O(n)-Depth Circuit Algorithm for Modular Exponentiation

Takafumi HAMANO?!, Naofumi TAKAGI,

Shuzo YAJIMA!, and Franco P. PREPARATA*

t Dept. of Information Science, Kyoto University, Kyoto 606-01, Japan
} Dept. of Information Engineering, Nagoya University, Nagoya 464-01, Japan
* Dept. of Computer Science, Brown University, Providence, RI 02912, USA

Abstract

An O(n)-depth polynomial-size combinational cir-
cuil algorithm is proposed for n-bit modular ezponen-
tiation, i.c., for the computation of “z¥ mod m” for
arbitrary integers z, y and m represented as n-bit bi-
nary integers, within bounds 2"~! < m < 2" and
0 < z,y < m. The algorithm is a generalization
of the square-and-multiply method. An obvious im-
plementation of the square-and-multiply method yields
a circuit of depth O(nlogn) and size O(n®). In the
proposed algorithm, the terms 2" mod m’s for all i’s
€ {0,---,n — 1} are computed in [Tt%ﬂ'] parallel
rounds, each of which computes [alogn] consecutive
terms, where To';—n < a. The circuil implementing a
round has depth O((1 + a)logn) and size O(nz(“"’)l
yielding a circuit for modular ezponentiation of dept

O(1t2n) and size O( :T:;:)

1 Introduction

Modular exponentiation plays important roles in
several public key cryptosystems. In the RSA
cryptosystem(1], for example, encryption and decryp-
tion are performed by means of modular exponentia-
tion. It is important to investigate the smallest circuit
depth achievable for this operation.

We define n-bit modular exponentiation as the com-
putation of “z¥ mod m” where we assume that z, y
and m are n-bit binary integers satisfying the bounds
1< m<2", 0<z<mand 0< y< m. In this
paper, we consider its implementation by means of a
combinational circuit with the restriction of bounded-
fan-in. It is obvious that there exists an O(n) depth
circuit for any n-variable Boolean function when ex-
ponential size is allowed. Our attention, however, is
directed to polynomial-size circuits.

Most of the common algorithms for modular ex-
ponentiation are based on the “square-and-multiply”
method, such as the binary method[2). In the square-
and-multiply method, z2' mod m’s are computed for
i’s €{0,1,---,n — 1} by performing modular multi-
plication O(n) times sequentially. We can achieve an
O(n?) depth O(n3) size modular exponentiation cir-
cuit by simply cascading modular multipliers based
on Brickell’s[3] or Montgomery’s[4] algorithm. We
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can reduce the depth to O(nlogn) by first comput-
ing an approximation of the reciprocal of a modulus
for residue calculation. Therefore, the question con-
cerns the existence of polynomial-size circuits for this
problem, whose depth is o(n log n).

In this paper, we propose an O(n)-depth
polynomial-size circuit algorithm for n-bit modular
exponentiation. The algorithm is also based on mul-

tiplication of powers of z of the form {z?" mod m :
i = 0,1,---,n — 1}. Rather than one at a time
(as in the square-and-multiply method), these pow-
ers are generated in ©( al;'s j rounds, for a chosen

positive @ > L—. The basic building block of the

gn
overall circuit is a module of depth O((1 + a)logn)
and size O(n%(!+)) which computes [alogn)] consec-
utive terms of the above set. Cascading O(W) such
modules, and suitably combining their outputs, yields
an overall circuit for modular exponentiation of depth
O(*£2n) and size O(21%).

This paper is organized as follows. In Section 2, we
describe an O(log n)-depth module implementing an
algorithm for n-bit powering which is the main com-
ponent of the proposed algorithm. In Section 3, we
describe the overall circuit 1mplementing an algorithm
for n-bit modular exponentiation. In Section 4, we
show a numerical example of modular exponentiation
based on the proposed algorithm. Section 5 concludes
the paper.

2 A Logarithmic-Depth Circuit for
Powering

In the algorithm to be described, we use
logarithmic-depth circuits for powering [5][6][7]. We
define n-bit powering as the computation of z' in the
binary representation for an arbitrary n-bit integer z
and a given, fixed, positive integer . Beame, Cook,
and Hoover showed that there exists a logarithmic-
depth circuit for computing z' using the residue num-
ber system if | < n%M)[5]. Okabe et al[6], and
Mehlhorn and Preparata(7] modified the algorithm by
Beame et al. to reduce the circuit size using table
look-ups. We explicitly use the circuits by Okabe et
al.

