Application of Fast Layout Synthesis
Environment to Dividers Evaluation

A. Houelle, H. Mehrez, N. Vaucher, L. Montalvo* and A. Guyot*

MASI CAO-VLSI laboratory, Université Pierre et Marie Curie
4 Place Jussieu, 75252 Paris Cedex 05, France

* Integrated Systems Design Group,

k4

46 Avenue Félix Viallet, 38031 Grenoble Cedex, France.

Abstract

Experience has shown that generator programs are quite
often written by VLSI designers, as they hold the empirical
knowledge better than anyone. However, their ability does
not necessarily include programming and debugging skills:
these designers have to focus on the problem at hand, not
on the tools or the language they use to solve it.
GenOptim has been created to quickly design efficient IEEE
754 floating-point macro-cell generators that do not rely on
particular target technologies. Whereas, according to [1],
the design of fast and efficient adders, multipliers and
shifters is well understood, division and square root remain
a serious design challenge. GenOptim was used to quickly
evaluate new divider architectures

1. Introduction

The aim of this paper is twofold: first to introduce a new
layout synthesis tool developped at Paris Pierre and Marie
Curie University and then to report on how it can be used
to select a "good" division algorithm. As noted in {1],
going to higher order radixes seems a promising research
method to improve the speed of division and square root
extraction. Nevertheless higher order radixes decrease the
circuit regularity and increase the number of wires. Since
the implication of regularity and connectivity on speed and
area are difficult to address analytically and manual electrical
optimisation (fan-out, transistor sizing, ...) is tedious,
exploration through synthesis becomes a necessity.

The paper is organised as follows: first GenOptim
functionalities are described, then it is applied to a sequence
of three dividers developped at Grenoble University, that are
detailed from the algorithms down to the logic equations
and the layout. As a conclusion, speed and area
measurements are compared.

2. GenOptim description

GenOptim is a library of C functions which allows the user
to describe the netlist, the layout, the test vectors and the

1063-6889/95 $4.00 © 1995 IEEE

behavioural views as shown in figure 1. The C language
was chosen for its popularity and portability.

@‘est vecto@ C Netlist) (Layout) (Datasheet) CBeh:vioua
3 v v v v

Asimut Alliance [Text] | VHDL l
Hilo Compass
Quicksim Cadence

Figure 1: GenOptim description.

Generators created with GenOptim can be mapped on any
standard cell library (actually we have tried three kinds of
library: CMOS standard cell, CMOS datapath cell and
GaAs standard cell). As depicted in figure 1, the circuit
generation starts with a virtual description (netlist and
layout of virtual cell) of the circuit. Next, GenOptim maps
the virtual description to the target library and optimises
the circuit. Each generator is able to generate five different
views which are:

The netlist view: It describes hierarchical intercon-
nections among cells.

The layout view: It provides an optimised preplacement
of all real instanciated cells.

These two views contain enough information to route the
final circuit. Each CAD system has its own router and its
proper description of netlist and layout. To resolve the

67

proper description of netlist and layout. To resolve the
problem of compatibility, GenOptim uses multiple drivers
and is able to generate netlist and layout views for several
systems. We have already created drivers for Cadence,
Compass and Alliance [2] systems.

The test vector view: This view must be able to test
100% of the generated circuits with a minimum set of test
vectors. These vectors remain interesting for complex
operators using scan path. Test vectors are highly dependent
on the circuit architecture and profit by the knowledge of
the designer.

The behavioural view: The language of description is
a subset of VHDL [3] which may be synthesised. It allows
correctness verification of the mapping netlist.

The datasheet view: It is a report of all timing and
critical paths of the generated circuit. It is very useful when
designing a generator. The user can easily and quickly see
where the critical paths are and the evolution in
performance/surface following the activated optimisations.
Other information can be found in the datasheet e.g.: Cell
positioning (useful when compression is used), mapping,
activated optimisations, input capacitance, output
resistance.

GenOptim uses two files. The first one is the mapping file
and describes how the virtual cells will be mapped
following the cells existing in the library. The second file
contains the options enabled by the user. These options
concern mainly the optimisations related to time
performance and positioning, target technology, CAD
system output.

