Efficient Initial Approximation and Fast Converging Methods
for Division and Square Root

Masayuki Ito}*,

t Department of Information Science
Kyoto University
Kyoto, 606-01 Japan

Abstract

Efficient initial approzimations and fast converging
algorithms are important to achieve the desired pre-
cision faster at lower hardware cost in multiplicative
division and square root. In this paper, a new ini-
tial approzimation method for division, an accelerated
higher order converging division algorithm, and a new
square root algorithm are proposed. They are all suit-
able for implementation on an arithmetic unit where
one multiply-accumulate operation can be ezecuted in
one cycle. In the case of division, the combination of
our initial approzimation method and our converging
algorithm enables a single iteration of the converging
algorithm to produce double-precision quotients. Our
new square root algorithm can form double-precision
square roois faster using smaller look-up tables than
the Newton-Raphson method.

1 Introduction

Division and square root are essential operations
in many scientific and engineering applications. With
the increasing availability of high-speed multiplication
units, multi]})?icative algorithms have become advan-
tageous to the fast calculation of division and square
root. In general, such methods begin with an initial
approximation to the desired value, which is then im-
proved by an iterative algorithm through some mul-
tiplications and additions. Therefore, efficient ini-
tial approximation methods and fast converging algo-
rithms hold the key of achieving the desired precision
faster at lower hardware cost.

We deal with division and square root operations
on the mantissa parts of floating point numbers. We
assume an arithmetic unit on which one multiply-
accumulate operation (A x B) + C can be executed
in one cycle. {The width of the unit should be slightly
more than b bits for b-bit division and square root.)
This operation takes no more time than a multipli-
cation by incorporating addition into the adder tree
of the multiplier. Many functions can be calculated
efficiently on such a multiply-add unit.

We propose three new methods, an initial approxi-
mation method for division, a higher order converging

*Presently, with Hitachi, Ltd., Tokyo, Japan.

1063-6889/95 $4.00 © 1995 IEEE

Naofumi Takagi{ and Shuzo Yajimat

} Department of Information Engineering
Nagoya University
Nagoya, 464-01 Japan

division algorithm accelerated through table look-up,
and a new converging algorithm for square root. They
are all suitable for implementation on a multiply-add
unit.

For the generation of initial approximations, look-
up tables are commonly used. The simplest way is di-
rectly reading an initial approximation to the desired
value through table look-up using some most signif-
icant bits of an operand as an index. Besides this
direct approximation method, a linear approximation
method can be employed. In this case, the table entry
is the two coefficients of the linear function. Evalua-
tion of the initial approximation from the linear func-
tion requires one multiply-accumulate operation, and
the result is roughly twice as many bits of accuracy
as that achieved by the direct approximation method.
In this paper, we propose an efficient approximation
method to form an initial approximation to the re-
ciprocal of a divisor. It requires only one multiply-
accumulate operation and its accuracy is higher than
that achieved by the original linear approximation.

Multiplicative division algorithms, represented by
the Newton-Raphson method and Goldschmidt’s al-
gorithm, use iterations to refine an approximation to
the desired result. The typical rate of convergence
is quadratic, which means the number of correct bits
doubles with each iteration. An extended algorithm
of the Newton-Raphson method has been presented,
where an arbitrary higher order convergence can be
achieved [1]. In this paper, we develop a scheme
to speed up the convergence of the algorithm, and
propose an accelerated higher order converging algo-
rithm. The combination of this converging algorithm
and our initial approximation method ieves very
high-performance. A single iteration of the converg-
ing argorithm is enough for double-precision division.

Many multiplicative square root algorithms have
been presented [2]. Among them, the multiplicative
Newton-Raphson method has been widely used. It
involves three multiplications per iteration. In this
paper, we propose a new algorithm for square root.
It calculates VX in a different manner from previous
converging algorithms. It does not directly refine an
initial approximation to the final result, but refines an
initial approximation to the difference between the ex-

act VX and an approximation to v X. The iterative
formula of our algorithm consists of only one multiply-
accumulate operation, which can be executed in one
cycle on a multiply-add unit. The same speed-up tech-
nique on convergence as we propose for division can
also be adopted.

This paper is organized as follows. In Section 2
and 3, we discuss division and square root operations
respectively. In each section we review the conven-
tional initial approximation methods and converging
algorithms first, and propose our methods. We also
compare these methods from the viewpoint of the re-
quired numbers of cycles on a multiply-add unit and

necessary table sizes. A conclusion is shown in Section
4.

