O(n)-Depth Circuit Algorithm for Modular Exponentiation

Takafumi HAMANO?!, Naofumi TAKAGI,

Shuzo YAJIMA!, and Franco P. PREPARATA*

t Dept. of Information Science, Kyoto University, Kyoto 606-01, Japan
} Dept. of Information Engineering, Nagoya University, Nagoya 464-01, Japan
* Dept. of Computer Science, Brown University, Providence, RI 02912, USA

Abstract

An O(n)-depth polynomial-size combinational cir-
cuil algorithm is proposed for n-bit modular ezponen-
tiation, i.c., for the computation of “z¥ mod m” for
arbitrary integers z, y and m represented as n-bit bi-
nary integers, within bounds 2"~! < m < 2" and
0 < z,y < m. The algorithm is a generalization
of the square-and-multiply method. An obvious im-
plementation of the square-and-multiply method yields
a circuit of depth O(nlogn) and size O(n®). In the
proposed algorithm, the terms 2" mod m’s for all i’s
€ {0,---,n — 1} are computed in [Tt%ﬂ'] parallel
rounds, each of which computes [alogn] consecutive
terms, where To';—n < a. The circuil implementing a
round has depth O((1 + a)logn) and size O(nz(“"’)l
yielding a circuit for modular ezponentiation of dept

O(1t2n) and size O(:T:;:)

1 Introduction

Modular exponentiation plays important roles in
several public key cryptosystems. In the RSA
cryptosystem(1], for example, encryption and decryp-
tion are performed by means of modular exponentia-
tion. It is important to investigate the smallest circuit
depth achievable for this operation.

We define n-bit modular exponentiation as the com-
putation of “z¥ mod m” where we assume that z, y
and m are n-bit binary integers satisfying the bounds
1< m<2", 0<z<mand 0< y< m. In this
paper, we consider its implementation by means of a
combinational circuit with the restriction of bounded-
fan-in. It is obvious that there exists an O(n) depth
circuit for any n-variable Boolean function when ex-
ponential size is allowed. Our attention, however, is
directed to polynomial-size circuits.

Most of the common algorithms for modular ex-
ponentiation are based on the “square-and-multiply”
method, such as the binary method[2). In the square-
and-multiply method, z2' mod m’s are computed for
i’s €{0,1,---,n — 1} by performing modular multi-
plication O(n) times sequentially. We can achieve an
O(n?) depth O(n3) size modular exponentiation cir-
cuit by simply cascading modular multipliers based
on Brickell’s[3] or Montgomery’s[4] algorithm. We

1063-6889/95 $4.00 © 1995 IEEE

188

can reduce the depth to O(nlogn) by first comput-
ing an approximation of the reciprocal of a modulus
for residue calculation. Therefore, the question con-
cerns the existence of polynomial-size circuits for this
problem, whose depth is o(n log n).

In this paper, we propose an O(n)-depth
polynomial-size circuit algorithm for n-bit modular
exponentiation. The algorithm is also based on mul-

tiplication of powers of z of the form {z?" mod m :
i = 0,1,---,n — 1}. Rather than one at a time
(as in the square-and-multiply method), these pow-
ers are generated in ©(al;'s j rounds, for a chosen

positive @ > L—. The basic building block of the

gn
overall circuit is a module of depth O((1 + a)logn)
and size O(n%(!+)) which computes [alogn)] consec-
utive terms of the above set. Cascading O(W) such
modules, and suitably combining their outputs, yields
an overall circuit for modular exponentiation of depth
O(*£2n) and size O(21%).

This paper is organized as follows. In Section 2, we
describe an O(log n)-depth module implementing an
algorithm for n-bit powering which is the main com-
ponent of the proposed algorithm. In Section 3, we
describe the overall circuit 1mplementing an algorithm
for n-bit modular exponentiation. In Section 4, we
show a numerical example of modular exponentiation
based on the proposed algorithm. Section 5 concludes
the paper.

2 A Logarithmic-Depth Circuit for
Powering

In the algorithm to be described, we use
logarithmic-depth circuits for powering [5][6][7]. We
define n-bit powering as the computation of z' in the
binary representation for an arbitrary n-bit integer z
and a given, fixed, positive integer . Beame, Cook,
and Hoover showed that there exists a logarithmic-
depth circuit for computing z' using the residue num-
ber system if | < n%M)[5]. Okabe et al[6], and
Mehlhorn and Preparata(7] modified the algorithm by
Beame et al. to reduce the circuit size using table
look-ups. We explicitly use the circuits by Okabe et
al.

