Exact Computation of a Sum or Difference
with Applications to Argument Reduction

Warren E. Ferguson, Jr.

Southern Methodist University, PO Box 750156, 208 Clements Hall, Dallas, TX 75275-0156

Abstract

Results are presented that identify when the
computed value of a sum or difference is exact. The
accuracy of an argument reduction algorithm is analyzed
using these results. This analysis demonstrates that
catastrophic cancellation does not occur in this
algorithm's computation of the reduced argument.

1: Introduction

The accurate computation of transcendental functions
sometimes requires the accurate computation of reduced
arguments.

Consider, for example, the argument reduction used
by Tang [6] to compute an accurate approximation of
exp(z). A naive version of this argument reduction
algorithm begins by splitting the input argument z into
two pieces (N,r) where x=N'—'§(§2 +r with N an
integer and |r| < In(2)/64. Mathematically,

N = RoundToNearestInteger (z . ﬁ) ,and
In(2)

Once determined, N is split further into two more integers
(M,3) where N =32M +j with j= N mod 32 > 0.
The computation of exp(z) is reduced, then, to

exp(z) = exp (N h;% + r)
= 2M (292 4 2912 (exp(r) — 1)) .

Tang shows how a table look-up of 27/32, combined
with a polynomial approximation of exp(r) — 1, can lead
to an approximation of exp(z) that is in error by no more
than roughly half a unit in the last place. This accuracy,
however, is attainable only if r is similarly accurate; note

1063-6889/95 $4.00 © 1995 IEEE

216

that 1 < 29/ < 2 and exp(r) — 1 & r, so large errors in r
produce large errors in exp(z).

The very nature of this naive argument reduction
technique causes cancellation to occur in the difference
that yields the reduced argument r. Furthermore, while z
is considered exact, the computed value of N - In(2)/32,
when N # 0, is uncertain simply because In(2) is a trans-
cendental number. Consequently, catastrophic cancel-
lation! can occur in the computation of r and can prevent
r from being sufficiently accurate. In this case, cancel-
lation reveals the uncertainty associated with the
computed value of N - In(2)/32.

We say the computed value 6 y of z — y is exact
when z©y=2x—y. Section 2 presents results that
identify when such computed differences are exact. Exact
differences are important because they do not, by
themselves, introduce additional errors. Furthermore,
exact differences also are used in techniques that increase
the accuracy of floating-point computations; see [3,4] for
recent results in this area.

Section 3 analyzes Tang's modification of this naive
argument reduction algorithm. This analysis verifies that
the cancellation that occurs in this modified algorithm is
always benign rather than potentially catastrophic.

2: Exact Computation of a Sum or Difference

The phrase machine number refers to a normalized
base-3 floating-point number with p places of precision.
Nonzero normalized machine numbers z admit the
representation T = 3(z;°Z2z3: - -Tp) . 5*® where z; and
e(z) are integers with 1 <z; < 8. We call s(z) =
T1°T2T3---Zp the significand, and e(z) the exponent,
associated with z; note that 1 < s(z) < 8. We assume
B > 2, and we define e(0) = —o0.

! Catastrophic cancellation refers to the potentially disastrous loss of
accuracy that can occur when nearly equal, but uncertain, numbers are
subtracted [1].

Whether or not the computed value z©y of the
difference r —y of machine numbers z and y will be
exact depends, in part, on the relative alignment of the
significands s(z), s(y), and s(z —y). Of course, the
alignment of these significands is described by their
associated exponents e(z),e(y), and e(z —y). In the
spirit of Sterbenz's result (Theorem 6 below), where one
assumes only the existence of a guard digit, we present the
following result.

Theorem I: Let = and y be machine numbers for
which s(z) has z(z) > 0 trailing zeros, s(y) has z(y) > 0
trailing zeros, and e(z — y) < min{max(e(z), e(y)),
e(z) + 2(z),e(y) + z(y)). If subtraction is performed with
a guard digit, and underflow does not occur?, then the
computed value z © y of z — y is exact.