2 Division

We discuss multiplicative division on a multiply-
add unit. We concentrate on forming the reciprocal of
a given divisor Y = [1.y1y2 " - YmYm+1 - - - ¥s), where
1 £Y < 2. We first review the conventional initial
approximation methods and a higher order converg-
ing algorithm [1] in Section 2.1. Then we propose an
efficient initial approximation method in Section 2.2.
We also propose an accelerated higher order converg-
ing algorithm by developing a speed-up technique on
convergence in Section 2.3. In Section 2.4, we compare
our methods to the methods in Section 2.1.

2.1 Conventional multiplicative methods
Initial approximation

Multiplicative division methods begin with an initial
approximation Ry to the reciprocal of the divisor Y.
After Ry is formed, an iterative formula of a converg-
ing algorithm is used to achieve the desired precision.
The simplest way of forming Ry is reading an ap-
roximation to 1/Y directly out of a look-up table
F3][4]. Suppose the table width be ¢ bits. As the
table is addressed with the m most significant bits
of Y, an initial approximation Ry is in the range
0.5 < Ry < 1 and has the form [0.1r172r5---r¢]. To
give the best value for the subinterval [p,p + 2""1),
where p = [1.y1y2--- ym], the look-up table should
contain the value %(}% + ﬂ_ﬁ) The worst error oc-
curs on the first subinterval p = 1. The total error ¢4

considering the truncations error due to storing only
t bits in the table is

1 . .
led|=|Ro-?|<2 1y o-t-2 (1)

and the table is of size 2™ x t bits.

We can select any combination of m and ¢t. When
we set t = m, ¢4 satisfies |eg] < 3 -27™=1. When
t =m+3, |eg] < %-2“"“1. m and ¢ should be selected
so that the required table size becomes smallest as the
approximation satisfies the necessary accuracy. This is
common to the approximation methods in this paper.

Besides this direct approximation, a linear approx-
imation method can be employed. In this case, a lin-
ear function —C; - Y + Cj is adopted to approximate

1/Y and the calculation of it requires one cycle on a
multiply-add unit. The two coefficients Cy and C; are
read out of a look-up table addressed with the m most
significant bits of Y and have the length of ¢ bits for
each.

Let E(Y') be the error function:

E(Y):-—Cx'Y-i-Co—%:. 2)

Differentiating (2) yields E'(Y) = ¢5 — C;. Hence,

E(Y)mas = E(\/-%_l) —Co-2/C. ()

To minimize |E(Y)|maz, the errors of both end-
points of each subinterval, i.e., E(p) and E(p +2~™),
should have the same value and it should be equal to
—E(Y)maz- From these conditions we get

_ 1
Cr = sorEey .
C, = PHTTTHpGizTm) o (4)
0 = p(pF2°™) ’
1
|E(Y)|maz < 3 -27m=3, (5)

The total error of the linear approximation ¢; consid-
ering truncation errors due to storing only ¢ bits of the
two coefficients in the table is

laf < 272m-3 4 o7t (6)

and the table is of size 2™ x t x 2 bits.

For example, setting t = 2m+3 yields || < 272m~2
and the table is of size 2™ x (4m + 6) bits.

A polynomial approximation using a polynomial of
degree n > 2 may be used (55][6] It needs n multiply-
accumulate operations and the look-up table must
keep (n+1) coefficients of the polynomial. It is not effi-
cient as an initial approximation method, because the
error decreases faster by adopting higher order con-
verging algorithms.

Multiplicative division algorithm

The most commonly used multiplicative division al-
gorithm is the Newton-Raphson method shown below
using Rp as an initial approximation to 1/Y.

Ri=Ri_ix(2-Ri_1 x Y), (7)

where R; converges to 1/Y quadratically.
The Newton-Raphson method (7) has been ex-
tended in the following way [1]:

stepl: D;=1—-R;_.1 xY
step2: R; = (14+D;+D?4+D?+---+DF ") xR;_;

Note that this algorithm has a property of k;-th order
convergence.

We rewrite this higher order converging algorithm
for implementation on a multiply-add unit as follows

and we call it Algorithm HOC. (n is the number of
iterations.)

