The SNAP Project: Towards Sub-Nanosecond Arithmetic

M.J. Flynn K.Nowka G.Bewick E.Schwarz N. Quach

Computer Systems Laboratory
Stanford University
Stanford, CA 94305-4055

Abstract

SNAP — the Stanford subnanosecond arithmetic proces-
sor — is an interdisciplinary effort to develop theory, tools,
and technology for realizing an arithmetic processor with
execution rates under 1 ns. Specific improvements in clock-
ing methods, floating-point addition algorithms, floating-
point multiplication algorithms, division and higher-level
Junction algorithms, design tools, and packaging technol-
ogy were studied. These improvements have been demon-
strated in the implementation of several VLSI designs.

1 Background

Arithmetic operations including both integer and float-
ing point add, subtract, multiply, and divide form the basic
building blocks of scientific computation and signal pro-
cessing. Yet usually the optimization of their performance
is relegated to design exercises in which the building blocks,
the circuits/package/technology have been predefined and
only the algorithm itself and its implementation can be al-
tered to achieve performance.

The Stanford subnanosecond arithmetic processor
(SNAP) research effort has targeted the full spectrum of
tradeoffs, from devices, materials, interconnections and cir-
cuits to algorithms and organization. The SNAP project has
made significant progress toward the development of a gi-
gaflop computing element.

Fundamental to the SNAP objectives is the develop-
ment of very high speed clocking techniques, which we
call “wave pipelining.” These latchless pipelines allow
functional units to be clocked at significantly higher repeti-
tion rates (2-3 times) than could be done with conventional
designs.

In the area of algorithm improvement, SNAP work cov-
ers all of the basic operations. We briefly report on some
of the highlights of this work in this paper. In floating
point addition our work improves delay by reducing the
delay associated with rounding. In floating point multiply
delay reduction is achieved by using redundant encoding
of a higher order Booth algorithm. This reduces the height
of the partial product tree without incurring delay due to
theﬁ&n;:ration of “hard multiples” of the multiplicand (eg.
+ .

With the realization that performance of arithmetic pro-
cessors is not simply dependent upon the most advanced
circuit design techniques and algorithms, SNAP has ad-
vanced packaging and interconnection technology. By us-
ing MCM packaging technology, we are able to separate

1063-6889/95 $4.00 © 1995 IEEE

75

the data processing and communication functions in a sub-
nanosecond processor and then optimize the technology for
each. Figure 1 is a block diagram of the SNAP processor. It
consists of a MCM substrate with multiple functional unit
die and high-speed interconnection.

Substrate
Control i Integer
Unit ReglstersJ A t?\
Vo | I |
Drivers J 1 1 1
Floating Floating Floating
Point Point Point
Add Multiply Division

Figure 1: SNAP Processor.

In most of our work we validated our techniques by
realizing implementations. Table 1 is a summary of our
chip fabrication activities.

2 Algorithms and Systems

In the remainder of this paper we summarize some of
the techniques and algorithms which have been developed.

2.1 Wave Pipelining

In an effort to improve the operating frequency of arith-
metic processors using conventional technologies, we have
employed wave pipelined design techniques for standard
bipolar and CMOS fabrication technology.

Wave pipelining, or maximum rate pipelining, is a cir-
cuit design technique which allows digital synchronous sys-
tems to be clocked at rates higher than can be achieved with
conventional pipelining techniques by relying on the pre-
dictable finite delay through combinationat logic for virtual
data storage. Conventional pipelined systems allow data to
propagate from a register through the combinational net-
work to another register prior to initiating the subsequent
data transfer. Thus, the maximum operating frequency is
determined by the maximum propagation delay through the

Table 1: SNAP Die Fab Status

| Die [Company¥] lechnology | Status [Result]
Integer adder 1gnetics ECL ET 2ns 32-bit integer [P3]
F.P. adder (64b IEEE) HP Research | CMOS LT. 15ns latency [P10]
Multiplier (pp) slice Signetics BiCMOS ET. Under 10ns pp tree only [P16]
Multiplier (pp) slice Signetics BiCMOS ET. Under 7ns pp tree only [P16]
FEP. multiplier (535 IEEE) | Sun Micro. | ECL ILT. Full FMPY in 5ns
W.p. multiplier (pp) slice | Signetics ECL ET. 3.8ns cycle time [P21]
W.p. multiplier 16 x 166 | NSF CMOS ET. 3.3ns cycle time [P6]
W.p_. vector unit (16b) NSF CMOS ET. 3.3ns cycle time
Divider — CMOS NYS | Still under study