Let {ml,mg,---,m;.}, with m; < mjy GG =



1,---,h — 1), be the set of the first h consecutive
primes, referred to as moduli. A residue number sys-
tem based on {m;,mj,---,m} represents an inte-
gerz < M = H;’zl m; as a sequence of residues
< Z1,---,%p >, where z; = zmodm;. (In gen-
eral, a residue number system only requires that the
moduli be pairwise relatively prime.) As is well-
known(see, e.g., [8]), by the Chinese Remainder The-

orem, we have r = Z?,__l Qjz; mod M, where Q; =
M mj;—1
(m_,) mod M.

The algorithm for n-bit powering using the residue
number system and table look-ups is as follows.

Algorithm [I-POWER]
(! 1s a given, fixed, positive integer. Let h be the
smallest integer such that 2* < [T:_, m;.)

Input:

z (0 < z < 2", an n-bit binary integer)
Output:

z' (an nl-bit binary integer)

Step 1. For j=1,2,.-- h,

compute z; = r mod m; (in parallel).

For j=1,2,---,h,

compute z! mod m;

(in paralle{ by table look-up).

Compute z! from {z! mod mj:j=1,-.-,

h} using the Chinese Remainder Theorem.
O

n-bit powering, i.e., the computation of z!, can be ac-

complished on the basis of the algorithm [[-POWER] by

an O(log(nl))-depth O(n?%1?)-size P-uniform circuit[6].

P-uniformity holds when ! < n°(1).  P-uniformity

means that a circuit for an n-bit input can be gener-

ated in time polynomial in n by a deterministic Turing

machine. Note that P-uniformity is weaker than log-

space uniformity which is in common use.

Step 2.

Step 3.

3 Circuit for Modular Exponentiation

In this section, we describe a circuit implementing
an algorithm for n-bit modular exponentiation z¥ mod
m. We first give a brief overview and then describe
the details.

We first compute s(i)’s such that s(i) = =z?
(mod m) and 0 < s(i) < 2m for all i’s€ {0,---,n—1},
and then obtain z¥ mod m multiplying with modular
reduction the terms s()’s for the i’s such that the ith
bit of y 1s 1.

Let a > loln be a constant and let k denote

[alogn]. Since a is a design parameter, it must ap-
pear In the evaluation of performance. The computa-
tion proceeds in ["T‘l] rounds. In each round, for an
n-bit input z, we compute {{(¢) : ¢ = 1,.--,k} such
that (i) = 22’ (mod m) and 0 < t(i) < 2m. Succes-
sively, z assumes the values {s(pk)(in case s(pk) < 2")
or s(pk)—m(otherwise): p = 0,1, --, [2£1]}. In other
words, one of the outputs of a round is supplied, af-
ter possible subtracting of m, as the input to the next
round. In the pth round, t(i) = s((p — 1)k + i) hold
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for i’s€ {1,---,k}. The computation of {t(¢) : i =
1,---,k} is carried out by modular powering. Specif-
ically, we first carry out powering by means of the
algorithm described in Section 2, and then perform
modular reduction by m. The modular reduction is
achieved multiplying z2" by a suitable approximation
of the reciprocal of m. This approximate reciprocal is
computed only once.

Finally, letting y = Y07 %2 (v € {0,1)}), we
have z¥ mod m = 7=, s(i)¥* mod m.

Specifically, the whole algorithm for n-bit modular
exponentiation is as follows.