[Algorithm HOC]
fori=1tondo
stepl: D."o =1- R,'-l xY
step2.1: for j =1to k; — 2 do
D;; = Dio x D;j_1 + D; o
step2.2: R; = R;_; x Dig, ,+ Riy

To analyze the error of Algorithm HOC, let ¢; j be the

error of R; when step2.1 is iterated J times;

1
Gj=y -~ (Ri-1 x D;j + Ri_y). (8)
Then,
Go = Y€ 1, . 5(i>1) and (9)
€&j = Dijo-€j_

= €Gieiki,-2-Y -€5-1 (5,7 >1). (10)

(9) and (10) show that Algorithm HOC has a prop-
erty of k;-th order convergence when step?2.1 is iterated
(k; — 2) times. The num%er of required cycles for the
1-th iteration is also k;. If we set k; = 2 for all #’s, the

orithm is the original Newton-Raphson algorithm
(7). In the case k; = 4, it is equivalent to the case
where Newton-Raphson iterative formula (7) is iter-
ated twice. In order to achieve the best accuracy for
some given number of cycles M, k; must be 3 for all
i’s if M is divisible by 3, otherwise the only excep-
tion should be k; = 2 or 4 for only one i. Therefore,
we choose such an optimized combination of k;’s in
Algorithm HOC.

2.2 New initial approximation method
In this section, we propose a new initial approxi-
mation method. We adopt a modified linear function

Ay x(2p+27~m -Y)+ A

instead of —C) -Y + C, for the approximation to 1 /Y.
Recall that p = [L.y;y5 - - y,,]. We find the following
relation between C) and C, in the linear approxima-
tion (4):

Co~Cy x(2p+2™™).
Then A; - (2p+ 2™ —Y) can form almost the same
value as —C; - Y + Cy by set.ting A; = C;. We can
decide Aq to improve the approximation.
We get the value 2p + 2=™ — Y as follows. Let
¢ =Y —p. Then ¢ has the form
¢=[0.00--0 ym41¥ms2Umss-- -

We get the relation below:
2p+27" Y =p4+27™ ¢
= [Lnays - YmIms1Gmsadmes -], (11)
where 1 = 0 and 0 = 1. Thus 2p+2"™ —Y can be

obtained only by inverting less significant bits than y,,
inY.

Now we show the appropriate value of A,. A,
should be an approximation to 1/Y — A4, x (2p+2-™ —
Y), where A,(= C)) = Fﬁlm' We use the follow-
ing transformation:

Ay = %—AIX(2P+2—M—Y)
= 1 _@+2™)+(@-Y)
P+gq p-(p+2-m)
= 1l gsy1_(@+27™)—¢
T p (1+p) p-(p+2-m)
- d_e.2_ y_ 1 ¢
N (p P) {p p-(p+2"")}
= ‘1'(*‘1;32-._"‘).,.0(2—3"'),

Since Ao depends on both p and ¢, the table for A
should be addressed with the m, most significant bits
of p and the m, most significant bits of q. Suppose the
table width for A9 and A, be ¢, and t;, respectively.
Note that [A¢] < 273™~2, Then, the total error of the
modified linear approximation ¢,, is shown below:

Ieml < (3_2—m,—1+2_2-m,+2—to—l).2-2m—2+2-t2—1).
12
In order to make the table size for Ag nearly equal to

that for A;, we set

m m
mp = |5 and my =[].
Adopting to = [§] + 1 and #; = | 3] + 4 results in

lem] < 2725™ (13)

and the total table size is 2™ x (3m + 5) bits. (Here,
we fix the table widths ¢, and ¢, as to m, because they
do not diminish the accuracy of the final result.) This
result shows that the proposed method is more effec-
tive than the linear approximation when m > 4. For
instance, when m = 10, the proposed method gives
about three bits better approximation using smaller
look-up tables than the linear approximation.

The proposed modified linear approximation
method can also be applied in producing an approxi-
mation for multiplicative square root [7].