* Company or organization that sponsored die fab.
Abbreviations: ET. = Fully tested L.T. = Incompletely tested due to fab difficulties NYS = Not yet submitted
W.p. = wave pipelined, EP. = floating-point

longest pipeline stage. Figure 2 contrasts the timing of a
conventional pipeline and a wave pipeline. In the wave
pipeline, data 2 is output from the source register to the
combinational logic prior to data 1’s arrival at the sink reg-
1ster.

Combinational
Logic Network

Sink
Register

Source XData1 x Data 2 X
Output ; MaxDelay ., H
ey |
/7%
Invalid
Wave Pipeline
Source XDabn x Data 2 x Data 3 X
Output : MaxDelay .
§ ———— |
Sink
input

Figure 2: Conventional and Wave Pipeline Timing.

The clock period T..ii of a conventional pipelined circuit
is limited by the maximum propagation delay through a
logic network P,,., the uncontrollable clock skew AC,
and register overhead T;.4 by:

76

Tex > Praz +AC + Treg

Wave pipelined systems apply the subsequent data to
the network as soon as it can be guaranteed that it will not
interfere with the current data wave. The maximum oper-
ating frequency of a wave pipeline is therefore determined
by the difference between the maximum propagation delay
?nq the minimum propagation delay in the combinational
ogic.

The clock period T of a wave pipelined circuit is
limited by the variation in propagation delay through a
logic network (Prmaz — Ppmin), uncontrollable clock skew
AC, and register overhead T,'gg by:

Tclk > Pma: — Fin + 2AC + T;cg

The primary causes of data wave interference are the
variation in the propagation delay due to differences the
delay along separate paths, differences in the rate of propa-
gation due to the state of the network inputs and intermedi-
ate nodes, and difference in fabrication and environmental
conditions.

2.1.1 Wave Pipelining Tools and Techniques

To maximize the performance of wave pipelined arithmetic
circuits, the variations in delay through the combinational
logic must be minimized. Automated delay balancing tools
have been developed as part of the SNAP research effort.
These tools balance the propagation delay of all paths by
inserting delay buffers and by modifying the individual
bipolar [P20] and CMOS gates to increase the delays along
the paths which are faster than the critical paths.
Run-to-run process variation can have a significant im-
pact on propagation delay. Maximum to minimum delay
along the same path for seven different runs of a one-micron
feature size CMOS fabrication process was found to be
1.35x [P7]. Unless this variation is controlled, all wave
pipelined logic will be limited to speedups of two to three
to ensure that devices from any of these runs will operate
over a specified clock interval. To counteract the effects
of process variation, we have developed an adaptive supply

voltage method. An on-chip detector circuit determines if
the propagation delays are faster than the nominal delays
and the power supply is lowered until the delay approaches
the anticipated delay. In this manner, ICs fabricated with
fast processes are run at a lower supply voltage to ensure
correct operation over the frequency range for which they
were designed.

2.12 Wave Pipelined VLSI designs

Wave pipelining has been used in the development of ECL
and CMOS arithmetic VLSI designs. A wave pipelined
ECL population counter which can be clocked at 2.5 to
3-times the rate that the circuit could be operated without
wave pipelining was developed [P21]. The worst-case de-
lay of this circuit is 10 ns and the minimum clock period
for wave pipelined operation is 4 ns.

Wave pipelining was used in the development of a
CMOS 16-bit multiplier which operates at 300-350 MHz
[P6]. This VLSI chip is clocked at a rate 3.7-times a non-
pipelined design could achieve.

To demonstrate that this technology can be applied to
arithmetic system design, we have developed a CMOS wave
pipelined vector unit. Extensive use of wave pipelining
was employed to achieve high clock rates in the functional
units. The VLSI processor consists of a wave pipelined
vector register file, a wave pipelined adder, a wave pipelined
multiplier, load and store units, an instruction buffer, and a
scoreboard and control logic. The register file, adder, and
multiplier were designed to operate with less than a 2 ns
variation in propagation delay.

