Function Evaluation by Table Look-up and Addition

Hannes Hassler

and Naofumi Takagi

Dept.of Information Engineering
Nagoya University
Nagoya , Japan 464-01

Abstract

We describe a general approach decomposing a
Junction into a sum of functions, each with a smaller
input size than the original. Hence we can map such
functions with essentially the same precision using
small ROM tables and adders. We derive an easy
method to compute the worst case error for many el-
ementary functions and an error bound for the rest.
Important applications are reciprocals, logarithms, ez-
ponentials and others.

Index Terms — reciprocal, logarithm, exponential,
table look-up, function decomposition

1 Introduction

There are increasing needs in evaluating elementary
functions such as reciprocals, square roots, logarithms,
exponentials and trigonometric functions quickly. In
evaluating a function f(X), if X has a small number
of values, we can preprocess the values of f(X) for
all X and store them in a table. Such an approach is
limited by the table size available.

However, for elementary functions, we have found
that instead of one large table we can use several
smaller tables and add their outputs. The input X is
split into two or more overlapping subsets X}’s. Each
X3 has fewer bits than the original X. The X}’s are
the inputs for the smaller tables. The outputs of the
tables are added together yielding f(X). In fact this
only yields an approximation of f(X), but the error
matches the precision bound. The proposed method is
efficient for DSP operations in which rather short word
length (e.g. 16-24 bits) is requested and in initial ap-
proximations for converging methods such as Newton-
lI:.aphson to compute elementary functions with larger

its.

To explain this task by a practical example, think
of a logarithm table book. Assume it allows the
user to look up the logarithm of some number z,
where z has 6 decimal digits. Hence it must con-
tain 1,000, 000 entries, a pretty substantial table. Fol-
lowing our approach, we can take the first four dig-
its of z, look it up in a small table; then take the
first two and the last two digits and look it up in an-
other small table. The sum of the two table entries
provides the logarithm. The table size is largely re-
duced. Instead of one large table we have only two

1063-6889/95 $4.00 © 1995 IEEE

10

small tables with 20,000 entries all together, an im-
provement by a factor of 50. To illustrate the task
by a numerical example consider the computation of
log; 654321 = —.184209. Our approach suggests
to compute log;, .6543 + log,, .650021 — log,, .65 =
—.184209 instead. We can look up the first logarithm
in the first table (only the first four digits are needed)
and the sum of the other two logarithms in the sec-
ond table (only the first two and last two digits are
needed).

Table look up algorithms are used, for instance, to
compute initial solutions for reciprocal and division.
DasSarma and Matula E&] give a good overview. Range
reduction has already been discussed in other papers
[4], though with rather different approaches. We are
not aware of any algorithm similar to our approach.
The theory behind our method uses so called Partial
Product Arrays (PPA). This method was introduced
by Stefanelli [7] in the early 70’s. Stefanelli devel-
oped PPA’s to perform binary division. Later, oth-
ers have used PPA’s to compute functions like square
root, logarithm, exponential and trigonometric func-
tions {1, 2, 5, 6].

A PPA is a symbolic representation of a function by
the input bits. If we create the PPA of some function
f(X) we get a large number of bit products. Added -
together at their proper places of significance they gen-
erate f(X). It is possible to create the PPA for any of
the discussed functions up to some degree of accuracy.

The main question on the proposed method is the
error caused by splitting the input bits into several
smaller inputs. The model allows us to derive up-
per bounds on this error for arbitrary splittings. For
certain functions, like reciprocal, logarithm and ex-
ponential we even gain sharp error bounds and can
determine the worst case error exactly.

In Section 2 we define PPA’s and make some ob-
servations. This allows us, in Section 3, to derive an
approximation formula and to compute the worst case
error. Section 4 gives an outline of some applications
of the method presented. Limitations and open ques-
tions are discussed in Section 5.

2 Partial Product Arrays

We evaluate functions that can be developed into
converging series f S)l() =Y io06i X" up to some preci-
sion. For our aim, the number of bits of the parameter

X is crucial, because more input bits require larger ta-
bles. The facts that the a;’s have limited precision as
well and that we talk about infinite series are not so
important now. Of course, we approximate infinite se-
ries by finite ones. Let us consider parameter X and
its powers more closely.

