2) g(0,6) 9(0, 4 (0, 0)
Table 1: Computation Scheme for values of g(i, u)
g(i,) = cos(2i+ lm.) F(u) Similar to calculating the DCT using CORDIC, we
' 2N %41 move the sign (—1)* to the sin function. The angle
. o
(=1 sin(‘2; ur)F(N — u). (—1)*(2¢ + 1)ux/2N can be expressed by

Similar to the DCT, let K = 1,2,4,8, --

-y N/2 using
formulas (6), (7), when u = K, 2K, 3K, - -

-, we get:

o100 = ()" feon it Lurr(u)

2141

+(—1)*sin(2-1; ux)F(N — u)}
= (-1)*"g(i,u). (20)
When v = K/2,3K/25K/2,---, le¢t K =
2,4,8,--.,N/2, we get:
(g —1-iu) = (-1) " i um)F ()
—(—1)"cos(2L2;—1mr)F(N —u)}
= ¢'(i,u). (21)
where we define ¢’(i, u) as follows (note that there is
a relation between u and K):
70,00 = sin(3)F(0) ~ con(J)F(5) = ~g(1,0)
glhu) = ()R fsin(EE D F(u)
~(~1con(ZE R um)F(V - w)}

Exploiting the symmetries a complete set of values
9(i, u) needed for the computation of f(i) according
to sl), using (20) and (21), can be calculated from
SN + 8)/12 (g(i, u), ¢’ (i, u)) pairs of values. Table

shows the results of all g(i,u) for N = 16,u =
0,1,2,-.-.,7,i = 0,1,2,---,15. Note from the table
that only 22 different pairs (g, g') are needed for the
whole table.

184

(—1)}(2i + 1)ux/2N = h(i, w)x + (i, u),
h(i,u) = 0,%1,£2,..-; —x/2 < B(i, u) < 7/2.(22)

So we have

(_1)h(i,s)
*{cosf(i, u) F(u) + sinf(i, u) F(N — u)}

9(i, u)

gliu) = (S

*{cosf(i, u) F(N — u) — sinf(i, u)F(u)}
9(0,0) = cos(x/4)F(0) + sin(x/4)F(N/2)
§(0,0) = —{cos(x/4)F(N/2) — sin(x/4)F(0)}.

9(%,u), g'(3, u)) and (g(0, 0), ¢’(0, 0)) can be computed
AP g e ey

g'(i, u) = (~1)+HFEHGNXL, ¢(0,0) = - X,
9(i,u) = (_l)h(i'-)yq': 9(0,0) = Y,’,
Xi,, = X] - &Y x27,
Y =Y +aX]x2™,

B = B + by, I=0,1,---,¢-1,
where §; is chosen such that §; converge to the angle
B(3, u), using initial values Xy = F(N—u), Y] = F(u),
for u = 0 X = F(N/2), Yy = F(0).

The number of CORDIC computations for IDCT is
the same as for DCT, i.e (N?+-8)/12. A block diagram
of the even IDCT computation using the CORDIC al-
gorithm for N = 16 is shown in Figure 4. Comparing
the DCT and IDCT structures, we can see that the
IDCT computations are the inverses of the DCT com-
putations. The CORDIC units are the same for DCT
and IDCT computations, with exception of some sign
differences of the rotation angles between DCT and
IDCT, which will be discussed in next Section.