The adder takes 16-bit unsigned operands and produces
a 16-bit result with a maximum delay of 5.5 ns. Register
add operations have a 3 cycle latency.

The multiplier takes 8-bit unsigned operands and pro-
duces a 16-bit result in a maximum of 10.8 ns. The mul-
tiplier is constructed with (4,2) counters and employs an
additional parallel adder. Booth encoding is not used. Reg-
ister multiply operations have a 5 cycle latency.

The vector register file consists of 5 vector registers.
Each vector register has sixteen 16-bit elements. The reg-
isters have separate read and write ports and local address
generation to optimize for cycle time. Read access time
is less than 3.4 ns and minimum cycle time is 2 ns for the
register file.

The VLSI vector unit contains approximately 47000
transistors and occupies an area of 43 sq mm. It has been
fabricated in a 1 micron CMOS technology. Correct oper-
ation at 300 MHz has been verified. Figure 3 is a die photo
of the wave pipelined vector unit. Figure 4 details the vec-
tor register-to-register wave pipelined multiply operation at
300 MHz.

We have developed bipolar and CMOS circuit design
techniques and tools which enable VLSI system design us-
ing wave pipelining. We have demonstrated the benefits of
wave pipelining for arithmetic processors via an ECL popu-
lation counter, a CMOS multiplier, and a CMOS arithmetic
vector unit designs. Using standard device fabrication tech-
nology these VLSI units achieve operating frequencies of
250 to 350 MHz through the use of wave pipelining.

77

EBUETEB AN A AT s SA AN PRRRA RER PARERRS RS

BARENRNREG NP RCRARBNRRENRBERARSRBNRAS RS S

B AR RN R PR RRIIRRESOIRA G T B S 5

Figure 3: WP Vector Unit Die Photo.
300MHz, 43 sq mm, 1 micron CMOS

we2

mula

Figure 4: WP Vector Unit Multiply.

2.2 Addition and Floating-point Addition

We have been able to optimize earlier work by Ling on
integer adders [2] to avoid excessive fanout, yet preserve the
speed advantage. We have also mapped the Ling approach
over to CMOS technology [P12].

'We have made basic improvements to the floating-point
addition algorithm. Conventionally, floating-pointaddition
consists of a subtraction of exponents, a shifting of fractions
by an amount equal to the exponent difference, addition or
subtraction of the fractions, a shifting of the result (on
subtraction) to leave it in normalized form, and a round-
ing of the result. These steps are generally sequential, and
require two shifts and three additions (the exponent subtrac-
tion, fraction addition, and rounding). Farmwald, in earlier
work [3], showed that one of the shifts could be eliminated
by creating two simultaneous paths, since a long preshift
could not be accompanied by a long postshift following the
fraction addition/multiplication.

As part of the SNAP effort, we have shown that it is
possible to further improve the floating-point addition by
mleglaﬁ’?ﬁeme rounding step with the final fraction addition
[P13]. traditional, two path, and SNAP algorithms
are shown in figure 5. The improvements are the result of
creating up to four different results and selecting the correct

t.

resulswm — — Dmil
| 5] [aouna | [rouma] []
=

(c) SNAP

Lrows |\ oo/

(s) Traditionsl (b) Two Path

Figure 5: Floating Point Addition Algorithms.

Existing addition algorithms perform rounding by first
computing the guard bit, round bit, and sticky bit. These
bits then determine if the result has to be rounded and if so,
the result is incremented. The SNAP algorithm sought to
merge the increment step with the mantissa addition step
by having the mantissa adder computing multiple results in
advance and then selecting the final rounded result.

Table 2 shows the possible events that can in an
addition and the events that the rounding algorithm has to
consider. In the table, Exz and Mz stand for the exponent
and mantissa of operand z. When the effective operation
is addition, the mantissa adder computes Ma + Mb and
Ma + Mb + 2 and select the proper result. To compute
Ma + Mb + 2, there is a row of half adder before the
mantissa adder. The result Ma + Mb + 2 is needed when
a right shift and a round is needed at the same time. The
result Ma 4+ Mb + 1 is needed when there is no right shift
and a round is needed. Ma + Mb + 1 is computed by
inverting the Isb of the result Ma + Mb + 2 or the resuit
Ma + Mb. In either case, a simply inversion of the Isb
suffices and no carry propagation is needed.