Proof: The inequality e(r — y) < min(max(e(z),
e(y)).e(z) + 2(z).e(y) + z(y)) involves z and y symmet-
rically. Therefore, by negating and exchanging z and y, if
necessary, we can suppose that 0<|y| <z and
e(z — y) < min(e(z), e(y) + 2(y)). The conclusion fol-
lows immediately if either y =0 or £ =y, so suppose
also that neither y # 0 nor z # .

We first establish that 0 < e(z) — e(y) < 2(y) + 1.
The inequality 0 < e(z) — e(y) follows from the fact that
|yl <z, while the inequality e(z)—e(y) < z(y)+1
follows from the following contradiction obtained if one
supposes otherwise. Indeed, if it were possible that
e(z) —e(y) > 2(y)+2, then from the inequalities
z(y) > 0 and

B> |z —y| > 2| ~ |y| > (8- 1)
one would be forced to conclude that
e(z—y) >e(z) -2 2 e(y) +2(),

and this contradicts the assumptions of the theorem.

Next, consider the <case when 0<k=
e(z) — e(y) < 2(y). The alignment of y prior to the
computation of — y involves shifting s(y) right k places.
The relevant picture of the aligned significands is

T = + T * Iy Iy
-y = + d] hd d2 dp
0L<z-—y = 2z 2z °* = zp

where d; denotes the digits of s(y) after the right shift of &
places; note that d; = 0 for i > p because s(y) has 2(y),
where z(y) <k, trailing zeros. From the inequality
e(z —y) <e(z) we deduce that 2y =0, and so we
conclude that the computed value z © y of = — y is exact.
(This computation can either add or subtract magnitudes.)

2 The restriction that underflow does not occur is unnecessary when
IEEE-754 style gradual underflow is available [2].

217

Finally, consider the case when e(z)—e(y) =
z(y) + 1. The alignment of y prior to the computation of
z —y involves shifting s(y) right z(y) + 1 places. The
relevant picture of the aligned significands is

T + T * Iy Zp 0
-y = + 0 . d] dp_l dp
0<z—y = 2 2z * 2 2p Zpi1

where d; denotes the digits of s(y) after a right shift of
only 2(y) places; note that d; = 0 for i > p because s(y)
has 2(y) trailing zeros. From e(z — y) < e(y) + z(y) <

e(z) we deduce that zy = z; = 0, and so we conclude that
the computed value z © y of = — y is exact if subtraction
is performed with a guard digit. (This computation only
subtracts magnitudes.) °

Corollary 2. Let £ and y be machine numbers for
which e(z — y) < min(e(z), e(y)). If subtraction is per-
formed with a guard digit, and underflow does not occurz,
then the computed value z © y of z — y is exact.

Proof. This is Theorem 1 specialized to the case
where 2(z) = z(y) = 0. °

In Theorem 1, the restriction that e(z —y) <
max(e(z),e(y)) is used solely to rule out cases where
207#0. As the next two results demonstrate, this
restriction can be eliminated if one assumes, in addition to
the use of a guard digit, either that subtraction is
performed with a carry digit that handles zp, or that
subtraction is protofaithful, see (4] for the definition of
faithful arithmetic operations. Protofaithful subtraction
describes a subtraction for which zoy= =z-y
whenever x —y is representable as a machine number.
Examples of protofaithful subtractions include IEEE
arithmetic [2] as well as the arithmetics found on the IBM
370 and DEC VAX computers.

Theorem 3: Let z and y be machine numbers for
which s(z) has z(z) > 0 trailing zeros, s(y) has z(y) > 0
trailing zeros, and e(z — y) < min(e(z) + 2(z),e(y) +
z(y)). If subtraction is performed with both guard and
carry digits, and neither overflow nor underflow? occurs,
then the computed value z © y of £ — y is exact.

Proof: As in the proof of Theorem 1, we can assume
that 0 < |y| < z, and so that e(y) < e(z). Furthermore,
the proof of Theorem 1 applies when e(z — y) < e(z), so
consider the only remaining case where e(z —y) =
e(z) + 1; this equality characterizes the situations where
20 95 0.