Let {ml,mg,---,m;.}, with m; < mjy GG =

1,---,h — 1), be the set of the first h consecutive
primes, referred to as moduli. A residue number sys-
tem based on {m;,mj,---,m} represents an inte-
gerz < M = H;’zl m; as a sequence of residues
< Z1,---,%p >, where z; = zmodm;. (In gen-
eral, a residue number system only requires that the
moduli be pairwise relatively prime.) As is well-
known(see, e.g., [8]), by the Chinese Remainder The-

orem, we have r = Z?,__l Qjz; mod M, where Q; =
M mj;—1
(m_,) mod M.

The algorithm for n-bit powering using the residue
number system and table look-ups is as follows.

Algorithm [I-POWER]
(! 1s a given, fixed, positive integer. Let h be the
smallest integer such that 2* < [T:_, m;.)

Input:

z (0 < z < 2", an n-bit binary integer)
Output:

z' (an nl-bit binary integer)

Step 1. For j=1,2,.-- h,

compute z; = r mod m; (in parallel).

For j=1,2,---,h,

compute z! mod m;

(in paralle{ by table look-up).

Compute z! from {z! mod mj:j=1,-.-,

h} using the Chinese Remainder Theorem.
O

n-bit powering, i.e., the computation of z!, can be ac-

complished on the basis of the algorithm [[-POWER] by

an O(log(nl))-depth O(n?%1?)-size P-uniform circuit[6].

P-uniformity holds when ! < n°(1). P-uniformity

means that a circuit for an n-bit input can be gener-

ated in time polynomial in n by a deterministic Turing

machine. Note that P-uniformity is weaker than log-

space uniformity which is in common use.

Step 2.

Step 3.

3 Circuit for Modular Exponentiation

In this section, we describe a circuit implementing
an algorithm for n-bit modular exponentiation z¥ mod
m. We first give a brief overview and then describe
the details.

We first compute s(i)’s such that s(i) = =z?
(mod m) and 0 < s(i) < 2m for all i’s€ {0,---,n—1},
and then obtain z¥ mod m multiplying with modular
reduction the terms s()’s for the i’s such that the ith
bit of y 1s 1.

Let a > loln be a constant and let k denote

[alogn]. Since a is a design parameter, it must ap-
pear In the evaluation of performance. The computa-
tion proceeds in ["T‘l] rounds. In each round, for an
n-bit input z, we compute {{(¢) : ¢ = 1,.--,k} such
that (i) = 22’ (mod m) and 0 < t(i) < 2m. Succes-
sively, z assumes the values {s(pk)(in case s(pk) < 2")
or s(pk)—m(otherwise): p = 0,1, --, [2£1]}. In other
words, one of the outputs of a round is supplied, af-
ter possible subtracting of m, as the input to the next
round. In the pth round, t(i) = s((p — 1)k + i) hold

189

for i’s€ {1,---,k}. The computation of {t(¢) : i =
1,---,k} is carried out by modular powering. Specif-
ically, we first carry out powering by means of the
algorithm described in Section 2, and then perform
modular reduction by m. The modular reduction is
achieved multiplying z2" by a suitable approximation
of the reciprocal of m. This approximate reciprocal is
computed only once.

Finally, letting y = Y07 %2 (v € {0,1)}), we
have z¥ mod m = 7=, s(i)¥* mod m.

Specifically, the whole algorithm for n-bit modular
exponentiation is as follows.

Algorithm [MODEXP]
Let a > ioé_n be a constant independent of n and let
k = [alogn].
Input: z,yand m
n—bit binary integers
2"l<m<2n
0<z,y<m
v=T05 w2 (wef01)) /
Output: w = z¥ mod m (an n-bit binary integer)

Step 1. m™ := approximation of 1 with (2%n)-bit
precision;
Step 2. z:=1z;
forp:=1to [ﬂf-l-] do
begin
for each i € {1,---, k} parallel do
compute s((p — 1)k + i) = 2% (mod m);
{ *modular powering*}
{0 < s((p— 1)k +1) < 2m}
{m~ is used in this operation.}
if (s((p — 1)k + k) > 2") then
z:=s((p—-1k+k)—m;
else z := s((p — Dk + k);
end
Step 3. w:=

n-1

i=o $(#)¥* mod m;

a
Figure 1 illustrates the structure of a modular expo-
nentiation circuit based on the algorithm [MODEXP].
We now analyze the performance of this algorithm.
In Step 1, we compute m— by retaining only the
(2¥n) most significant bits of 2. Consequently, the
following inequalities hold:

1

m

0< m < 27 2'n

(1)

The reciprocal of m can be computed using the
Newton-Raphson method, which requires two multi-
plications and one subtraction at each iteration. Start-
ing with a 1-bit imtial approximation, since at each
iteration the number of exact bits doubles, we have
a total of O((1 + a)logn) iterations. Therefore, we

can perform Step 1 with an O((1 +)2 log? n)-depth
O(n*(1*®)) size circuit (since 26n ~ nl+e),

m——>' reciprocal I

z > modular powerirEI

*

m?

s(k+1) =
s(1)---s(k) (2%)

modular powering?l ~.