For effective subtraction, two cases need to be consid-
ered: Ea > Eband Ea = Eb. The Ea > Eb case is
quite straightforward because computing Ma — Mb and
Ma — Mb + 1 is enough to cover all the cases. A compli-
cation arises in the Fa = Eb case and the result is negative
becanse IEEE standard calls for a positive mantissa. This
case can be handled as follows. Mb is first inverted and
added to Ma. If the result is negative, the result itself is
bit-inverted to obtain a possible mantissa. Again, no carry
propagation is needed.

By careful management and intégration of the paths,
the overall hardware cost is only modestly increased over
the state-of-the-art . A floating-point adder based
upon this idea has been fabricated. Using a conventional
1-micron CMOS process, the floating-point addition delay
is about 15-16 nanoseconds (IEEE standard floating-point

78

addition).
2.3 Floating-point Multiplication

In a multiplication study, we developed a scheme based
upon a redundant 3-bit Booth encoding of the multiplier
[P1]. This redundant encoding reduces the number of par-
tial products to be summed by one-third over a full (53 bit)
tree partial product summation, but it avoids the require-
ment of forming plus or minus three times the multiplicand
(£ 3M) using a wide carry propagate adder.

The conventional Booth 3 algorithm assumes that the
3M multiple is available in non-redundant form. Before
the partial products can be summed, a time consuming carry
propagate addition is needed to produce this multiple. The
Booth 3 algorithm with fully redundant partial products
avoids the carry propagate addition, but has the equivalent
of twice the number of partial products to sum. The new
scheme tries to combine the small number of partial prod-
ucts from the conventional Booth 3 algorithm, with the ease
of the hard multiple generation of the fully redundant Booth
3 algorithm.

The idea is to form the 3M multiple in a partially re-
dundant form by using a series of small length adders, with
no carry propagation between the adders (figure 6). If the
adders are of sufficient length, the number of bits per par-
tial product can approach the number in the non-redundant
representation. This reduces the number of bits needing
summation. If the adders are small enough, carries will not
be propagated across large distances, and the small adders
will be much faster than a full carry propagate adder. Also,
less hardware is required due to the elimination of the logic
which propagates carries between the small adders. The
new algorithm can achieve performance parity while re-
ducing the total area of the multiplier by 15-20%.

Fally redundant form

00000GOGOOOOOOOOS
000000600060 00COCTS

E4 E4
Cary Caxy

OO XXX xxxn
lg-! o &

Partialty redundast form

Figure 6: Computing 3M in a partially redundant
form.

Coupled to the multiplier encoding, we have developed
techniques that allow us to handle i counter im-
plementations of the partial product tree. State-of-the-art

[Operation | Exponent | Rounding need to consider |
Eftective add don’t care - mantissa computes Ma + Mband Ma + Mb+2
- rounding needs to account for a potential right shift.
Effective subtract | a. Fa > Eb | - mantissa inverts Mb and computes Ma + Mband Ma + Mb + 1.
- rounding needs to account for a potential left shift.
b. Fa = Eb | - mantissa inverts Mb and computes Ma + Mband Ma + Mb+ 1
- mantissa inverts the results if the result is negative.
C. Ba < Eb | - same as case (a) with F'a and Eb swapped.

Table 1: SNAP Addition Rounding Operations.

implementations of partial product trees have focused on 4—
2 and similar approaches that provide a regularity in wiring
of the partial product tree. We have shown that it is possible
to use irregular implementations based upon 3—2 counters
with the assistance of CAD tools, which automatically opti-
mize the routing and path length through the partial product
tree. Using the combined techniques of the redundant mul-
tiplier encoding, and the CAD-assisted layout of the partial
product tree, we have implemented a full IEEE floating-
point multiplier. This has been implemented in ECL with
the sponsorship of SUN Microsystems. Figure 7 is a die
photo of the multiplier. The delay of the multiplier is shown
in figure 8.

[VIVEV VL W YV IVISIVINININIVEOIORN S i

B

3
o
.
3
3
2
i3
13
S
2
o
!
2
3
s
o3

Figure 7: SNAP Multiplier Die Photo.
5 mm x 3 mm, 0.6 micron BiICMOS

2.4 Division and Higher Level Functions
Advances in the performance and correctness of division

research effort.