The inequalities e(z — y) = e(z) + 1 < min(e(z) +
z(z), e(y) + 2(y)) imply that both z(z) > 1and 0 < k =
e(z) — e(y) < z(y) — 1. Consequently, the alignment of y
prior to the computation of z — y involves shifting s(y)
right k places.

The first picture in the proof of Theorem 1 applies to
this case because only an add magnitude computation can

lead to z # O. In this picture we know the trailing digits
Tp and d, are zero because z(z) > 1 and 2(y) > k+1,
and so the computed value £ © y of z — y is exact. °

Theorem 4: Let £ and y be machine numbers for
which s(z) has z(z) > 0 trailing zeros, s(y) has z(y) > 0
trailing zeros, and e(zx — y) < min(e(z) + 2(z),e(y) +
2(y)). If subtraction is protofaithful, and neither overflow
nor underflow occurs2, then the computed value z © y of
T — y is exact.

Proof: The proof reduces to demonstrating that z — y
is representable as a machine number because subtraction
is protofaithful3.

As demonstrated in the proof of Theorem 1, we can
assume that both 0 < |y| < z and z — y # 0. Note that a
machine number w is an integer multiple of g%“*1-?_ In
particular, w must admit the representation
w = m(w)B< 1P where m(w) is an integer satisfying
0 < Im(w)| < BP.

Now z is an integer multiple of F2(®)+#(2)+1-P pecayse
3(z) has z(z) trailing zeros. Similarly, y is an integer
multiple of B*W*2W+1-P pecause s(y) has z(y) trailing
zeros. Therefore z — y is an integer multiple

min(g*®)+#@+1-p pewHW+1-py
Brinle(z)+2(z) e(y)+2(y)+1-p

If m denotes this integer multiple, then
T — y = mpme(eE)+(2)ey)+2()+1-p

We know, from the definition of the exponent e(zx — y),
that |z — y| < B**~¥+1 Therefore, we conclude that

in(e(z) +2(a) ey} +2)}+1-p gelz-y)+1
Im| 6™ < peEvi

or equivalently that

|m| < geE—¥)+p-min(e(z)}+2(z).e(y)+2(y))

From the inequality e(z — y) < min(e(z) + 2(z),e(y) +
z(y)) we deduce that |m| < 8°, and so we conclude that
T — y is representable as a machine number. °
The next two results have appeared previously in the
literature. In one sense, these results are less general than
those above because either they consider only the subtract
magnitude case or they ignore trailing zeros that might
intentionally be present in s(z) or s(y). Like the results
above, Theorem 5 was developed for potential application
to the analysis of argument reduction techniques [7].
Theorem 6 is part of the foundation of techniques that can
increase the accuracy of floating-point computations [3,4].
Theorem 5 (Ziv [7]): Let = and y be like-signed
machine numbers that satisfy 0< |y| < |z| < |y| +

3 The style of this proof is derived from conversations with Douglas
Priest, see also the proof of Lemma 1 on page 12 of [4].

218

B! 1f subtraction is performed with a guard digit, and
underflow does not occur?, then the computed value z © y
of £ — y is exact.

Proof: Without loss of generality, assume that both z
and y are positive.

Fy<z<y+pO* then0<z—y< W and
so e(z —y) < e(y) = min(e(z), e(y)). Corollary 2 ap-
plies and shows that the computed value z © y of — y is
exact.

If z=y+ W = (1+3(y)/B) V! then z is a
machine number only if the trailing digit of s(y) is zero.
Theorem 1, with z(x) = 0 and 2(y) = 1, then applies and
shows that the computed value £ © y of z — y is exact. e

Theorem 6 (Sterbenz [5), see also [1]): Let z and y be
like-signed machine numbers for which [y]/2 <
|z] < 2y|. If subtraction is performed with a guard digit,
and underflow does not occur?, then the computed value
z © yof x — yis exact.