X is a nonnegative fixed point number and consists
of a string of bits, X = [b; ---b,]. (For certain cases
we will assume that the radix point is such that X =
.b1 -+ -by) The series can be written as:

[t =D aler bl ()

In the subsequent discussion we assume that the
a;’s are all nonnegative. We call such functions a;-
nonnegative functions. General functions which have
both negative and positive coefficients, can be sep-
arated into positive and negative parts: f(X) =
f1(X) = f2(X). Each f; is an a;-nonnegative func-
tion. Note that the functions 1/(1 — X), — log(1 — X)
and 2X are a;-nonnegative. (We later define the first
two functions only for 0 < X < 1/2.) We compute
the function f(X) in a bitwise and symbolic way. All
powers of X are expressed in bit notation.

Example 1
Consider a symbolic two-bit number X = [.b1b,] =
612! + 5,272, Squaring X yields X2 = b,2-2 +
b152272 4+ bp27*. (Note that we write b; instead of
b? because we are dealing with single bits.) The cube
of X is then, after simplification, X3 = b;5,2"2 +
51273 + 515,275 4 b,275. Multiplying by some con-
stant a; spreads these bit products further to differ-
ent places of significance; for instance [.101] x 4,272
becomes 5273 + 5,275, Consider a small example
for a symbolic representation of a function. Take
feo(X) = X + X2+ X3, foo(X) is then biby2-! +
6127 0127245227245, 273 4+ 522 4+ b1 5225 455276
We get symbolic bit products weighted by some

power of two. This simple example serves as an il-
lustration for a definition of a positive PPA.

Definition 1 A positive PPA of an a;-nonnegative
Junction f([by---b,]) is the representation of the fu-
nction as a sum of nonnegalive bil products, 1i.e.

F([br---ba)) = Zle B;j2"i, where each nonnegative
bit product B; = bj;x --- xbjr and the bits of each
product are a subset of the input bits; {bj1,---,b;x} C
{bl’ o '1bn}'

Each a;-nonnegative function can be developed into a
positive PPA. Our definition of PPA’s is a very basic
one. Compare, for instance, with Schwarz [6]. He uses
more general bit products, allowing signed products
and logic complements of single bits. His goal is to
derive a hardware design from a PPA. Our simplifica-
tion rules are very simple, there is only one:

B2" + B2" — B2™*! (2)

11

Generally the symbolic representation of f(X) con-
tains all possible bit products out of X, all of which
are nonnegative. The PPA of f([1---1]) (all bits 1)
contains, for all possible bit products, a weighted 1 ac-
cordingly (i.e. none of them is made zero). We observe
0< FX) < F(lL---1)).

Let us consider for instance the development of
the reciprocal function into its PPA. We compute
1/(1 — X) and use the equivalence 1/(1 — X) =
2?:0 X* to compute all bit products. For this case
it makes sense to assume 0 < X < 1/2, where X =
[0b2b3 - --b,]=b9272 453273 + .- -4 b,2™™ and we can
proceed as in Example 1. We can calculate a finite sum
Zfzo X* such that the error matches the precision
bound 27". We get 1/(1—X) = 145,22 453273,
see equation (3).

{ 1/(1 = .0bgb3--) = qo0-91¢2 - -~ |
20 2-1 277 29 92-% 373
1 bz b3 b2 6263
+ babs baby
+ by babsbs (3)
+ bs
go- 41 q2 q3 94 g5

The simplification rule (2) implies that, finally, there
are no two equal bit products with equal weight.
Hence the simplified PPA of f(X) can be interpreted
as a set. We denote it by P(f(l)) (Note that we
use X both to refer to the input of function f and to
the set of symbolic input bits, {b1,---,b,}.) P(f(X))
is then a set of bit products times the appropriate
power of two, and can be regarded as a subset of 2% x
{1,---,n} (Note that such a set definition covers func-
tions up to a precision of n bits. In theory, of course,
n = 00.) For instance, in Example 1 we can derive the
set P(f“-&X)) = {<{b1rb2}r 1)» ({bl}: 1)’ ({bl}’z)) B }
fom fou(X).

Assume certain input bits are constantly zero. All
symbolic bit products of the PPA which contain these
zero-bits will disappear, too. The set of variable bits
becomes smaller, only a subset X; of X, the original
symbolic input bits 1s used. It is then obvious that
also P(f(XI?) C P(f(X)), i.e. f(X1) generates only
a subset of all bit products of f(X). Look at the PPA
in equation (3) above. If we use the input subset X, =
{b2,b4} C X = {ba,b3,bs,--} we calculate f(X;) =
1/(1 — [.0620040]); there remain the products which
contain only b, and b,.