24.1 Approximation Theory

Significant accomplishments have been made in SNAP in
the field of approximation theory and its application to start-
ing approximations. Traditionally look-up tables have been
used to accelerate division and other high-order arithmetic
operations. In our study [P15], a non-traditional approach
of back-solving logic equations is used. We further prior
research in this area [1, 4], by creating a generic method
for describing approximations and suggesting a unique im-
plementation of reusing the hardware of a multiplier. In
this manner, division and other high level functions can
be accelerated with high-precision approximations at little
cost.

These approximations are described in terms of a general
Partial Product Array (PPA). A binary multiplication’s PPA
consists of the bits of the multiplier logically ANDed with
the bits of the multiplicand. Each element in the array is a
2 input logical AND of a multiplier bit and a multiplicand
bit. These elements are summed by a large counter tree
and a carry propagate adder to form the product. Our work
focused on creating the optimal PPA which describes an
approximation to a function such as the reciprocal function.
Instead of using array elements that are 2 way ANDs they
were replaced with any type of Boolean logic gate. By
using a similar array to the multiplier’s PPA, the counter
tree and adder could be reused. The use of a PPA to describe
an approximation of a function and reusing an existing
multiplier was founded by the SNAP project.

An example of deriving a PPA approximation for the
reciprocal function is shown. First, the PPA of a multipli-
cation (B * @ = 0.111 - -) is back-solved in terms of the
multiplier (Q).

0. 1 b, b3 by bs---||=B

X g @1 @ ¢ g4 - [=Q

qa|b2qa b3qa bags bsqs - - -

q3|b2g3|bags bags bsqs - -

q2[b292|b3q2|baga bsqa - -

q1|b291{b3q1 [baqi[bsqr - -
golb2g0[b3go|bagolbsgo| - - -
o011 11 11 11 1 ~ 1.0

By choosing the quotient digits appropriately in a redun-

and higher level functions have been made in the SNAP dant notation, each column of the PPA forms an indepen-

79

e
_ N . Ty
e
k wr—
Vesi
H ! i
..... B i
] 14 20 26 2 38
TIME [1.00- 9) Delta: 5,183 18, 0210V
input (¢t = 0) final product (t = 5.2ns)

tree output (¢ = 4.3ns) 3z, 1z multiples ready (¢t = 0.6ns)

Figure 8: An ECL 53 x 53° (IEEE standard) multiply
in 52 ns (latency). The 106° addition at the multiply
end takes 850 ps.

dent equation.

g0

q1 + bago

92 + bagy + b3go

g3 + baga + baq1 + bago

g4 + bags + b3ga + bag1 + bsqo

I
b pmad ek bt

i

These equations are solved to yield the following for-
mulations for five digits of the quotient:

o = 1

a = 1-%

@ = 1-b

g3 = 1—by+42bb3—b3— b4
gs = 1 bobs— bg+ 2b2bs — bs.

These equations are used to form the PPA of the approx-

80

imation.

do q1 q2 q3 g4
—bs —bs

—b3 2b2b4

2b2bs —bs

—by —b3 —by —byb3

1 1 1 1 1

Reduction of the Boolean elements is performed, such as
applying the equivalency 1 — b; = b; or representing 2b; by
b; in the next more significant column. If a large multiplier
is available such as one having 53 rows, a PPA can be
developed which has a minimum of 12 bits correct for
the reciprocal function. This high-precision approximation
can be used as a starting approximation to accelerate a
multiplicative division algorithm.

This technique has been developed for many operations
such as the square root, logarithm, exponential, and several
trigonometric functions. For the square root operation, a
PPA with a minimum of 16 bits was determined. This en-
ables a square root algorithm to require one less iteration
than the typical 8 bit ROM implementations. Thus, sev-
eral cycles can be saved by using the PPA approximation
technique.

Further research is aimed at overcoming the irregular-
ity of the PPAs in physical design. Also other techniques
for deriving PPAs have been suggested such as using other
approximation techniques expressed in PPA form. The op-
timal PPA for a function has yet to be determined, though
PPAs which provide a minimum of 8 to 16 bits correct
have been shown. PPA implementations create high preci-
sion approximations at very low cost with the latency of a
multiplication.