Proof: Without loss of generality, assume that both z
and y are positive. The inequalities y/2 < z < 2y and
z/2 < y < 2z are equivalent. Therefore, by exchanging
and y, if necessary, we also can assume that y < z.
Clearly y<z<2y<y+ 8" and so the result
follows from Theorem 5. (The proof of Theorem 5 also
demonstrates that this result follows from Corollary 2.) e

3: Application

We now return to the analysis of Tang's argument
reduction algorithm for exp(z). For convenience, the
following analysis considers rounding errors associated
with the use of IEEE-754 single precision arithmetic (SP)
{2]. This arithmetic is characterized by 8 = 2 and p = 24,
and its numbers span a dynamic range* of
+ [27341,2320{1 — 2-24}]. Therefore, valid arguments =
for exp(z) are numbers in the range
[In(27%4), n(252{1 — 2-%})] ~ [-341,320) - In(2).

Tang's modification of the naive argument reduction
algorithm replaces the computation of the reduced
argument r by the following more accurate segmented
computation of r = r; + ry.

N = RoundToNearestInteger(x-InvL);
j = N mod 32;
m=N - j;
If IN|<2® Then r; = x—N-I

Else r; = (x—m-Ly)—3-L;;
rp =—N-Ly;
M = m/32;.

4 This is the range when bias adjustment is utilized.
5 For brevity, binary numbers are displayed in hexadecimal format.

The following picture’ illustrates Tang's definitions
of InvL, L, and L,:

39 InvL
= (2E2A8ECAS ...),4
In(2)
InvL
= (0.B8AA3B29 ...),s- 25, and
In(2)
32 = (0.058B90 BFBESETBC ...),4

L, L,

= (0. §172 17F7DIC C..

Note, in particular, that the significand of L; has
24 — 15 =9 trailing zeros. For convenience, we also
define

625

1 1

L=
Inol (0.B8AA3B),426

= (0.058B90C ...),.

Tang states that, as a result of cancellation, the
computation yielding r; is exact. The results of the
previous section will now be used to justify this statement.

First, we deduce that |[N| < 341 -1n(2) - 32/In(2) =
341-32 = (2AA0),; because |z| < 341-In(2) and
InvL < 32/In(2). Next, by the definition of the round-to-
nearest-integer function, z = (N + n)L where || < 1/2.
From this bound we determine, for example, that

In(2) < m(z))
N2 In(L-
‘m 32 32) Tk
ln(2)‘ L
< (24A40),|L - =~

~ (0.02C5FD...),

Compare this bound with the bound In(2)/64 ~
(0.02C5Cs8...), achievable with exact argument reduc-
tion. Finally, the analysis of the computation of r; breaks
naturally into two cases.

Case I: |N| < 2°.

Recall SP has 24-bit significands. Therefore, NL;
will be computed exactly because N is a 9-bit integer and
the significand of L, has 9 trailing zeros. Consider now
the computation of x — NL;. This computation is exact
when N = 0, so we assume that [N| > 1. We find

|z — NLy| = |[N(L — Ly) + nL|

L
<(2-1)(L-L)+ 5 ~ (002074

|z| = |N +n|L > L/2 ~ (0.02C5C. ..
INLy| > L, = (0.058B9),,.

)16
)1> and

5 For brevity, binary numbers are displayed in hexadecimal format.

219

Therefore

e(z — NL;) < -7 < min(e(z), e(NLy)),

and so Corollary 2 tells us that r; = £ — NL; will be
computed exactly. °

Case 2:2° < |N| < (2440) 4 < 24,

Part 1: Recall N = m + j where j = N mod 32 and
m=N —j. Therefore 0<;j<31 and 0<|m|<
IN|+ |l < 341-32+ 31 = (2ABF);s < 2", and so
mL; will be computed exactly because m is a 14-bit
integer (whose last 5 bits are zero) while the significand of
L; has 9 trailing zeros.