We call a function g())(() where P(g(X)) C P(f(X))
an approximation of f(X). If we unite such approxi-
mation sets we get a set describing another (possibly
better) approximation. In the following proposition
we observe that such unions can be found by addition
and subtraction of the function, using various input
subsets.

Proposition 1 Given a function f(X) representable
as a PPA, P(f(X)), and an approzimation g(X) such
that P(g(X)) C P(f(X)) and the input subset X,

on the common input bits {b;,---,b,}. The union
of the two approzimations is a function h(X) i.e.

P(h(X)) := P(g(X)) U P(f(X1)). We make the fol-
lowing observervation:

h(X) = 9(X) + £(X1) — 9(X1)
and P(h(X)) C P(f(X)).
Example 2

Consider for instance f..(X) of Example 1. Given is
the approximation g(X) = b,5,2"! + 5,2~ + b,2-2;
note that P(g9(X)) C P(f.-(X)). We get another ap-
proximation by using the input subset X; = {b;} on
Jez(X). All products which contain b, disappear and
f,éxl) =b2"! +bl2°2 +b12-3. We add f,,(Xl) to
9(X) and subtract the products which appear twice,
ie. g(X1) = 52"1. Then h(X) = 010,27 4+ 27 +
b12"" + b22" + 612_3 and P(h(X) C P(f,,(X))

With Proposition 1 we can define recursively the union
of several sets P(f(X,)) by function addition and sub-
traction. Assume thail; the union of m " 1 subsets is
given by g(X) = r=1 P(f(xr))= P(E':l st(GJ))’
where each s; = %1 and G; are appropriate input sub-
sets. Then with Proposition 1 we get:

U P(F(X0)) = 9(X) + f(Xm) — 9(Xm) (4)

r=1

3 Subset approximations

3.1 General Approximation

The set considerations of the previous sections al-
low us to derive an approximation formula and to es-
timate its error. Formula (4) above provides an itera-
tive generation of approximations for f(X). The basic
idea is that we unite smaller sets to approximate the
P(f(X)). It is not possible to generate all products
in this way. However, we get all significant ones, i.e.
those within the precision Iimit.

Definition 2 Assume input subsets Xy, X,--- C X.
y,(fixe,Xl) = f(X1) and iteratively

k41 f X)1X1 °")Xk+1) = gk(f(x))xlv' ")Xk) +
f(Xi4) = gk(f(x)vxl n E+1

For easier notation we define

Definition 3 Ax(f(X)) := ge(f(X), X1,---, Xs).
Two examples areAg(f}X); =f X1}+f}X2)—f XN
Xz}al}d As(f(X) = f(X1) + f(X2) - f(Xin X)) +
f(3)—f(X1ﬂX3)—f(X2 NX, +fﬁX1 nxX, nX3).
Note that one can map A, by two tables, T3(X;) and
T3(X;) and one addition. More generally, we store in
the first table T3(X,) := A,(f(X)) and in the k-th
table Tk(X,,) = Ak(_f(Xl) — Ap1 f(X)) To evalu-
ate all functions for the k-th table we need only the
input set X and subsets of it, respectively. These

considerations boil down to the fact that the mapping
of A; needs k tables and k — 1 additions. There is, of

1o, XN

12

course, a rounding error, too, due to the limited table
output. However, if the output chosen is long enough,
this error is small, compared to the approximation er-
ror. Each approximation A;(f(X)) corresponds to a
subset of P(f(X)).