3. GenOptim methodology of mapping
and optimisations

The process of transforming a circuit description into a
technology dependent realisation is called technology
mapping. During this step, the size of active elements,
speed of the circuit and power consumption are determined.
- By using virtual definition of cells in netlist and placement
views, complete independence can be easily obtained. As
shown in figure 2, a Multiplexer can be directly mapped, if
it exists in the target library, otherwise, it will be built
with basic cells such as and, or, etc.... GenOptim profits
from the mapping step to optimise the circuit. A direct
replacement of the logic circuit gates by their physical
realisations chosen from the given library does not lead to
satisfactory results. It is usually the case that such a
realisation does not fulfil the timing constraints. In order to
correct the situation, the initial realisation undergoes an
optimisation process which takes into account specifics of
the available technology.

All these strategies take into account the placement of cells
and the consequent area. Thus, GenOptim chooses the best
trade-off between performance optimisation and area
complexity. Furthermore, all these strategies can be applied

68

to different critical paths or simply to specific paths which
are given in the option file.

It may happen that some gates are not strong enough to
drive many outputs. Those situations may produce
excessive delay due to loading factors coming from the
driven gates. In order to solve the problem, the original
gates can be replaced by stronger copies from the existing
cell library (buffered gates). We call this technique multi-
mapping, because a virtual cell is mappable with several
cells of the target library (as shown in figure 2). GenOptim
also uses techniques such as buffer insertion and cell
duplication in order to reduce the propagation time of the
circuit.

By construction, the main task of the GenOptim generator
end-user is to map his own standard cells library on the
virtual generator standard cells library. However, this task
is rather simple, as a direct mapping between the generator
cell model and its "real" standard cell equivalent is
straightforward. It is clear that the resulting mapping netlist
is crucial and its correctness relies on an adequate
comparison with the corresponding behaviour generator
(view). This validation sequence is performed by the end-
user in its own design environment and is called site test.

Virtual Cell
Hierarchy level 1

Virtual Cell
Hierarchy level 0

Mapping file

(02y)lr2y) (22y) Real cells
Figure 2: Mapping library
3.1 Generator validation
In order to validate the divider generators, a specific
simulator has been used. This simulator has been created to
perform IEEE addition, subtraction, multiplication,
division and square root with parametrised operands. The
results of the simulator have been compared with the
results of a SPARC coprocessor (which is IEEE
compatible) in order to verify its correctness (as shown in
Figure 3). The simulator creates test vectors which are used
to validate the behavioural view of the generator. The
netlist and the placement views generated by the divider
generator are routed by the user router. Thus, the core
layout can be validated thanks to a hierarchical Design Rule
Checker (DRC). An extracted netlist of transistors can be
obtained from the resulting layout and validated with the
simulator test pattern. The netlist view is the input of a

functional abstractor which provides a VHDL Data-Flow
behavioural description. The resulting behaviour can be

compared to the initial behavioural view, thanks to a
formal proof analyser.

SPARC FPU
COPROCESSOR

|

VALIDATION

OK

II:LACI:,MEI\EI LNEI;LISH [Bngcﬂ [TEST PAn'ERﬂ

IEEE
SIMULATOR

DIVIDERS
GENERATOR

R ER ABSTRACTOR

CEXTRACTOR>

' . FORMAL T
qzb VALIDATION>(" proop”) VALIDATION
K oK oK oK

Figure 3: Validation process

Batch files are used to test the divider generators for a
significant number of precisions including those defined by
the IEEE floating-point standard.

4. Hardware division implementation

There are mainly two approaches for the hardware
implementation of division Q = A+D. The Newton-
Raphson algorithm uses a series of multiplications and
additions to develop an increasingly accurate approximation
of the desired quotient Q. The digit-recurrence approach
relies on subtraction and multiplication by the radix b and
by the quotient digits qj .
R(j+.1) =b=* (RG) -qj+1*D)
Q(l"‘l) = Q(l) +qj41 * bi-1)
The iteration maintains the property A = D*QU) + bJ«
RO and bJ + RGO - 0 as j — oo. For the same quotient
accuracy, the higher the radix b the less iterations are
required. The multiplication by the radix b is a simple
shift-left, and the multiplication by the quotient digit Qj+1
is either simple or the product is precomputed. If both QU)
and RU) are in redundant notations, then the
addition/subtraction can be made carry-propagation-free
[4,5,6].
In this paper, we compare the synthesis of a radix-2
combinatorial realisation, with q; € {-1,0,1}, one
pseudo-radix-4 with q; € {-3,-2,-1,0,1,2,3} and one radix-4
with q: € {-2,-1,0,1,2}. The last two divisions require half
! .
as many iterations hence half as many slices.