F(15) 2(0,1)+9(0, 3)+9(0, 5)+4(0, 7) = 7(15)VE
£y 901 1) 49 (1, 3)43(1, 8)+a(3, 7) L raove
F(13)| 9(2,1)+9(3,3)+a(2, 8)+9(2, 7) 113)VE
F(5)] coégxc- 9(3,1)+9(8, 3)+9(8, 8)+9(8, 7) 1(12)VF
Pl 24 9'(3,1)+9'(3,8)+0" (3, 5)+5' (3, 7 111)VE
Foy— %9 |o'(2 1)+0"(2,8) 40" (2, 8)+0' (3, 7 ~ #(10)V/E
F(9) — 2'(1, 1)+0' (1, 9)+0' (1, 8)+0' (1, 7) IOV
F(1)] 2'(0, 1)+0"(0, 3)+9’ (0, 8)44" (0, 7) = 1(8)VE
F(14) 9(0:3) + 9(0, 6) = Frnve
F(0) o morc 2l + 001 0) \ +10)vE
F(10)_| . 2'(1,2) +g'(1,8) \\ / 2(8)VE
F(a) adders g’(o' 2) + g¢0, 6) HOYO
F(uELLED") — 13)VE
F(4) —|{corpIC| 2 (0, 4) (- 2(2)VE
F(8) TR /A !Exiﬁ
F(0) | corDIC [s0.0) / H ¥ % 1(0)VE

Figure 4: A block diagram of the IDCT using the
CORDIC

5 DCT/IDCT Structure Using a

Pipelined CORDIC

The above block diagrams of the DCT and IDCT
using CORDIC would be suitable for parallel com-
putations to speed up computations. So 22 CORDIC
units would be needed for N = 16. However, if latency
is not of particular concern, using a pipeline structure
we actually only need one pipelined CORDIC unit.
The DCT or IDCT structure using CORDIC can
be split into two parts: One is the butterfly addi-
tions/subtractions and another is the CORDIC com-
putations and accumulation. For the DCT the but-
terfly computations are first performed, then the
CORDIC and accumulations. For the IDCT the or-
der is reversed. The CORDIC and accumulations are
almost the same for the DCT and IDCT. The only
difference is in the signs §;. These are determined by
the angles 6(i, u) in DCT and B(j, u) in IDCT. (i, u)
and fB(j,u) can be calculated by formula (18), (22),
and for N = 16, 6(i, u)/B(j,u) are tabulated as the
following multiplies of 7/32

i u=1 u=3 =5 u=7
0 1/1 -3/3 5/5 -7/7
1 3/3 -9/9 15/-15 11/11
2 5/5 -15/15 -7/-7 -3/3
3 7/o7 11/11 3/-3 15/15
i u=2 u=6 u=4 u=0
0 2/2 -6/6 4/4 8/8
1 6/6 14/14

We can see from the above that there are some
sign differences between 0k (i,) and B(%, u) for some
i,u. For each angle ¢ we can calculate the corre-
sponding signs &,l = 0,1,2,3,---,4 — 1 in advance
such that ¢ = q_l(—l)"‘m, where ¢ is the total
number of CORDI% steps. ¢ = 16 is enough for 12
bit accuracy. In the circuits we make Tj(z,u) = 0
correspond to &(i,u) = +1, and Ti(s, 'u? = 1 cor-
respond to 6;(i,u) = —1, so each angle is repre-
sented by a bit vector ToTy---Tys. For example,
ToT\T>- - T15=0110111010011000 corresponds to the
angle n/32.

According to (18) and (22) we also need to compute
“offsets” m(i,u) and h(%,u), which are the appropri-

185

ate multiples of 7 to be added to the angles, and thus
results in changes in the signs of the computed re-
sults. It is' hence sufficient to compute the remain-
der modulo 2 of m(i,u) and h(i,u). After comput-
ing m(i,u) and h(%,u) for N = 8,16, we found that
m(i, u)=h(3, u)(mod 2). We will term the two signs of
outputs of the CORDIC pipeline for the DCT/IDCT
computations respectively s1(i,u), s2(3,u). For N =
16, s1(%,u)/s2(i,u) can be tabulated as follows
i 3 s 7

i u=1 2 6 4 1]
0 o/0 o/1 o/0 o/t o0/0 1/1 0/0 0/0
1 o/1 o/0 o0/1 1/1 o0/1 1/1

2 0/0 o0/1 1/1 1/0

3 o/1 1/1 1/0 o0/0

The pipelined CORDIC unit for an N = 16 DCT
and IDCT structure is shown in Figure 5. A counter
counts from 0 to 21 and an encoder is used to gener-
ate 16 values of TyTyT5- - -Tis. Then T} must be de-
layed by (I — 1)7 to control the Ith SDA’s operation
(add/subtract). s1(z,u), s2(%, u) also produced by the
encoder controls the signs of the outputs. According
to the DCT and IDCT computation, some CORDIC
outputs must be accumulated. So at the end of the
pipeline we use two SDA’s and two registers to perform
accumulation. For no accumulation or at the begin-
ning of accumulations two registers must be cleared.