Consider the computation of z — mL,. We find

|z ~mLi| = |m(L — Ly) + (+)L}
1
< (2ABF)4(L - L) + (315) L
~ (0.AECC...
|zl = [N +n|L
> (2° - 1/2)L ~ (B.145...
ImLy| > 2°Ly = (B.172) .

)16’

)16- and

Therefore
e(z —mL;) < —1 < min(e(z), e(mLy)),

and so Corollary 2 tells us £ — mL; will be computed
exactly.

Part 2: Consider the computation (x — mL,) — jL;.
This computation is exact when j =0, so assume that
1< 7<31. Note that jL; will be computed exactly
because j is a 5 bit integer while the significand of L, has
9 trailing zeros. We find

Ir1l = |N(L = Ly) + nL|

L
< (2440)56(L — Ly) + 5 ~ (002B5E...),

I.’L‘ - mL1| = |]L1 + (:E - NL1)|
> Ly — |z — NL;| ~ (0.0245A...),, and
|7L1] > Ly = (0.058B9), .

Therefore
e((z —mL1) — jLy) < =7 < min(e(z — mL,), e(jL1)),

and so Corollary 2 tells us ry = (z — mL,) — jL, will be
computed exactly. °

Theorem 6 could be used to establish some, but not
all, of these results; see the appendix for details. For
example, consider the case when z = —(F£9.946B),. In
this case N = —(241F);5, m = —(2420),7=1,
z —mL; = (0.02A7) 4, and jL,/2 = (0.2C5C8),¢. For
this argument = we find that Theorem 6 cannot be used to
establish that r; = (z — mL;) — jL, will be computed
exactly.

Of course, the goal of Tang's algorithm is to
determine an accurate value of the reduced argument. We
can assess this accuracy by bounding the values of r;, 7,
and the error in the pre-rounded segmented value r; + T2
of the reduced argument z — N - In(2)/32.

First, the above analysis led to the following bound
onry:

Ir1] < (0.02E5E...),

Next, we can bound r; as follows:

Ira| ~ |N|L; < (24A0),4L; ~ (0.001FED...),,

Finally, the error in the pre-rounded segmented value
r1+ 12 of the reduced argument — Nil'-".{.‘,g2 is just the
error £ = (—NLy) —fi(—NL;) associated with ro =
fi(-NL,), the stored SP valueS of —NL,. From the
bound on |N|L;, and assuming round-to-nearest rounding,
we deduce |¢] < (1.FED...),516%. Consequently

[z—N-l%] —fri+r9

= o= N2~ e~ N1 + (1L, -)
=N[L1+L2——%]+£

and so

I[:z:— l11—3(22-)]—[1'1+r2]|

< (24A40)y)Ly + Ly — In(2)/32] + (1.FED...),s2°%
< (3.48A2...),27%
This bound should be compared with the bound on

the error in pre-rounded value of the reduced argument
computed by the first naive algonthm To derive this

bound let I = RoundToSP(2) = (0.058B90C),
and suppose ﬂ(NL) NI (1+¢) where |¢| < 2~%.

We then note
|[$-N‘_"@]_[z*ﬂ(1v'z)]|
IN[L(1+ € -

32
ln(2)

ln(2)

|
.10}

< (2AA0),6{ [”
< (A.F44...),27H

6 Suppose numbers are stored in base 3 with p-digit mantissas. If fi(z)
denotes the stored value of z, then for round-to-nearest arithmetic:
Ifi(z) — | < |« - 16' .

220

4: Comments

The author would like to thank Nick Higham,
Douglas Priest, and several anonymous referees for
comments that helped clarify issues related to these
results. Nick Higham also deserves thanks for reminding
the author of reference [5].

References

[1] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Computing Surveys,
Vol. 23, No. 1, pp. 26-45, 1991. See also “Floating-Point
and Computer Systems,” CSL-89-9, [P89-00119], Xerox
Corporation, Palo Alto Research Center, 333 Coyote Hill
Rd., Palo Alto, CA, 94304, August 1989.