4.1 Notations
In order to avoid ambiguity, the (+,*) symbols are used to
indicate arithmetic addition and multiplication, and the

69

(A,v,®) for logical AND, OR and XOR and to avoid
confusion between sign and subtraction, -1 will be noted T
when needed. A and D are mantissas of IEEE-754 numbers,

so A is written 1+3;2; aj * 21 and D = 1432 dj * 2-1,
aj, dj € {0,1}. So 1/2 < Q < 2. Since -dj = dj -1,

D=-2+%2 G x 271+ 20,

The value of the quotient is the weighted sum of its digits
Q=321 qi * bl

5. Division without operand scaling

Here the value of each quotient Q signed digit q € {-
1,0,1} is the difference of two bits gj = (q} - q3). By
analogy with the "Carry save" notation (where each digit is
the sum of two bits), this notation is called "Borrow save"
[7.8]. The same redundant notation is used to add/subtract
the divisor D to the partial remainder R without carry
propagation. The iteration of the division is RG+D :=2
(RO - q; * D). The test of the sign of RU) truncated to
the 3 most significant digits is sufficient to select gj in
order to ensure that -2D < RG+D «2D.

Let Zjp = Zj=0o1j * 271 . Let us examine the 3 only
possibilities:

If Zip < O then -2D < RO) < 0.

Let RG+1) :=2 % (R® + D). Then -2D < RG+D) <42D.
If Zip > 0 then 0 < RU) < 2D.

Let RG*D :=2 « (RGO -D). Then -2D < RG+D) <42D.
If Tip = 0 then -1 < RO < +1.

Let RG*D:= 24 RO). Then 2D < -2 < RG+*D < 42 <
+2D.

For clarity, let us call r (r},r{’) the input digit of a bit slice
and s (s;,s]) the output digits.

)jn d d
~F = =T 1_+ n_ +
D, r ToTo l o InTy
'R}) 33 vy vy
—F —F = [+ F - F]
head I I
-+ . F - +-'Jq§
I T
$:18 5080 Slsl S. S

n
Figure 4: A slice of an hybrid radix-2 divider

5.1 Equations of the tail cell
The tail cells (fig. 4) preserve the equation:
2ssi’ - 57) =@ -1+ (g A & vajadp).
The assembly of n tail cells forms an hybrid carry
propagation free adder/subtracter. The last digit of S:
sp * 27N is given by qj‘ .

5.2 Equations of the head cell
As it was first proposed in [9], the head (fig. 4) selects the

quotient digit and simultaneously performs the operation on
the three most significant digits. In order to prove that the

slice output S has one digit less than the input R, we prove
that the head needs only three binary outputs.

Let us first find the range of X;,.

1sD<2= 4<R<+4=>-5<%;; <+5 because R
is in BS notation, and = -4 <Xj;, < +4 since I, is an
integer. -4 <Xi, <+4 implies for the head outputs

-3< 2#(s]] -s]}) - sg < +2 and the head is consistent.
The head logic equations follow:

qj+ = r_*zvaz\(r_*l Aava/\razxr_(;vr_ﬁ AI'BAI'_(-)) ;
qj' = r_EVEA(EM_'lvEA:guaw_’] A%Al'é)
s =r5AE vavr(*y\r—a)va/\rfl Aﬁ/\r{)/\r_é;
.= r_'zA(r__*l-vr_'1+;gAr6)vEAEAr_'lA%Ar(') ;

50:=qj ® 1y ® 1 ;

6. Radix-2 division with operand scaling
Instead of computing Q = A+D with 1 S A<2and 1 <D<

K= A

_ Ro
K*D

Y’

2, we will compute Q =

scaling factor.

In 1991, Burgess [10] proposed to reduce the range of D in
the following way:

if(dj=1)thenK=1-1/4else K = 1.