Next we consider the approximation error. Up to
now we do not even know which subsets are good
or bad. Good approximations will cover all higher
significant bit products of f(X). The quality of an
approximation can be derived by a simple observa-

tion. P(f(X)) consists only of positive products and
P(Ax(f(X)) C P(f(X)). Hence, we get following
proposition:

Proposition 2 For an approzimation A. there is
max(f(X)— Ax(f(X))) = f([1--- 1) - Ae(f([2---1]))

Proposition 2 derives a sharp bound on the ap-
proximation error. Note that it is restricted to a;-
nonnegative functions. General functions are con-
sidered as the difference between two a;-nonnegative
functions, f(X) = fi(X) - fgéX). There is a positive
error both from f, and f;. The worst case happens
when one is large and the other zero, which concludes
following proposition:

Proposition 3 For a function f(X) = fi(X) -
f’(l}f({k?“fhfaf'(?'b?')’ﬁ"?ﬁfx 1) - A
D) Fa 0] = AeCh(ey R

Example 3

To see how Proposition 2 works, consider the follow-
ing 2-table example. Assume we want to approxi-
mate the function f(X) = —In(1 - X) = 32, X/
with 0 < X < 1/2. Parameter X consists of 23 bits
(X = [0by---bsg]). However, we want to use two
ROM tables each with only 16-bit input.

From Definition 2 we derive the approximation A,-
=In(1 - X)) = —In(1 — X;) ~ In(1 - X3) + In(1 —
X1 N X3)). We decide to choose the mput sub-

sets X; = [0bz---0;70---0] and X; = [.0bj-- -
5100 - - 0by35 - - - ba4). Each X contains 16 variable bits.
Proposition 2 allows us to compute the worst case er-
rror as follows:

—In(1-(.5-2"*))+In(1-(.5—27'")) + In(1—(.5-2"1°

+2717—27M)) _In(1 - (5-2"19)) < .98 x 2~

(Of course, we calculate the logarithm with a better

precision than 2-25) Hence, we can add the output
of table T1(X, —ln(l - Xl) to that of Tz(ng =
—In(1-X3)+In(1-(X1NX3)) and round it to 24 bits
to the right of the radix point. Remember that there is
a positive error, i.e. f(X)—Ai(f(X)) > 0. We exploit
this fact, too, and map to the first table 71(X;) =
—In(1- X;)+.98 x 2-2% instead. Thus we can further
reduce the final error of the rounded value by a factor
of 1/2. Note that we omit in this discussion the so
called Table maker dilemma, which is the impossibility
of doing eract rounding on prerounded values [4].

Two other problems are demonstrated by the above

example. The first is, how did we decide which subsets

ROM size
2 x1x1
218 x 2 x1
(2 x2+2T x1)x1
(24%x4+ B x1)x1
219 x 6 x 1
29 x 20 x 1

ROM’s

DO o 0] =

Do
o

Table 1: The table shows number and size of ROM’s
to map In(1 — X) with an error less than 2-25. [In
the cases of 3 and 5 ROM tables one of the tables
is smaller in size. To compute In(Y) we assume Y =
Jdwg - - wy4]. The transformed parameter is then X =
:0by - - -by4]. The number of output bits | should be
slightly larger than 24. The 20-table case is near the
limit of testing and input size. (It would require 19
additions, too.) The according subsets can be found
in Appendix 2.

to choose. The second is as follows. It is very easy to
compute the worst case error, once the ROM size, the
number of parameter bits and bit subsets have been
determined. However, it seems difficult to gain general
results for a variable number of bits. We deal with
both problems in the next section.

3.2 2-Table Approximation

There is naturally a trade-off among the needed
storage, number of adders and approximation error.
Table 1 shows the relation between the number of sub-
sets (=number of ROM’s) and magnitude of subsets
(=ROM input size) with the approximation error less
than 2-25,

Figure 1 in Appendix 2 depicts an informal descrip-
tion of the algorithm. The subsets according to Ta-
ble 1 can also be found in Appendix 2. In this paper
we assume that the 1-Table approach is impossible be-
cause of the table size. The next fastest approach is
the 2-Table case. It needs only one addition after the
look up phase. Hence we present some general results
for the important 2-Table approach.

Definition 4 Assume a nonoverlapping partition of
the input X into three blocks z, y and z. Namely
z = [by---b], y = [0---0byy---b,] and 2 =
L.O---O bsyr---0n] where X = [by---b, brpy---b
v41---bal. Let X3 = [by---b,] and Xp = [by b,
0---0bsyy---bp). We call the 2-table approzima-
tion using the above X, and X, for indezing 3-block
method.

The blocks z, y and z represent also different sec-
tions of significance of X, ie. £ < 1, y < 2-" and

z < 27%. This significance is used to formulate the
following theorem.