* 1
modular powering?l

s(n—1)

s([2*] - Dk + 1)

uw

modular product

z¥ mod m

*: possible subtraction

s(i) = z?° m s(i m
(k(z)ralog(;ﬁod) (0 < 5() < 2))

Figure 1: Configuration of a modular exponentiation circuit based on the algorithm [MODEXP]

In Step 2, we calculate the s(i)’s for i = 1, 2,--,n—
1 by means of modular powerings using m. Specifi-
ggl}y, to compute 2/, we use an nl-bit approximation
m(;) of L by retaining the nl most significant bits of
mi. The following inequalities hold:

1 — -
0< —-mip<2™ (2

The algorithm for modular powering, which computes
Z satisfying Z = 2'(mod m; and 0 < Z < 2m (re-
ferred to here as Algorithm [/[-MODPOWER]), is a minor
modification of Algorithm [I-POWER], to which the fol-
lowing step is added:

Step 4. Compute Z = 7' — | 'm=)| m.

With regard to the Step 4 of [[-MODPOWER] , We observe
the following. From inequalities (2), we have:

5]

Consequently, from inequalities 0 <z- l-;—:J m<m,
we have:

— 1 —
l='m) + 2'(; - m)]

= Lz'%aﬂ or [z';z:a)j+1

0< 2t~ [z'n’—;(;)]m <2m

This modular reduction can be performed by a mul-
tiplication with flooring, a multiplication and a sub-
traction. Since 2! and m ;) are nl-bit numbers and m
is a n-bit number, a circuit for Step 4 has O(log(nl))
depth and O(n?1?) size. Therefore, we can compute
[I-MODPOVER] with an O(log(nl))-depth O(n?I2)-size
circuit.

In the inner loop of Step 2 of the main algorithm
[MODEXP], we compute {t(i) : i = 1,---,k} in par-
allel. Variable t(ig (1 <t < k) is computed us-
ing the algorithm [/-MODPOVER] for I = 2. Hence,
we can compute the #(i)’s, for i = 1,2,-..,k, with
an O((1 + a)logn)-depth and Y°}_, O(n2(2')?) =
O(n**+2))gize circuit. Since the outer loop is sequen-
tial, we can perform Step 2 with an O(1t2p)-depth
0(::::)-size circuit.

In Step 3, we compute the modular product

7o 8(i)* mod m from inputs s(i)’s by connecting
(n + 1)-bit modular multiplication circuits according
to a binary tree, where (n + 1)-bit modular multi-
plication means the computation of XY mod m for
(n + Il\)-bit binary integers X and Y within bounds
0 < X,Y < 2m. We compute XY mod m in two
steps. The first is multiplication and the second modu-
lar reduction. Consequently, we can perform the n-bit
modular multiplication XY mod m and the leading

190

Inputs: =z =231 n=8 a=1

y =245 k=[alogn] =3
m = 249 moduli= {2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53}
Outputs: z¥ mod m = 189
Step 1.
m = 0.01073260A447F7C66 (hexadecimal)
Step 2.
Iteration 1: z = 5(0) = z = 231
Binary—RNS: <1,0,1,0,0,10,10,3,1,28,14,9, 26, 16,43,19 >

zzl\l 22 22
Table look-ups: <1,0,1,0,0,9,15><1,0,1,0,0,3,4,5,1,1><1,0,1,0,0,9, 16,6,1,1, 18, 33, 18, 16, 18, 36>
¥ 1]
RNS—Binary: 53361 2847396321 8107665808844335041

v v v
Modular reduction: s(1)=175 s(2) = 147 s(3) =195
(zz' - [zz';n:(zs)_] m)

Iteration 2: z = s(3) = 195
Binary—RNS: <1,0,0,6,8,0,8,511,21,9,10,31,23,7,36 >

1 2 3
Z2 22 22

Table look-ups: <1,0,0,1,9,0,13><1,0,0,1,4,0, 16,17, 13,7><1,0,0,1,5,0, 1,4, 8,20, 28, 26, 16,9, 16, 49>

]]]
RNS—Binary: 38025 1445900625 2090628617375390625
]] (]
Modular reduction: s(4) =177 s5(5) = 204 s(6) =33
(z2' - [22'F(2e)Jm) /
Iteration 3: z = s(6) = 33
Binary—RNS: <1,0,3,5,0,7,16, 14,10, 4, 2,33, 33,33,33,33 >
|
zz‘ zz? zz’
Table look-ups: <1,0,4,4,0,10,1><1,0,1,2,0,9,1,17,18,24><1,0,1,4,0,3,1,4,2,25,8,9,16,17,7,49>
v ¥
RNS—Binary: 1089 1185921 1406408618241
¥ ¥
Modular reduction: s(7) =93 183 123
(2% - [zz'm"(z.-)J m)
Step 3.