Obviously the range reduction is easy to perform, it does
not change the quotient and leads to 1 <Y < 1.5 .

Now we have Y = 1+ X;0) yj * 2 and

Y= -15+ %2 yis 2420,

where K is the

7%
—— Y2 _+ V3 _ Yo _ 4
I r nr I, 5o Lr
Y lu lu 1&“&"
—F =~ F [F- ¥ [+ - H
head il @l | @ | i
- o + - == +-'Jq§
I Pl Pt X A
slsl 8282 383 sllsll

Figure 5: Radix-2 divider slice with operand scaling

input value X, outputs operation (head and tail)
@-1)+21+ ai-r) si q* F |27 1asg RG+D) .=2 &« RO)- g * Y
- 15 1] 0] 1] -05]RE+D:=2+RD+ 14270, y;s20
-1 0| o] 1 0 | RG*D:= 2R+ 142,11, yj + 27
- 05 1t [o] o] -05]RI#+D:=2+ RO+TL, 0421
0 0o|lo]o 0 | RGD:= 24RO+ 21,0427
0,5 o 1] 1 0 | RG*D:= 24 RD-05+ 20,12 42D
1 t |1} 0} -05]ROFD:=24RD-1,54+3 0,7 s2i420
1,5 o|l1]o0 0 | RG*D:= 24 RD- 1,5+ X0, yia2i+2n
Table I
6.1 Operation table The fact that the two first digits of Y = K * D are constant,

Like Vandemeulebroeke [8], we write zero in two forms:
either 0=3;29 0+ 21 or-0=-0.5+3;% 1% 21 + 2
D, As before, to prove the division we check that the head
needs just one bit to express the output values associated
with all the possible head input values. Note that no range
consideration is necessary.

6.2 Equations of the head
The head cell (fig. 5) has the following logic equations:

qj+:= 0 A Qv@oVv Ig) AT A T] ;
G = QATQA(TI VI VIGATgAT] AT]V () A Tg
vrt)/\r('))/\ri/\ri ;

s] =] ® r] & r; { only digits with weight 2-1} ;

70

namely yg = 1 and y1 = 0, simplifies the head equations,
nevertheless their evaluation is not significantly faster than
without range reduction. No speed improvement can be
expected from this approach, but this approach can be
generalised if the dividend is further reduced to force y2 =0
as well.

7. Pseudo radix-4 division with operand
scaling

In this approach, we need 2+Y and 3*Y to have constant
values (independent of the value of D) for the digits at the
left of the decimal point and one digit at the right of the
decimal point (in bold).

2+Y 10,0 y3y4y5... yn(2<2+«Y<2 + 1/2).
3+Y 11.0 frf3 f4 f5...fp (3 <3+Y <3 + 1/2).

Those conditions leadto 1 < Y<1+1/6.But1<Y<1+
1/8 seems easier to achieve.

To get Y =K * D, the scaling factor K is chosen according
to the following Figure 6:

K=09375 K=0.8125 K =0.6875 K =0.5625
K= K=0.875| K=0.75 K=0.625
LA A X S N S B LY [D
1 9/8 19/16 54 11/8 6/4 13/8 57/32 2
[{K+D
1 9/8

Figure 6: Selection of the scaling factor values
Y =K=*D is obtained in redundant notation by two 4-input
multiplexers and 1 layer of FA, and 3*K*D by two
additional FA layers. Then in parallel the carries for KD
and 3xK*D are propagated, giving Y and 3+Y (Figure 10).
So the computation of 3+Y after Y does not require any
extra time.

In parallel KA is computed, that is the first partial
remainder R(0). No carry has to be propagated since R(®) is
in redundant notation.

On Figure 7, as on ﬁgure 5, the signed binary digits of
RO are noted (r1 , rl) and signed binary digits of (R(l) -

* Y) are noted (s , sl). Note that (R(J) - q -*Y) has 2 mos
significant digits less than R0).

The values of q; € [-3, +3] are coded on 3 bits in the form
sign, absolute value. The sign is fed to s;.