Theorem 4 The approzimation of a function f(X)

= Y 2,a; X' with Ay by the 3-block method has an
approrimation error € bound by:

13

ROM size
(217 + 216) X l
(21T+ 215) X I
(2" +2%) x 1

Function

1/(1 - X)

1d (1 - X)
2X

Table 2: Shown are the ROM-sizes for several elemen-
tary functions mapped by two tables. For all cases we
assume parameters to the 24th bit right of the radix
and map the functions with an approximation error
less than 2725, [should be chosen slightly larger than
24 to keep the rounding error within this range. The
according subsets have been generated by the heuristic
given in Appendix 2.

(a) For 0 < X < 1/2 and 0 < a; < 1 the error is
€< 2%yz

(b) For0< X, 1/4> y and 0 < a; < 1/i! the error
is €< eX(yz+4P)

The proof can be found in Appendix 1. Theorem 4
provides a good rule of thumb for the 3-block method.
It guarantees for many functions that the bit range
with n bits can be divided into three (almost equal)
ranges. Hence, the storage is reduced from 2" to about
227/3_ However, once the function and the subsets are

known, Proposition 2 and 3 provide more accurate
bounds.

4 Applications

4.1 Reciprocal

One of the most obvious applications is reciproca-
tion. Fast reciprocation can be used to do fast divi-
sion. Many algorithms have been proposed to com-
pute reciprocals [3].

Given a number Y = .lw;---wy,, our task is to
compute 1/Y. We transformY to X =1-Y and X =
[0vz---vp] < 1/2. We can compute 1/Y = 1/(1 - X)
with the approach described in Section 3, using 1/(1—
X) = 302, X', A 2-Table approach as discussed in
Section 3.2 is possible with an error smaller than the
bound given in Theorem 4 (a). See also Table 2 for
the 24 bit case. The heuristic of Figure 1 can be used
to generate subsets for a larger number of tables as
well.

4.2 Logarithm

We already presented subset combinations to com-
pute the natural logarithm of some number Y’. For
base 2 logarithms we just multiply by In2 (also in-
creasing the error by this factor).

We can always scale Y’ by shifting to Y = [.1u,
-+ ttp]. To compute 1dY we transform X = 1-Y =

[0.0v3---v,]. Then ld(1~ X)=-1/In2Y2, X'/i.
The outputs of the according tables add up to the log-
arithm. Finally we get 1d (Y’) = 1d (1 — X)+number
of shifts.

Since the function is a;-nonpositive we always get a

negative error. We assume an approach which gener-

ates the worst case error ¢,
€w/2 allows virtually exact

4.3 Exponentiation
Consider an approach to compute 28 = Yoo

(BIn2)'/i!. If B has an integer part, it has to be
removed and added later to the exponent or used
to make appropriate shifts. Assume B is B =
[I.by---b,). The integer part I is removed. To com-

pute 20413 one can find according subsets with the

aﬁlgorithm of Figure 1, and generate the appropriate
M tables.

less than 27" Subtracting
rounding,.

5 Limitations and Open Questions

The proposed method exploits properties of fun-
damental functions, which may not be found in gen-
eral functions. Especially important is the conver-
gence rate. A function which converges quickly has
in the significant bit range relatively small bit prod-
ucts, which are easier to contain in small tables.

The problem of deciding if given input subsets are
optimal under certain restrictions is not trivial and
quite important, too. Rote of TU Graz has pointed
out a connection with Monge matrices to check sub-
sets for optimality. This will be a topic of further
investigation.

Another question concerns the minimum input size
of the tables. For 0 < X = [.b; -- *bp] < 1 there is a
trivial lower limit for the number of input bits r. If
we use only tables with r input bits we cannot con-
tain bit products which consist of more than » bits.
Of all these unmappable bit products the most sig-
nificant is byby---b,4;. It is created by X"+! and
causes an error E = @,,,2-("+2(+1)/2 Ty make
sure that this error is below the significant range it
is required that E < 2~" which we transform to
(r+2)(r+1)/2 > n— lda,4;. For instance the func-
tion 1/(1 — X) would have a lower limit of roughly

V2n for the input bits of the according tables. The
actual minimum may be harder to find. However, an
approach which uses tables with smallest input size
possible does not look promising. A large number of
tables has to be used causing many additions, which
wipe out the speed advantage of look up’s.