Figure 5:

A pipelined CORDIC unit for the
DCT/IDCT

The simple butterfly operations of the DCT and
IDCT can all be performed by iterating using feedback
through the smallest (simplest) butterfly operation:

as found in Figures 3 and 4. For the DCT the results
of the two additions continue performing the butterfly
computations, the results of the two subtractions are
sent to the CORDIC unit which outputs the DCT re-
sults. For the IDCT two of 16 inputs are first sent to
the CORDIC unit, then the outputs of the CORDIC
unit are sent to the butterfly computation unit.

Combining the pipelined DCT and IDCT, we can de-
sign a chip which performs the 1-D DCT or the 1-D
IDCT computation using only one CORDIC unit, one
smallest butterfly computation, one multiplier (mul-

tiplying by the coefficient \/2/N/K_), some registers
and MUXs. The whole structure for 16 DCT/IDCT
is shown in Figure 6. For DCT computations f(i) are
first input to D0-D15 at the rate R. After receiving

L a pipe-

lined

ICORDIC

1(3) »(3)
353: -2 2.1 __,? 2-4f g
BRI
] 3
1 -1 1 4 24/
1= B 2
e || Olle L
14 g
S D
1 -1 1 _.Z" o g
TN 4 2
Reg.1 mees I,_I_';l ? Reg.3
2

Figure 6: A DCT/IDCT pipeline structure using CORDIC

all 16 f(i), the values are sent simultaneously to Reg.
2. When a DCT computation is being performed, out-
puts of the CORDIC unit are sent to Reg.3. When all
F'(u) have been obtained, all F’ ué'i‘n Reg. 3. are
simultaneously sent to Reg. 4. computations
are similar to the DCT computations, the difference is
the order of the CORDIC and butterfly computations.
The feedback for DCT is between inputs of Reg. 2 and
outputs of a butterfly computation, the feedback for
IDCT is between inputs of a butterfly computation
and outputs of Reg. 3. Finally the output has to be

multiplied with the constant {/2/N /K, and converted
into non redundant form. This multiplication can be
realised by a simple structure as shown in Figure 8,

by noting that for N = 16:
21

N

1

e 4

1
256

1 1
(1- g)- s (1- To2a)

is a very xSOOd approximation. When used in 2D appli-
cation only a single final multiplication is needed, and
here another approximation can similarly be used:

1 1 1

NK? 64 1024

1+

~ U+)= 21—)+

The whole structure is a pipeline. Data is input and
output at a rate R. The time that it takes to input 16
data to Reg. 1is 16/R. After data in Reg. 1 simul-
taneously has been sent to Reg. 2, the DCT/IDCT
computations are performed. Assuming that the step
delay time of the pipelined structure is 7, the time
that data has to stay in Reg. 2 for one N = 16
DCT/IDCT computations is 227 (because there are
22 pairs of data to be sent through the CORDIC
unit). To match the above, 16/R must be equal to
or larger than 22r. When 7 is 2—10ns, the maximal
rate R is 363.36MHs to 72.72MHs. For 1-D N = 8
DCT, there are only 6 CORDIC computations to per-
form, so the maximalrate R is 500MHz—100MHs. For
N = 16, the total latency for the entire DCT/IDCT
is (16+1+4)/R+(22+p+3)7 (16 for inputing data to

186

Reg. 1, one for outputting data from Reg. 3, four for
multiplication, 22 + p for the CORDIC pipeline and 3
for accumulation, butterfly and transfer to Reg. 3.
Finally let us compare this CORDIC-based imple-
mentation with a traditional structure based on a
multiply-accumulate approach, where the trigonomet-
ric coeflicients are found by table look-up. First notice
that the CORDIC pipeline of Figure 6 in this context
performs the work of 4 multipliers, together with suit-
able ROM’s for the tables. For an equivalent imple-
mentation we will assume that the multipliers are also
implemented as pipelined arrays. Since the ROM val-
ues are in non-redundant form (and can be assumed
to be positive), and the other operand is in redun-
dant (signed-digit) representation, it is simplest to use
the ROM values as the multiplicand. Partial products
are thus formed using digits -1,0,1 from the redundant
multiplier, and accumulated using rows of full adders
(3-to-2 reduction).