Algorithm [MODEXP]
Let a > ioé_n be a constant independent of n and let
k = [alogn].
Input: z,yand m
n—bit binary integers
2"l<m<2n
0<z,y<m
v=T05 w2 (wef01)) /
Output: w = z¥ mod m (an n-bit binary integer)

Step 1. m™ := approximation of 1 with (2%n)-bit
precision;
Step 2. z:=1z;
forp:=1to [ﬂf-l-] do
begin
for each i € {1,---, k} parallel do
compute s((p — 1)k + i) = 2% (mod m);
{ *modular powering*}
{0 < s((p— 1)k +1) < 2m}
{m~ is used in this operation.}
if (s((p — 1)k + k) > 2") then
z:=s((p—-1k+k)—m;
else z := s((p — Dk + k);
end
Step 3. w:=

n-1

i=o $(#)¥* mod m;

a
Figure 1 illustrates the structure of a modular expo-
nentiation circuit based on the algorithm [MODEXP].
We now analyze the performance of this algorithm.
In Step 1, we compute m— by retaining only the
(2¥n) most significant bits of 2. Consequently, the
following inequalities hold:

1

m

0< m < 27 2'n

(1)

The reciprocal of m can be computed using the
Newton-Raphson method, which requires two multi-
plications and one subtraction at each iteration. Start-
ing with a 1-bit imtial approximation, since at each
iteration the number of exact bits doubles, we have
a total of O((1 + a)logn) iterations. Therefore, we

can perform Step 1 with an O((1 + )2 log? n)-depth
O(n*(1*®)) size circuit (since 26n ~ nl+e),



m——>' reciprocal I

z > modular powerirEI

*

m?

s(k+1) =
s(1)---s(k) (2%)

modular powering?l ~.

* 1
modular powering?l

s(n—1)

s([2*] - Dk + 1)

uw

modular product

z¥ mod m

*: possible subtraction

s(i) = z?° m s(i m
(k(z)ralog(;ﬁod ) (0 < 5() < 2 ))

Figure 1: Configuration of a modular exponentiation circuit based on the algorithm [MODEXP]

In Step 2, we calculate the s(i)’s for i = 1, 2,--,n—
1 by means of modular powerings using m. Specifi-
ggl}y, to compute 2/, we use an nl-bit approximation
m(;) of L by retaining the nl most significant bits of
mi. The following inequalities hold:

1 — -
0< —-mip<2™ (2

The algorithm for modular powering, which computes
Z satisfying Z = 2'(mod m; and 0 < Z < 2m (re-
ferred to here as Algorithm [/[-MODPOWER] ), is a minor
modification of Algorithm [I-POWER], to which the fol-
lowing step is added:

Step 4. Compute Z = 7' — | 'm= )| m.

With regard to the Step 4 of [[-MODPOWER] , We observe
the following. From inequalities (2), we have:

5]

Consequently, from inequalities 0 <z- l-;—:J m<m,
we have:

— 1 —
l='m ) + 2'(; - m )]

= Lz'%aﬂ or [z';z:a)j+1

0< 2t~ [z'n’—;(;)]m <2m

This modular reduction can be performed by a mul-
tiplication with flooring, a multiplication and a sub-
traction. Since 2! and m ;) are nl-bit numbers and m
is a n-bit number, a circuit for Step 4 has O(log(nl))
depth and O(n?1?) size. Therefore, we can compute
[I-MODPOVER] with an O(log(nl))-depth O(n?I2)-size
circuit.

In the inner loop of Step 2 of the main algorithm
[MODEXP], we compute {t(i) : i = 1,---,k} in par-
allel. Variable t(ig (1 <t < k) is computed us-
ing the algorithm [/-MODPOVER] for I = 2. Hence,
we can compute the #(i)’s, for i = 1,2,-..,k, with
an O((1 + a)logn)-depth and Y°}_, O(n2(2')?) =
O(n**+2))gize circuit. Since the outer loop is sequen-
tial, we can perform Step 2 with an O(1t2p)-depth
0(::::)-size circuit.

In Step 3, we compute the modular product

7o 8(i)* mod m from inputs s(i)’s by connecting
(n + 1)-bit modular multiplication circuits according
to a binary tree, where (n + 1)-bit modular multi-
plication means the computation of XY mod m for
(n + Il\)-bit binary integers X and Y within bounds
0 < X,Y < 2m. We compute XY mod m in two
steps. The first is multiplication and the second modu-
lar reduction. Consequently, we can perform the n-bit
modular multiplication XY mod m and the leading
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Inputs: =z =231 n=8 a=1

y =245 k=[alogn] =3
m = 249 moduli= {2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53}
Outputs: z¥ mod m = 189
Step 1.
m = 0.01073260A447F7C66 (hexadecimal)
Step 2.
Iteration 1: z = 5(0) = z = 231
Binary—RNS: <1,0,1,0,0,10,10,3,1,28,14,9, 26, 16,43,19 >

zzl\l 22 22
Table look-ups:  <1,0,1,0,0,9,15><1,0,1,0,0,3,4,5,1,1><1,0,1,0,0,9, 16,6,1,1, 18, 33, 18, 16, 18, 36>
¥ 1]
RNS—Binary: 53361 2847396321 8107665808844335041

v v v
Modular reduction: s(1)=175 s(2) = 147 s(3) =195
(zz' - [zz';n:(zs)_] m)