6 Conclusion

An approximation algorithm has been presented
which allows us to decompose a function f(X) into a
sum of functions, each with smaller input. The general
idea is to compute functions by several parallel look
up’s in small ROM-tables and additions. Hence the
overall memory space required is much smaller than
that of a direct 1-Table approach. The additional costs
are one or a few additions. We have shown how to
compute bounds for the worst case error for arbitrary
and overlapping input subsets X3 C X. We can derive
the error bound for an arbitrary number of tables and
for arbitrary functions which can be developed into
a converging series. Included is also a fast heuristic
algorithm which generates input subsets. Several ex-
amples have been presented with a precision of 24 bits.
In these examples we gain a memory improvement by

14

a factor of between 64 and 400. For the general n-
bit precision and for general functions (which can be
developed into series) we also show a general memory
improvement from 2" to about 22*/3 for the 2-Table
approach. We consider the presented method useful
for fast hardware implementations of functions like re-
ciprocal, logarithm, exponentiation, division, square
root, trigonometric functions and others.

Acknowledgement

The first author has performed this work at the
Department of Information Science of Kyoto Uni-
versity. He is Monbusho scholarship student. The
authors thank Mr. Masayuki Ito(}), Prof. Fran-
co Preparata(}), Doz. Guenter Rote(q), Ms. Abi-
gail Schweber(x), Mr. Kazuyoshi Takagigt and Prof.
Shuzo Yajima(t) for helpful discussions. yoto Uni-
versity, { Brown University, « TU Graz, » Harvard
University

Appendix 1 .

Proof of Theorem.4 (a) Assume first a; = 1. Then
we have to consider function 1/(1 - X) = Y2 X°*.
From Definition 2 and Proposition 2 we get:

€21/(1-X) - Ay(1/(1- X)) =

l—ziy—-z_l—::-y_l—-::—z l-l-z (5)
We set 2' =1 -z and y = 2’ — y. Then (5) becomes:
L 11 1_ -0 -y -)]

R (D))
Substituting for z/2 and y'? we get

z(2z'y — y? — y2) < 2zy
Yz —z)y —2) y(2 -2y -2)

Because of z < 1/2 we have 2’ > 1/2. See above
requirement that z, y and z represent different bit
ranges and y > 2. Hence also ¥’ > 1/2 and also z’ —
z >y —z > 1/2. So we can further simplify our
estimate to the final bound.

Let us consider now the case for more general a;.
The error is:

€ = f(X) - A(f(X)) = TZpai(X* — (z +y) -
(z+2)+2

Since there is 0 < a; < 1 and because all sum terms
are a;-nonnegative we simplify the estimate to

€< Tido (X' —(z+9) —(z+2) +2°) = 1/(1-X)
— A(1/(1 - X)) < 2%z

Proof of (b). Theerroris ¢ = f(z+y+2)—A2(f(z+
y+2)) and we set a; = 1/il. Then ¢ = e*+V+3 _e=+y _
e*+? 4 e*. We write it as:

e*[(e? —1)(e* - 1)) (6)

The infinite series formula for e¥ = Y02 ' /il. We
approximate these products by the first two terms and
give an upper bound for the rest, yielding

(¢ -1 <y+y?/(1-y)

< 24yz

Similarly for z. Substituting e¥ —1 and e® — 1 by their
upper bounds in equation (6), replacing all higher or-
der terms z by y, reduce y* to y®/4 and replace (1—y)

by 3/4, respectively, yields the upper bound. Then we
get the upper bound

€ < e®(yz + 4y°)
m}

Appendix 2

Figure 1 describes the heuristic we used to find in-
put subsets. In the heuristic we use integers to de-
scribe subsets and partial products, X; and Z. The
union of two such sets is simply bitwise OR. A par-
tial product bob3zb7 corresponds to Z = 1000110. In
principal all possible partial products could be counted
through, but the heuristic is speeded up tremendously
by skipping partial products which are beyond signifi-
cance in step (G3). ROMSIZE is the number of input
bits for the ROM. Each subset has maximum ROM-
size elements. To test the size of a subset we count the
number of 1-bits of the according integer. The vari-
able Bound is the error bound which must finally be
fulfilled by the subsets. To compute error(f, subsets)
the algorithm uses Proposition 2.

The main idea of the heuristic is to generate the
most significant products of the PPA of 3,2, X*. The
found subsets can also be used for functions with sum
coefficients 0 < a; < 1. The heuristic is easy to pro-
gram, very fast and needs (for most cases) much less
memory than programming the full PPA.