To produce the high-order 16 digits of a 16x 16 multi-
plication in an accuracy comparable to the CORDIC
pipeline, it is sufficient with an array of adders where
partial products are formed and accumulated, start-
ing from the most significant end of the multiplier.
Since the adders of the CORDIC pipeline are signed-
digit (4-to-2, two levels of full adders), the number of
adders needed for four multipliers is the same as in
the CORDIC pipeline. The add/subtract control is
slightly more complicated for the multiplier &—1, 0,1)
compared to the (-1, 1? control of the CORDIC struc-
ture. Also the four multipliers need 2 ROM’s for stor-
ing the sine and cosine values, as opposed to a sin-
gle ROM or PLA for the encoded angles used in the
CORDIC unit.

But there is a significant difference in the amount of
latches needed for buffering at the pipeline stages. If
we assume that the CORDIC structure is pipelined in
16 stages, then the multipliers need only be pipelined
in 8 stages to run at the same frequency. Buffering the
accumulated values in four multipliers then requires
the same number of latches as the CORDIC pipeline
of Figure 5. But buffering the redundant multiplier

and the multiplicand at each stage in four multipliers
requires about 6 times as many latches (approx. 900
versus 150 for N = 16) as the buffering of the en-
coded angles of the CORDIC pipeline. On the other
hand the CORDIC approach requires a final multipli-

cation by the constant \/2/NK_, whereas such con-
stants can easily be incorporated in the ROM tables in
the multiplier approach. However, the suggested sim-
ple constant multiplication requires less hardware than
the extra latches needed in the latter approach, and
it may thus be concluded that the CORDIC method
seem to be marginally more economical than a more
traditional multiplier based implementation.

An interesting alternative to explore might be to
directly implement the DCT/IDCT computational
scheme of Figure 3 and 4 using parallel on-line
CORDIC unit, in particular for N = 8 where only 6
such unit are needed together with 16 on-line adders.

6 Summary and Conclusions

Exploiting some symmetries in the DCT/IDCT
computation, the number of multiplications needed
for DCT/IDCT is reasonably small for small N val-
ues, and the CORDIC algorithm (which simultane-
ously completes four multiplications) can be used for
the rewritten expression. A pipeline can then be
used to obtain high processing speed. For the 2-
D DCT/IDCT, we can apply two one-dimensional
pipeline DCT/IDCT structures to realize the two
dimensional DCT/IDCT. The data rate of the
DCT/IDCT depends on one carry look-ahead adder
(CLA), defining the pipelined step delay time. At
present integration technology, these pipeline steps
can be realized in about 2—10ns. If a 2-D DCT/IDCT
chip uses two of the above 1-D DCT/IDCT structures,
the rate R is the same as that of a 1-D DCT/IDCT.
If it uses only a single 1-D DCT/IDCT structure, the
rate R is halved.

References

1] CCITT Recommendation H.261, 1990.

2| ISO/IEC JTCI/SC29/WG10, JPEG Committee
Draft CD10918, 1991.

(3] ISO/IEC JTCI/SC29/WG11, MPEG Committee
Draft CD11172, 1991.

[4] Woo Paik, “ Digicipher All Digital, Channel
Compatible, HDTV Broadcast System,”IEEE
Trans. on Broadcasting, Vol.36, No.4, pp.245-254,
Dec. 1990.

(6] M. Vetterli, et al., “A Discrete Fourier-Cosine
Transform Chip,” IEEE Journal on Selected Areas
in Commaunications, Vol.SAC-4, pp.49-61,1986.