242 Correctness of Division Algorithms

One currently hot topic in computer arithmetic is how to
insure the correctness of high order arithmetic functions
such as division. Rather than addressing one of simpliest
algorithms for division such as non-restoring radix-4 divi-
sion, we have focused our research on one the most difficult
algorithms, the Goldschmidt algorithm. Non-restoring di-
vision algorithms and even the Newton-Raphson algorithm
are self-correcting algorithms and can be proven correct by
analyzing a generic iteration. The Goldschmidt algorithm
accumulates errors each iteration and thus needs to be ana-
lyzed for all iterations. This algorithmis very attractive due
to its quadratic convergence. The Newton-Raphson algo-
rithm also is quadratically converging but the Goldschmidt
algorithm has the advantage that some of the operations can
be computed in parallel. Thus, our task has been to prove
the correctness of implementations of the Goldschmidt al-
gorithm,

We intend our research in this area to provide guidelines
for designers that will insure the correctness of their imple-
mentations. We have tried to generalize the derivation for
any length operands and any multiplier type. Currently we
have finished the derivation for a rectangular multiplier of
N by N + G bits where N is the number of bits desired
and G is the necessary guard bits. The relationship of G
to table size and N has been determined. The proof of the

algorithm has paralleled the development of a S/390 CMOS
microprocessor which will hopefully serve as an example
application of this research. Though, this research will pro-
vide guidelines for the correctness of any implementation
of the Goldschmidt algorithm.

2.5 MCM Technology [P4]

Considerable progress has been made in the area of high-
performance packaging for SNAP. In particular, a technol-
ogy for attaching and connecting chips onto a silicon mem-
brane multichip module (MCM) has been demonstrated
by S. Wong and his colleagues [P4]. This package offers
a high density (over 500 per chip) of small (as small as
10 x 10 pm?), low resistance (less than 0.024 Q/contact)
and low parasitic interconnections between a chip and the
substrate (see figure 9). In addition, controlled impedance
striplines have been fabricated on the MCM substrate.

Si wafer

polyimide Al
v

chip Si

Figure 9: Membrane multi-chip module in Si. [P4]

The initial experimental striplines have been imple-
mented in a three-layer ground-signal-ground configura-
tion with aluminum conductors and polyimide dielectric.
The sandwiched structure ensures a constant characteristic
impedance as the stripline crosses the boundary between
the MCM substrate and the chip. The stripline delay has
been measured at 68 psec/cm which corresponds to a prop-
agation velocity of 1.5 x 10'° cm/sec. A pulse rise time of
72 psec has been measured on a 1-cm long line.

3 Summary
By employing a unified, multidisciplinary approach to
high-performance arithmetic research, SNAP has made sig-

81

nificant progress toward the development of a gigaflop com-
puting element. Improvements in clocking methods, algo-
rithms, tools, and packaging technology have been demon-
strated in implementations of high-performance VLSI
adders, multipliers, and a vector unit.

Acknowledgments

This work was supported by NSF under contract MIP93-
13701. Support for K. Nowka was provided by an ARPA
Fellowship in High Performance Computing administered
by the Institute for Advanced Computer Studies, University
of Maryland. Support for E. Schwarz was provided by the
IBM Resident Study Program.

Partial List of SNAP Publications

The following is a partial list of publications related
to the SNAP project. Recent publications and infor-
mation on the SNAP project and researchers may be
obtained through the World Wide Web using the URL
http://umunhum.stanford.edu.

[P1] G. Bewick. Fast Multiplication: Algorithms and Im-
plementation. PhD thesis, Stanford University, 1994.

[P2] G.Bewick and M. Flynn. Binary MultiplicationUsing
Partially Redundant Multiples. Technical report CSL-
TR-92-528, Stanford University, June 1992.

{P3] G. Bewick, P. Song, G. De Micheli and M. Flynn,
“Approaching a Nanosecond: A 32 Bit Adder,” ICCD,
Proceedings of the International Conference on Cir-
cuit and Computer Design, Rye, NY, pp. 221-226,
October 1988.

[P4] W.Cheng, M. Beiley and S. Wong. “Membrane Multi-
Chip Module Technology on Silicon,” IEEE Multi-
Chip-Module Conference, Santa Cruz, March 1993.

[P5] F. Klass. Balancing Circuits for Wave Pipelining.
Technical report CSL-TR-92-549, Stanford Univer-
sity, October 1992.