2.3 Speed-up technique on convergence

By the analysis of Section 2.1, Algorithm HOC
gives the best performance when its convergent rate
18 cubic. In this section we propose an accelerated
HOC algorithm by developing a scheme to speed up
the convergence of Algorithm HOC. Since the itera-
tive formula of step2.1 in Algorithm HOC is D; J=
D;o + D;o x D.‘,j_l. We can calculate Di,2(= D;o+
D,?' o+ D},) in one cycle on a multiply-add unit in the
following way:

Table 1 : Number of correct bits using m bits for initial approximation with M cycles

Method M=1 M=2 [M=3 M=4 M=5 M=6 Table size
DA+HOC m 2m+1 | 3m+2 4m+3 6m+5 9m+8 M x1
LA+HOC 2m+2 — 4m+5 6m+8 Sm+11 12m+17 M x 2
ML+HOC || 25m — 5m 7.5m 10m 15m 2™ x (3m 4 5)

ML+AHOC || — — — [7.5m+/ -2 [10m+I—-2 | 15m+2I—4 | 2™ x 3m +5) + 2 x |
I)‘,’2 = D"O x (1 + Di,o) + bzo’ (14) 24 Comparlsons

where D3, is an approximation to D}, read through
table look-up using some upper digits of D; o as an
index. (1 + D) can be obtained easily by adding
1 to D; o using only small additional hardware. Now

we show the accelerated HOC algorithm, Algorithm
AHOC.

[Algorithm AHOC]

fori=1to n do
stepl: D;o=1-R;_; xY
step2.1: D;) = D; o x (1 + D,‘,o) + bio
step2.2: for j =2to k; — 2 do
D;,; = Dio x Dj i1+ Ds
step2.3: By = R;_y x Dy, , + Ri_;

Here, D?,o is an approximation to D};. Suppose the
table for 15;7:0 is of size 2 x I bits(3 < I < m). When
D o is guaranteed to be 0 < D; o < 27, the s most
significant bits of D; o are all 0’s. We use [bits from
the (s + 1)-th to the (s + I)-th position of D; as an
index for the look-up table. In the case D; o < 0, these
bits should be inverted before addressing the table.

Let 74 < 27! be the error due to using only ! bits of
D; o for addressing the table. Then,

lb?,o -D}l = (Dio+mna)- D},
< 3D},-27"' + 0(2%-2) (15)

Since the truncation error of D?, is less than

’

273-1-1 ¢, | by Algorithm AHOC becomes

1 R
leial = I = Bi x (14 Dio + D}y + D})|
< 273-l42 (16)

The worst error of (16) is 2~'+2 times smaller than
|€i,1)maz by Algorithm HOC. It means AHOC pro-
duces (I — 2) more correct bits using a table of size
[- 2' bits than HOC in forming R;. In the case of
I =~ s, AHOC achieves (k; + 1)-th order convergence
with k; cycles for k; > 3. Recall that HOC gives k;-th
order convergence with k; cycles.

In this section, we compare the proposed modi-
fied linear approximation (ML in short) to the di-
rect approximation (DA in short) and the linear ap-
proximation (LA in short), and the proposed Algo-
rithm AHOC to Algorithm HOC on a multiply-add
unit. We compare four schemes, HOC with DA
(DA+HOC), HOC with LA (LA+HOC), HOC with
ML (ML+HOC) and AHOC with ML (ML+AHOC).
We show how much precision can be obtained with
equal numbers of cycles M. Table 1 shows the result.
The precision can be evaluated by |- log, |R,—1/Y|],
which shows the number of correct bits of R,,. Here,
table width ¢ for each method is assumed to be large
enough not to diminish the accuracy of the final re-
sult. From Table 1, more accuracy can be produced
with less cycles by the proposed method (ML+AHOC
than the conventional method (DA+HOC, LA+HOC
with the look-up tables of nearly same size. It shows
that the proposed method can reduce the number of
cycles and achieves fast division on a multiply-add
unit.

When we calculate double-precision (53-bit) quo-
tients for the IEEE standard, R, must satisfy |Rp —
1/Y| < 2754 because the final multiplication by the
dividend X, where 1 < X < 2, is needed. (We do
not consider extra bits for rounding.) Table 2 shows
how large look-up tables are required with M cycles
for each method. From Table 2, in order to achieve
the precision of 54 bits with M = 3, m must be 18,
13, and 11 for DA+HOC, LA+HOC, and ML+HOC,
respectively. Corresponding required table sizes are
4352K, 448K, and 76K bits, respectively. By the
proposed modified linear approximation, we can re-
duce the required table size into about 1/6 of that
by the linear approximation, which is only 1/9 size
of that by the direct approximation. In the case of
M = 4, ML+AHOC requires 3.3K bits table, while
ML+AHOC requires 7.3K bits. By Algorithm AHOC,
we can save more than half of the table size. These
results show that the necessary iterations of the con-
verging formula is only one to create double-precision
quotients when adopting an efficient initial approxi-
mation method.