[6] Jc. Calach, et al., “TCD: a 27 MHz 8x8 Dis-
crete Cosine Transform Chip,” Proc. ICASSP’89,
pp.2429-2432, 1989.

[7] IMS A121 2-D Discrete Cosine Transform Video
Processor, INMOS, Mar. 1989.

[8] STV3208 8x8 Discrete Cosine Transform, SGS-
THOMSON Microelecironics, May 1989.

[9] L64730 Discrete Cosine Transform Processor, LSI
Logic, July 1990.

187

[10] S.Uramoto, et al., “A 100MHz 2-D Discrete Co-
sine Transform Core Processor,” Proc. Sympo-
sium on VISL Circuil, pp.35-36, 1991.
Miyazaki, et al., “DCT/IDCT Processor for
HDTV Developed with DSP Silicon Com-
piler,” Journal of VISL Signal Processing, 5,
pp.151-158, 1993.

N.Ahmed, et al., “Discrete Cosine Transform,”

IEEE Trans. on Computers, Vol.C-23, pp.90-93,

1974.

M.J. Narasimha and A.M. Peterson, “On the

Computation of the Discrete Cosine Transform,”

IEEE Trans. on Comm., Vol.COM-26, No.6,

pp.934-936, June 1978.

R.N. Bracewell, “Fast Computation of Discrete

Cosine Transform through Fast Hartley Trans-

form,” Electron Lett., Vol.22, No.7, pp.352-353,

Mar. 1986.

H.V. Sorensen, et al., “Real-Valued Fast Fourier

Transform Algorithms,” IEEE Trans. Acoust.,

Speech, Signal processing, Vol. ASSP-35, No.6,

pp.849-863, June 1987.

J. Makhoul, “ A Fast Cosine Transform in

One and Two Dimension,” IEEE Trans. Acoust.,

Speech, Signal processing, Vol. ASSP-28, No.l,

pp.27-34, June 1980.

A. Leger, et al., “Distributed Arithmetic Imple-

mentation of the DCT for Real Time Photo-

video on ISDN,” Proc. SPIE Int. Soc. Opt. Eng.,

Vol.804, pp.364-370, 1987.

[18] Weiping Li, “A New Algorithm to Compute the
DCT and its Inverse,” IEEE Trans. on Sig-
nal Processing, Vol.39, No.6, pp.1305-1313, June
1991.

[19] J. Volder, “The CORDIC Trigonometric Com-
puting technique,”JRE Trans. Electron. Com-
puter, Vol.EC-8, No.3, pp.330-334, Sept. 1959.

(20] J.S. Walther, “A Unified Algorithm for Elemen-

tary Functions,” in Proc. AFIPS Spring Joini

Computer Conf., pp.379-385, 1971.

A. Peled and B. Liu, “ A New Hardware Real-

ization of Digital Filters,” JEEE Trans. Acoust.,

Speech, Signal Processing, Vol. ASSP-22, No. 6,

Dec. 1974.

A.M. Despain, “Fourier Transform Comput-

ers Using CORDIC Iterations,” IEEE Trans. on

Computer, Vol. C-23, pp.993-1001, 1974.

Ja-Ling Wu and Wei-Jou Duh, “Novel Con-

current Architecture to Implement the Discrete

Cosine Transform Based on Index Partitions,”

INT.J.ELECTRONICS, Vol.68, No.2, pp.165-

174, 1990.

Wei-Jou Duh and Ja-Ling Wu, “Constant-

Rotation DCT Architecture Based on CORDIC

Techniques,” INT.J.ELECTRONICS, Vol.69,

No.5, pp.583-593, 1990.

Yu Wu Hen Hu and Zhenyang Wu, “ An Efficient

CORDIC Array Structure for the Implementa-

tion of Discrete Cosine and Transform,” IEEE

Trans. Signal Processing, Vol.43 No.l, pp.331-

336, Jan. 1995.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

21]

[22]

[23]

[24]

[25]