Zin
e o e 20nr 0%
¥ ¥ 3y ¢ 'K Hle lu
-+ -+ - H) + - +
head _tail . tail
T— 1
§1 81 $282 SnSn

Figure 7: A slice of a pseudo radix-4 divider

input outputs operation (head and tail)

Zin | qj@Bbits)] -27Tx 57 [RGHD =44 (RD-q;+Y)
-3.5 3 0.5 |[RG*D:=4+ (RO +3.0+ X, 62)

-3 3 0 |RGD =4+ (RO+3.0+20,f2)
-2.5 2 -0.5 |RG*D :=4 % (RO +2.0 + X1, yj4q *270)

-2 2 0 |RG*D:=4x (RO +204+ 200 yipr=21)
-1.5 1 0.5 |RG*D :=4+ (RO + L0+ XL, y;+21)

-1 1 0 |[RGHD:=4+ (RO+1.0+ X0, yj*27)
-0.5 0 0.5 [RG*D:=4+ (RO +0.0+X1,0x27)

0 0 0 |RGD:=4+ (ROD+00+X,,0x21)

0.5 +0 0 |RG+D:=4x (RO-05+X 0, 1521420)

1 +1 0.5 |RO*D:=4+ (RO-15+22+ 21 F7+21420)
1.5 +1 0 |[ROHD:=4x (RO-15+224+2 0,57 x2142D)
2 +2 0.5 |RGD =4+ (RO .25+ X0 yiTe2isonson)
2.5 +2 0 |RG+D:=4+ (RO-25+20, yipys2i+20420)
3 +3 0.5 |[RG*D:=4+ (RD-354+20, F+2i420)

3.5 +3 0 |RGD:=44+ (RO-35+2.0) F +28420)

Table I Note from the table that qj is the integer part of Zip, and we need both -0 and +0.

7.1 Operations table .
Again we note: Xjp = Yi-_11j * 2! € {-3.5, -3, -2.5,
-2,-15,-1,-05,0,05, 1, 1.5, 2, 2.5, 3, 3.5} .
The table II gives the iteration RU+D := 4 » (RO) - gj * Y)
for all the 15 possible values of X, .
Since in fact every operation is carried out in radix 2, but
two quotient digits are generated at a time, this division is
named pseudo-radix-4.

71

7.2. Equation of the tail f; Yindi 0
Let oj = case gj of (fj, yi+1,¥i, 0, 1, .
Yi,» Yi+1. fi). Since gj is in r'i I
sign,absolute-value ©j is obtained by a v
4-input multiplexer followed by an XOR + -+
Then the tail cell preserves the identity + -
2%si-s] =1 -1; +0; (fig. 8). sv *si‘

Figure 8

7.3 Equation of the head
qj is the truncated mteget part of Ijy, i.e.
g=l 2% @ -t + - 1)+ 271w (] - rp) 1110, 111,
The sign,absolute-value is convenient for selection
through a multiplexer, and the BS for gj conversion. s; is
the dlfference between Z;j, and the bold part of g;* Y, so
s; =1] ® 1| ®sign (g) (fig. 9).

riry 1570 rir{
] 1
y ¥ y y v
- +_ {__ B +_{ -- + . 0
+ + +
y r v
+ - + - + -
'—OQ + 4 + + +0
2
At p 3)
’ig"l' 4 absolute * §: 1
1v2
v value v
Figure 9: Internal organisation of the Head cell
7.4. Divider organisation
D AI
D] MrDM'Dllellﬂ A/2'AI4'A18LAII6’
K Carry-save Carry-save
determine adder adder
K*D
K*D' 2‘K"D¥
Carry-save
adder
X 3*K*D X
carry propagate| | carry propagate .
Y F=3+Y RO 5
y y 8 >
- =
Pseudo-radix4 § S
seudo- g
g —»S §
3.
divider 2 §
o

Figure 10: Organisation of the pseudo radix 4 divider

The different blocks are organised as follows: A, D, Y and
F are in standard notation, K*D, 2+«K+D and 3+K+D as

well as RO and Q are in BS notations. Every number is in
radix-2 [12,13). From the figure 10 we can see the high
structural cost of the range reduction.

8. Radix-4 division

The radix-4 division algorithm is based on the computation
of the recurrent equation [12,14,15,16]:
ROHD =4« (RO) - gj4 + Y).

Y =K*D is the divisor, Q= ZFO gj * 4" J is the quotient,

and RO = ,“=ol f(il) + 471-] is one of the partial

remainders.