Table 2 : The required table size for double-precision reciprocals with M cycles (bits)

Method =3 M=4 M=5 M=6
DA+HOC 28 17 20 % 14 PYx8 x5
=4352K =112K =4.0K =320
LA+HOC 29 %x 28 x 2 2 x19x 2 x13x2 [2¥x10x2
=448K =9.5K =1.6K =320
ML+HOC || 2% x (31 +7) FX (24 +3) T x(19+4) | 2 x (14 +3)
=T76K =7.3K =1.4K =272
MLFAHOC = X 21+5) + ¥ x4 = =
—_ =3.3K — —_
3 Square root The multiplicative Newton-Raphson iterative for-
We discuss multiplicative square root. Among mula for calculating 1/vX is

many converging algorithms for square root [2], the
multiplicative Newton-Raphson method for calculat-
ing 1/vX is widely used. It requires three multi-
plications per iteration. We first review the multi-
plicative Newton-Raphson method in Section 3.1. In
Section 3.2, we propose a new square root algorithm.
The iterative formula of our algorithm consists of one
multiply-accumulate operation and can be executed
in one cycle on a multiply-add unit. It has a prop-
erty of linear convergence. In Section 3.3, we compare
our }tlxl%orithm to the multiplicative Newton-Raphson
method.

3.1 Newton-Raphson method

The multiplicative Newton-Raphson method for
calculating 1/v/X begins with an initial approxima-
tion Gy to the reciprocal of the square root of given
X, where X = [Lz123- - ZmZmy1-+-23). After it-
erating the converging formula n times, VX can be
obtained by the additional multiplication G, x X.

In the case of the direct approximation method for
1/VX, we use an m-bits-in, ¢-bits-out look-up table
for producing Gy. For square root, however, m bits
for the index consist of the (m — 1) most significant
bits of the mantissa X, i.e., [z123---Z,n_;] ,and the
last bit of the exponent part of the original floating

point number. The error 65 = Go — 1/vX is bounded
as

1
6l =|Go— —=| < 27™"1 42742 17
and the table is of size 2™ x ¢ bits.

In the case of the linear approximation method, the
two coeflicients are read out of a look-up table ad-
dressed with the (m — 1) most significant bits of X
together with the last bit of the exponent and have
the length of ¢ bits for each. The error of the linear
approximation §; is bounded as

|6l < 2 .Q7Im=3 4 g-t (18)

and the table is of size 2™ x t x 2. Setting ¢t = 2m + 4,

for example, yields |§] < 2-2™-2 and the table is of
size 2™ x (4m + 8) bits.

Gi= % x(3—X xGL)), (19)

where G; converges to 1/v/X quadratically. Each it-
eration (19) can be executed in three cycles as follows:

1. Qi1 =X xGi
2. Qi2=3-Q;1 %Gy
3. Gi=1-(Qi2 xGi_1)

After the final (n-th) iteration, one additional mul-
tiplication G,, x X is needed, which can be calculated
in step3 of the final iteration by 1-(Qn,2XQy,1) instead
of - (Qn,2 X Gp_1). Since n iterations of the formula
(19) involve 3n multiplications, 3n and (3n + 1) cycles
are required in adopting the direct approximation and
the linear approximation, respectively.

3.2 New square root algorithm
In this section we propose a new converging algo-

rithm for calculating v/X, which can be derived from
the (divisional) Newton-Raphson method calculating

VX by the following iterative formula:
1 X
Pi= (Pt E)- (20)

Here, P, is an initial approximation to VX. This
method requires one division in each iteration. We

divide the first iteration of (20), P, = 3 - (Po + %%)’
into two formulas using K = 2P,.

1 1
Pl = -I2£ — K x S. (22)

If we can calculate Seo = }

~ X from So = § - &,
the exact v/X is obtained by %—K

X Soc and iterations

of the converging formula (20{ are no longer in need.
Then, So, and Sp hold the following relation:

1 1
Seo = 5= =\[I7 — Sol. (23)

Note that S, — 1 = _;;{X and & = 1 -5,

(23) shows one of the two solutions of the following
quadratic equation of Suy:

S2 — Soo + So = 0. (24)
From (24) we can derive an asymptotic equation of S:
S; =S? .+ So, where lim S; = 1 E (25)

i—00 2 K
The new converging algorithm can be summarized as

follows using L = 1/K2. It has a property of linear
(order) convergence and we call it Algorithm LOC.