Iteration 2: z = s(3) = 195
Binary—RNS: <1,0,0,6,8,0,8,511,21,9,10,31,23,7,36 >

1 2 3
Z2 22 22

Table look-ups:  <1,0,0,1,9,0,13><1,0,0,1,4,0, 16,17, 13,7><1,0,0,1,5,0, 1,4, 8,20, 28, 26, 16,9, 16, 49>

] ] ]
RNS—Binary: 38025 1445900625 2090628617375390625
] ] (]
Modular reduction: s(4) =177 s5(5) = 204 s(6) =33
(z2' - [22'F(2e)Jm) /
Iteration 3: z = s(6) = 33
Binary—RNS: <1,0,3,5,0,7,16, 14,10, 4, 2,33, 33,33,33,33 >
|
zz‘ zz? zz’
Table look-ups: <1,0,4,4,0,10,1><1,0,1,2,0,9,1,17,18,24><1,0,1,4,0,3,1,4,2,25,8,9,16,17,7,49>
v ¥
RNS—Binary: 1089 1185921 1406408618241
¥ ¥
Modular reduction: s(7) =93 183 123
(2% - [zz'm"(z.-)J m)
Step 3.

[1i—, 8(:)¥* mod z = ((231 x 1 mod 249) x (147 x 1 mod 249) mod 249)x
((177 x 204 mod 249) x (33 x 93 mod 249) mod 249) mod 249 = 189

(Numbers are described in decimal unless otherwise stated.)

Figure 2: Example of modular exponentiation
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(2n+2)-bits of m" as in Step 4 of [I-MODPOWER] with
an O(log n)-depth O(n2)-size circuit. Therefore, Step
3 can be performed by an O(log? n)-depth O(n3)-size
circuit.

It is clear that the circuit based on the algorithm
(MODEXP] is P-uniform, because the circuit for power-
m&:: P-uniform. We summarize the proposed algo-
ri

into the following theorem.
Theorem 1 n-bit modular ezxponentiation z¥ mod m
can be performed with an O(112n).depth O(%)-

size P-uniform circuit, where a > ﬁ i a posilive
constant.

4 Example

We give a numerical example of 8-bit modu-
lar exponentiation based on the proposed algorithm
[MODEXP]. Figure 2 shows the computation flow of
modular exponentiation 231245 mod 249 for n = 8.
We set @« = 1. Therefore, the set of moduli is
{2,3,5,7,11,13,17,19, 23,29, 31,37, 41,43,47,53}. In
Step 1, we compute 64-bit number m-'. Step 2 pro-
ceeds in [”T‘l] = 3 rounds. In each round, we com-
pute fl 1.3 31 nul::bets in parallel. In Step 3, since

=1 101 in binary, we compute (s(0) - s(2) - s(4) -
g(5)-s(6)-a(7)) mod 1¥n pute (s(0): 5(2)-o(4)

5 Conclusion

We have proposed an O (1£2p)-depth O(%)-
size P-uniform circuit algorithm for n-bit modular ex-
ponentiation with a > io;_n' Note that for o = ﬁ

we obtain the classical square-and-multiply algorithm.

J. von zur Gathen[9] showed that modular ex-
ponentiation can be computed in an O(logn)-depth
polynomial-size circuit if the modulus m has only
small prime factors p < n, i.e. m is “n-smooth”. In
his algorithm, this property of the modulus m is essen-
tial. Therefore, the technique of [9] cannot be applied
to modular exponentiation with an arbitrary modulus
as assumed in this paper.

Our result indicates that n-bit modular exponen-
tiation belongs to a complexity class in which opera-
tions are executed by an O(n)-depth polynomial-size
circuit. It is an open problem whether there exists a

logo(l) n-depth circuit for such operations.
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