[P6] E.F. Klass. “Wave Pipelining: Theoretical and Prac-
tical Issues in CMOS,” PhD. thesis, Dept. of Elect.
Engr., Delft Univ. of Technology, 1994.

[P7] K. Nowka and M. Flynn. “Environmental Limits on
the Performance of CMOS Wave-Pipelined Circuits,”
Technical Report CSL-TR-94-600, Stanford Univ.,
Jan. 1994,

[P8] N. T. Quach and M. J. Flynn. High-Speed Addition
in CMOS. Technical report CSL-TR-90-415, Stanford
University, February, 1990.

{P9] N.T. Quach and M. J. Flynn. An Improved Algorithm
for High-Speed Floating-Point Addition. Technical
Report CSL-TR-90-442, Stanford University, August,
1990.

{P10] N. T. Quach and M. J. Flynn. Design and Implemen-
tation of the SNAP Floating-Point Adder. Technical
Report CSL-TR-91-501, Stanford University, Decem-
ber 1991.

[P11] N. T. Quach and M. J. Flynn. A Radix-64 Floating-
Point Divider. Technical report CSL-TR-92-529,
Stanford University, June, 1992.

[P12] N. Quach and M. J. Flynn. “High-Speed Addition in
CMOS” IEEE Transactions on Computers, Vol. 41,
No. 12, December 1992,

[P13] N. Quach. Reducing the Latency of Floating-Point
4ritlunen1993'c Operations. PhD thesis, Stanford Univer-
sity, .

[P14] E. Schwarz and M. Flynn. Using a floating-point
multiplier to sum signed Boolean elements. Technical
m CSL-TR-92-540, Stanford University, Angust

[P15] E. M. Schwarz. High Radix Algorithms for High-
Order Arithmetic Operations. PhD thesis, Stanford
University, January 1993.

[P16] P. Song and G. De Micheli, “Circuit and Architec-
ture Trade-offs for High-Speed Multiplication,” JEEE
Journal on Solid State Circuits, Vol. 26, No. 9,
pp. 1184-1198, September 1991.

[P17] D. Wong, G. De Micheli, and M. Flynn. “Design-
ing High-Performance Digital Circuits Using Wave

Pipelinmg.” Proceedings of VLSI ’89, pp. 241-252,
August 1989,
[P18] D. Wong, G. De Micheli, and M. Flynn. “Inserting

Active Delay Elements to Achieve Wave Pipelining”
Proceedings of ICCAD ’89, pp. 270-273, November

1989.

{P19] D. Wong and M. Flynn. “Fast Division Using Accu-
rate Quotient Approximations to Reduce the Number
of Iterations.” Proceedings of the IEEE Symposium

82

on Computer Arithmetic, pp. 191-201, June 1991.

[P20] D. Wong. Techniques for Designing High-
Performance Digital Circuits Using Wave Pipelining.
PhD thesis, Stanford University, August 1991.

[P21] D. Wong, G. De Micheli, and M. Flynn. “A Bipolar
Pospulation Counter Using Wave Pipelining to Achieve
2.5x Normal Clock Frequency.” Journal of Solid-State
Circuits, Vol. 27, No. 5, pp. 745-753, May 1992.

(P22] D. Wong and M. Flynn. “Fast Division Using Ac-
curate Quotient ximations to Reduce the Num-
ber of Iterations.” IEEE Transactions on Computers,
41(8):981-995, August 1992.

(P23] D. Wong, G. De Micheli and M. Flynn, “Algo-
rithms for Designing High-Performance Digital Cir-
cuits Using Wave Pipelining,” IEEE Transactions on
CAD/ICAS, pp. 25-46, January 1993.

References
[1] R. Stefanelli. “A suggestion for a high-speed parallel
binary divider,” IEEE Transactions on Computing,
Jan. 1972, pp. 42-55.

[2] H. Ling. “High-Speed Binary Adder”” IBM Journal
of Research and Development, Vol. 25, No. 2 and 3,
pages 156-166, May 1981.

{31 M. P. Farmwald. On the Design of High-Performance
Digital Arithmetic Units. PhD theses, Stanford Uni-
versity, August 1981.

[4] D.M. Mandelbaum. “A Method for Calculation of the
Square Root Using Combinatorial Logic,” Journal of
VLSI Signal Processing, December 1993, pp. 233-
242,