At each iteration, the quotient -

digit qj+1 is selected by Tal 2| 11 Of 1] 2

examining the two most |r1

significant digits of the RU) 3 5 i

remainder, according to the |—= = -

rules summarised by figure 11. |1 1 0l

The arithmetic bounds are | 0 | 0|l Oor O T)_l

given by: 1lo 1

-Y <RG+D <Y, K ”

and1<Y<1+1/8. =
Figure 11

:"SJLZ": 9+ =1 Qj+1= 1 &8 2.'

! it 1= h E 0

P .- 1912 it g, 71 19712 ! 4;

83 -2-53 123 0 w1 53 2 813

72

Figure 12: Correspondence between R0 and gj+1

The dividend X, the quotient Q and the partial remainder
R0) are represented using the signed-digit-set {2, T, 0, 1, 2},
similar to the Booth encoding for multiplication. There is
no need to compute 3*Y as for the pseudo radix-4. The
digits rj of the partial remainders_are encoded on 3 bits
according to the equation: control signals
fi=-2*5+0 +1". ut | w2
The gj4+1€ [-2, +2] digits of the
quotient are encoded by 3
control signals: add, ul, and u2;
according to Fig. 13. The radix-
4 digits yj of the divisor Y
merely are pairs of odd-even
bits of the radix-2 repre-
sentation encoded according to
the equation: y; =2 = yi* +yj.

8.1 Equations of the head
The head (Fig. 17) of the jth slice computes the quotient
d1g1t gj4+» encoded by 3 bits: add, ul, and u2, and two bits
s1 and s} of the most significant digit of the remainder.
The logic equations of the head cell follow:

Jj+1

—_————_- 000 g:

_——O O = OO
SN =N == O

0
1
0
1
0
1
0
1
3

Figure 1

S] =Ty ATy ATy

- - + ++

Sl =l'2 Al'2/\l'2;

ald =1'1A(I'1 vrl)VSIA(I'IV 1'1/\1'1)
ul =s1 Al‘lAl'l vsl Al'lAl'l,

u2 = sl A rl A(l'l vrl)v

s A@iar]’y 1] AT arf)v 51 A (@@ 1)

n .‘
(o8
=

..t

ININYALIA)

¥1aayV JIAVS-ATEVD

PANC EL PN ST s

"'mnmmmmnwi WIRTIR NN ww T
[R) cARRY PROPAGATE .mmgu-uumﬂm T mJl-

P, SE L S S SIS o

jluﬂﬂidt--huﬁnﬂuﬂ-' 1 yﬂndpxﬁ;p;m"ﬁ”
..u:u TR i W sl N

e o Men LU AL L LT

PN i

=g
' ..?.Da 1#"?'" e M
po S R SoAnecol ok
e 13RS et
AN A WA
du; » el
W . idioialh b il ¥
Figure 16: 32-bit rad1x-4 (not to scale): 35.2 mm?
Divider 8 bits I 16 bits 32 bits
Prop Time Area mm? Prop Time Area mm? Prop Time Area mm?
radix-2 18 ns 1,8 33 ns 5,7 65 ns 28
rseudo-radix-4 32 ns 3.3 58 ns 10,3 117 ns 39,5
radix-4 30 ns 3,2 56 ns 9,6 110 ns 35,2

Table Il Comparisons of the 3 approaches

73

The algorithm convergence is formally proved in [16).
5 y2

- - v y
nOofa nLi ll 03 ¥ }1'111“0 00
‘t 3 # +4
+- + + - 4o +H___ [y + + - ¥
head H1 N U S
sisyst 558, 32 (5048 n-l
Figure 17: Structure of a slice of the radix-4 d1v1der.
8.2 Equations of the tail

The TAIL cells (Fig. 17) select a multiple of the divisor Y,
according to ul and u2 then XOR it with add and compute
the rest of the sj digits according to equation

425148245 = Qa1 +1], +1]]; +0;

i
9. Layout

Divider generators for 4 to 128 bits operands were written
with GenOptim. Figures 14, 15 and 16 give the layout of
32 bits dividers generated with a standard cell library [2] in
1.0 pm 2-metal CMOS.