Institute of Electrical and Electronic Engineers, “IEEE
Standard for Binary Floating-Point Arithmetic,”
ANSUIEEE Standard 754-1985, Institute of Electrical and
Electronic Engineers, New York, 1985.

D. M. Priest, “Algorithms for Arbitrary Precision Floating
Point Arithmetic,” in Proceedings of the 10th IEEE
Symposium on Computer Arithmetic, June 26-28, 1991,
edited by P. Komerup and D. Matula, pp. 132-143.

D. M. Priest, On Properties of Floating Point Arithmetics:
Numerical Stability and the Cost of Accurate
Computations, draft dated 9 November 1992. This Ph.D.
dissertation was submitted to U. C. Berkeley and can be
retrieved by anonymous ftp to fip.icsiberkeley.edu as
pub/theory/priest-thesis.ps.Z

P. H. Sterbenz, Floating-Point Computation. Prentice-Hall,
Englewood Cliffs, NJ, 1974, pg. 138. In particular, see
Theorem 4.3.1 and the Corollary that follows.

P. T. P. Tang, “Table-Driven Implementation of the
Exponential Function in IEEE Floating-Point Arithmetic,”
ACM Transactions on Mathematical Sofiware, Vol. 15,
No. 2, pp. 144-157, June 1989.

Abraham Ziv, “Fast evaluation of elementary mathematical
functions with comrectly rounded last bit,” ACM
Transactions on Mathematical Software, Vol. 17, No. 3,
pp- 410-423, September 1991.

{21

31

4

(3]

(6]

71

Appendix
We begin by noting
%_I"L;E = —(0.80001166 BA), 5
2L L _ (0.FFFFBA6518),, , and
L=L _ (0.0000220D74).
Case I: |N| < 2°.

Without loss of generality, suppose N > 0. There is
nothing to prove when N =0, so suppose further that
N > 1. We know NL; will be computed exactly, and so

Theorem 6 tells us — NL; will be computed exactly if
we can establish

1
ENLI S T S 2NL1

Substitute z = (N + 1)L, divide by L, and subtract N to
obtain the equivalent inequalities

iLi—-L
L

These inequalities are valid for all N >1 because
[l < % Note the crucial use of the fact that L is greater
than Ll.

If L, were smaller than L we would not have been
able to satisfy the left-hand inequality when N = 1. This
means Theorem 6 would apply for all but N = 1; a case
that would have to be considered separately. This
difficulty is avoided when Corollary 2 is applied. °

Case 2: 2°<|N|<341-32= (2AA0),, and
2° < |m| < (2ABF),,.

Part 1: Without loss of generality, suppose z > 0.
We know 2°< N <(2440),, and 2°<m<
(2ABF),4. We also know mL; will be computed exactly,
and so Theorem 6 will tell us £ — mL; will be computed
exactly if we can establish

2L, -L

N<n< N.

1
Ele <z <2mL;.

221

Substitute £ = (m + j + n)L, divide by L, and subtract m
to obtain the equivalent inequalities

1L -L 2L - L
L L

These inequalities are valid for all m > 2° because
0<j<3land|n| < 3.

Part 2: There is nothing to prove when j =0, so
assume 1 < j<31. We know jL; will be computed
exactly and we note — mL; = m(L — L)+ (j+n)L
> L/2>0. Therefore, Theorem 6 will tell us
(z —mL,) — jL, will be computed exactly if we can
establish

m<j+n<

iL
]71 S a:—mL1 S 2]L1

Substitute = = (m + j+ n)L, divide by L, and subtract j
to obtain the equivalent inequalities
sh—-L
L

L-I,
<

L
~(2.2...)616°m+ 17 <

m+n

2L, - L .
7.

The left-hand inequality can fail for large negative m
when 7 ~ —% and 7 = 1. This arises when, for example,
z = —(E9.946B),,. For this z we find N = —2A1F,
m=—-2420, j=1, =n~—(0.7FD3...),,, and

Lhim + g~ —(0.858D...). .