GenerateSet (f,X,ROMSIZE,N,Bound)

(S0) significance(Z) :=sum of all non zero bit
positions; (e.g. significance(1100110) =
6+5+2+1)

(G1) Precision := Inputbits (=length of X);
(G2) For k=1To N X; :={};

(G3) For Z = 0 To 2/nputbits _
zlf significance(Z) < Precision { Seek
rst subset X; with hammingSZUXk, 0)
< ROMSIZE; X, .= X UZ
Else Increment Z at lowest nonzero pos-
tion (e.g. 110100 — 111000) }

(G4) If error(f,subsets) > Bound
{ Precision:=Precision+1; Goto (G2)}

Figure 1: Greedy algorithm to generate N input sets,
subsets from X, according to function f(X).

Below are the subsets which have been found by the
heuristic algorithm of Figure 1 according to Table 1.
All of them assume a parameter with 24 bit precision
X = [0by---bz4). and have been generated to guar-
antee an error less than 2725, In the notation below

15

we denote bits included in the subset by 1 and missing
bits by 0.

RB=ROM input bits

1 Table
11111111 11111111 1111111 (23RB)

2 Tables, 1d(Error)= -25.025
11111111 11111111 0000000 (16RB)
11111111 10000000 1111111 (16RB)

3 Tables, l1d(Error)= -25.145

11111111 11111110 0000000 (15RB)
11111111 11100001 1110000 (15RB)
11111110 00000000 0001111 (11RB)

5 Tables 1d(Error)= -25.636
11111111 11111100 0000000 (14RB)
11111111 11111010 0000000 (14RB)
11111111 11110001 1000000 (14RB)
11111111 11000000 0111100 (14RB)
11111100 00000000 0000011 (8RB)

6 Tables 1d(Error)= -25.087

11111111 11111000 0000000 (13RB)
11111111 11110100 0000000 (13RB)
11111111 11001110 0000000 (13RB)
11111111 10110011 0000000 (13RB)
11111111 11000001 1100000 (13RB)
11111111 00000000 0011111 (13RB)

20 Tables 1ld(Error)= -25.159

11111111 11000000 0000000 (10ORB)
11111111 10100000 0000000 (10RB)
11111111 01100000 0000000 (10RB)
11111100 11110000 0000000 (10RB)
11111111 10010000 0000000 (10RB)
11110011 01111000 0000000 (10RB)
11111111 10001000 0000000 (10RB)
11101100 01111100 0000000 (10RB)
111114111 10000100 0000000 (1O0RB)
11111000 01110110 0000000 (10RB)
11111111 10000010 0000000 (10RB)
11111110 00001011 0000000 (10RB)
11111101 11000001 0000000 (10RB)
11111100 00110001 1000000 (10RB)
11111111 10000000 1000000 (10RB)
11111110 01000000 1100000 (10RB)
11111001 10100000 0110000 (10RB)
11111110 01000000 0011000 (10RB)
11111101 10000000 0001100 (10RB)
11111110 00000000 0000111 (10RB)

References

{1] D.M. Mandelbaum, A systematic method for division
with high average bit skipping, IEEE Trans. Comput.
v.39, p.127-130, Jan. (1990)

[2) D.M. Mandelbaum, Some results on a SRT type di-
vision scheme IEEE Trans. Comput. v.42, p.102-106,
Jan. (1993)

(3] D. DasSarma, D.W. Matula, Measuring the Accuracy
of ROM Reciprocal Tables, IEEE Trans. Comput.,
v.43, p.932-940, Aug. (1994)

[4] M. Schulte, E. Swartzlander, Ezact Rounding of Cer-
tain Elementary Functions, Arith 11, Proceedings,
p.138-145 (1993)

[5] E.M. Schwarz, M.J. Flynn, Hardware Starting Ap-
prozimations For The Sgaure Root Operation, Arith
11, Proceedings, p.103-111 (1993)

[6] E.M. Schwars, High Radiz Algorithms For High Order
Arithmetic Operations, Dissertation, Univ. Stanford
California, Dec.(1992)

[7] R. Stefanelli, A suggestion for a high-speed paraliel
binary divider, IEEE Trans. Comput. v.42(1), p.42-
45 Jan. (1972)

16