[1i—, 8(:)¥* mod z = ((231 x 1 mod 249) x (147 x 1 mod 249) mod 249)x
((177 x 204 mod 249) x (33 x 93 mod 249) mod 249) mod 249 = 189

(Numbers are described in decimal unless otherwise stated.)

Figure 2: Example of modular exponentiation

191

(2n+2)-bits of m" as in Step 4 of [I-MODPOWER] with
an O(log n)-depth O(n2)-size circuit. Therefore, Step
3 can be performed by an O(log? n)-depth O(n3)-size
circuit.

It is clear that the circuit based on the algorithm
(MODEXP] is P-uniform, because the circuit for power-
m&:: P-uniform. We summarize the proposed algo-
ri

into the following theorem.
Theorem 1 n-bit modular ezxponentiation z¥ mod m
can be performed with an O(112n).depth O(%)-

size P-uniform circuit, where a > ﬁ i a posilive
constant.

4 Example

We give a numerical example of 8-bit modu-
lar exponentiation based on the proposed algorithm
[MODEXP]. Figure 2 shows the computation flow of
modular exponentiation 231245 mod 249 for n = 8.
We set @« = 1. Therefore, the set of moduli is
{2,3,5,7,11,13,17,19, 23,29, 31,37, 41,43,47,53}. In
Step 1, we compute 64-bit number m-'. Step 2 pro-
ceeds in [”T‘l] = 3 rounds. In each round, we com-
pute fl 1.3 31 nul::bets in parallel. In Step 3, since

=1 101 in binary, we compute (s(0) - s(2) - s(4) -
g(5)-s(6)-a(7)) mod 1¥n pute (s(0): 5(2)-o(4)

5 Conclusion

We have proposed an O (1£2p)-depth O(%)-
size P-uniform circuit algorithm for n-bit modular ex-
ponentiation with a > io;_n' Note that for o = ﬁ

we obtain the classical square-and-multiply algorithm.

J. von zur Gathen[9] showed that modular ex-
ponentiation can be computed in an O(logn)-depth
polynomial-size circuit if the modulus m has only
small prime factors p < n, i.e. m is “n-smooth”. In
his algorithm, this property of the modulus m is essen-
tial. Therefore, the technique of [9] cannot be applied
to modular exponentiation with an arbitrary modulus
as assumed in this paper.

Our result indicates that n-bit modular exponen-
tiation belongs to a complexity class in which opera-
tions are executed by an O(n)-depth polynomial-size
circuit. It is an open problem whether there exists a

logo(l) n-depth circuit for such operations.

192

Acknowledgments

The authors would like to thank the referees for
their useful comments which improved this paper. The
authors would like to thank the members of Profes-
sor Yajima’s Laboratory at Kyoto University for their
valuable comments on this work.

References

(1] R. L. Rivest, A. Shamir, and L. Adleman, “A
method for obtaining digital signature and public-
key cryptosystems,” Commun. ACM, Vol. 21, No.
2, pp. 120-126, Feb. 1978.

D. E. Knuth, The Art of Computer Program-
ming volume 2, Addison-Wesley, Reading, Mas-
sachusetts, 1981.

Y]

[3] E. F. Brickell, “A fast modular multiplication algo-
rithm with application to two key cryptography,”
in Advances in Cryptology, Proc. CRYPTO 82,
D. Chaum et al., Eds. New York: Plenum, 1983,

pp.51-60.

P. L. Montgomery, “Modular multiplication with-
out trial division,” Math. Computation, Vol. 44,
No. 170, pp.519-521, Apr. 1985.

P. W. Beame, S. A. Cook, and H. J. Hoover, “Log
depth circuits for division and related problems,”
Proc. 25th IEEE FOCS, pp. 1-6, Oct. 1984.

[6] Y. Okabe, N. Takagi, and S. Yajima, “Log depth
circuits for elementary functions using residue
number system,” IEICE Trans., Vol. J73-D-I, No.
9, pp.723-728, Sep. 1990 (in Japanese). English
translated version is available in Electronics and
Commaunications in Japan, Part 3, Vol. 74, No. 8,
pp.31-38, 1991.

(4

[5]

[7] K. Mehlhorn and F. P. Preparata, “Area-time op-
timal division for t = Q((logn)!*¢),” Information

and Computation, Vol. 72., pp.270-282, 1987.

N. S. Szavo and R. I. Tanaka, Residue Arith-
melic and Iis Applications to Computer Technol-
ogy, McGraw-Hill, New York, 1967.

[8]

[9] J. von zur Gathen, “Computing powers in paral-
lel,” SIAM J. Comput., Vol. 16, No. 5, pp. 930-
945, Oct. 1987.