10. Conclusion

Going to higher order radixes seems a promising technique
[13,14,15,16] to improve the speed/area trade off for
division. It is straightforward to generalise this paper
approach to any pseudo power-of-two radixes. The head
given in Figure 9 is very regular and can be stretched from
three BS input digits to four, five or more, with a linear
delay. That means that only marginal speed improvement
can be expected.

Radix 8 would require the range reduction to [1, 1+1/16}
and the precomputation of 7*D and 5*D besides 3*D, that
would more than double the overhead of the pseudo-radix-8
divider as compared to the pseudo-radix-4. Real radix 4 (R
and D in radix 4) requires more complex head and tail cells,
but no 3*D, resulting in less overhead and less
connections. The main problem when going to higher-order
radixes is a regularity and connectivity problem: there are
many more functional blocks and many more wires. Those
problems are difficult to address, modelling is unreliable
and exploration through synthesis is a necessity [18]. A
fast and convenient environment like GenOptim becomes a
must.

11. References

[11 M.D. Ercegovac & T. Lang " Division and Square
Root: Digit-Recurrence Algorithms and Implementations
Kluwer Academic Publishers, The Netherlands, 1994

74

[2] A. Greiner & F. Pécheux "ALLIANCE: A complete

Set of CAD Tools for teaching VLSI Design", proc. 3t

Eurochip Workshop, Grenoble, France, Sept., 1992.
"The VHDL Language Reference Manual "

Intermetrics, Inc., version 7.2, Aug. 1985.

[4] A. Avizienis " Signed-digit number representation for
Jfast parallel arithmetic " IRE Transaction on Electronic
Computer vol. EC-10 September 1961.

[5] J.E.Robertson " The correspondence between methods
of digital division and multiplier recoding procedures "
IEEE Transactions on Computers, Vol. C-19 N°8
August 1970 :

[6] K.D. Tocher " Techniques of multiplication and
division for automatic binary computers " Quart. Journ.
Mech. Appl. Math. Vol. 11 N° 3 1958

[71 A. Guyot, Y. Herreros & J.M. Muller " Janus, an on
line multiplier-divider for large numbers " proc. 9th
IEEE Symposium on Computer Arithmetic, Santa
Monica, September 1989

[8] A.Vandemeulebroecke, E. Vanzieleghem, T. Denayer
& P. Jespers "A new carry free division algorithm and
application to a single chip 1024-b RSA processor "
IEEE J. Solid-State Circuits,V.25, 1990

[9] J. William & V.C. Hamacher "A linear-time divider
array " Canadian Elec.Eng.Jour. Vol. 6 n°4 1981

[10] N. Burgess " A fast division algorithm for VLSI "
proc. ICCD 91, Cambridge, October 1991

[11] A. Svoboda "An algorithm for Division " Information
Processing Machine vol. 9, March 1963

[12] L. Montalvo, B. Behnam, T. Vasileva & A. Guyot
" CMOS Implementation of an hybrid radix-4 divider "
proc. ESSCIRC'94, Ulm, Germany, Sept. 1994.

[13] H.R. Srinivas & K.K. Parhi "A fast Radix 4 division
algorithm " proc. ISCAS 94, London, UK, June 1994
[14] J. Fandriano " Algorithm for high speed radix 4
division and radix 4 square root " proc. 8th Symposium

on Computer Arithmetic, Como, Italy, June 1987

(15] S.E. McQuillan, J.V. McCanny & R. Hamill " New
algorithm and VLSI Architecture for SRT Division and
Square Root " proc. 11th Symposium on Computer
Arithmetic, Windsor, Ontario, June 1993

[16] L. Montalvo & A. Guyot "A minimally redundant
radix-4 divider with operands scaling " proc. IX
congresso de Disefio de Circuitos Integrados, DCIS'94,
Gran Canaria, Spain, Nov. 1994

[17] L. Montalvo " Number systems for hight performance
dividers " PhD Thesis, INPG, Grenoble, March, 1995

[18] A. Guyot, L. Montalvo, A. Houelle, H. Mehrez & N.
Vaucher "Comparison of the layout synthesis of radix-2
and pseudo-radix-4 dividers " Proc. VLSI Design'95,
New Delhi, India, January 1995

Bl

’