[Algorithm LOC]
stepl: Sp = %—L x X
step2: fori=1ton do

S; = ,‘2_1 + So
step3: P = % -KxS,

Here, P is the final result obtained by the algo-
rithm. The same algorithm can also be derived from
a continued fraction representation of v/X. (See the
appendix.)

In Algorithm LOC, K is an approximation to 2v/X,
because K = 2P,, where P, is an approximation to
VX. It is read through table look-up addressed with
some upper bits of X. L(=1 éK 2) must have the same
precision as P. It can also be read out of a look-up
table addressed with the same bits of X as for the
table for K.

Unlike initial approximations for the Newton-
Raphson method, we keep both X and K' = V2K
and use K’ instead of K in step3 of Algorithm LOC,
when the exponent part of the original floating point
number is odd. Note that L is irrelevant to the expo-
nent part. Therefore, in Algorithm LOC, we use the
m most significant bits of X for m-bits-in tables.

The iterative formula of Algorithm LOC gstep2) is
a simple multiply-accumulate operation and can be
executed in one cycle on a multiply-add unit. The
operations of step1 and step3 also be done in one cycle
for each. Hence, when step2 is iterated n times, the
number of required cycles is (n + 2) in total.

Let & be the error of K/2 — K - S; from VX when
step2 is iterated i times;

§=VX-(3-KxS). (%)
Then,
§ = %(1 - %\/)?)2 and (27)

3

& = fi—l‘(l_%\/)_()'i'?. (i>1) (28)

(28) shows that LOC has a property of linear con-
vergence. Its coefficient is 1 — 2V X /K. As K is an
approximation to 2V X, a high-precision approxima-
tion fastens the speed of convergence. It decreases the
initial error £y at the same time. Thus, the conver-
gent speed depends on the precision of K. When the
look-up tables are addressed with the m most signifi-
cant bits of X, the table for K should contain the value
K = /w+v/w + 2™ for the subinterval [w, w+2~™),
where w = [l.z;25 ---z,,]. Unless a truncation error
of K is considered, the coefficient (1—2vX /K) is less
than 2=™-2, which shows that the number of correct
bits is increased by (m + 2) bits with each iteration.

Now, let the table width for K be t. Then, (1 —

2V X/ K) satisfies the following inequality:

1
1 2TMl gy L9t (29)

w 2/w
From (27),(28) and (29), the total error £, = P — VX
is

2
II—E\/YI<

1, _m- —t-
lenl < 5772 42772, (30)

We show that the convergent speed of the algorithm
can be accelerated through another table look-up by
the same scheme as we have proposed for division.
The iterative formula of step2 in Algorithm LOC is
S; = S, + So. We can approximate Sy(= So + SZ +
253 + S§) in one cycle on a multiply-add unit in the
following way:

Sy = So x (14 So) + 253, (31)

where S3 is an approximation to S3 read through ta-
ble look-up using some upper digits of Sy as an index.
(14 Sp) can be obtained easily by adding 1 to S; us-
ing only small additional hardware. Now we show the
accelerated LOC algorithm, Algorithm ALOC.

[Algorithm ALOC]
stepl: Sp = %—LXX
step2.1: S; = Sp x (1+ Sp) + 253
step2.2: fori =2 ton do
Si=SE,+So
stepd: P=X _K xS,
Suppose the table for S3 is of size 2/ x I bits (4 < I <
m). Note that this table is identical to the table for

speed up for Algorithm AHOC. Then, §; by Algorithm
ALOC becomes

K .
1] = |'2—-K'(So+53+253)—\/)_(|
< 273143 (32)
This value is 2-'+3 times smaller than |£;}mas in

Algorithm LOC. It means that ALOC produces (I-3)
more correct bits than LOC using - 2/ bits table.

Table 3: Number of correct bits using m bits for initial approximation with M cycles

Method | M=1T M= M=J M=4 M=o M=0 M=7 ‘Table si1ze
DAYNR [— — | 2m+1 — dm+2 — T X1
+ — — — dm+4 — Sm+7 27 X 2
- LOC — +4 | 3m+6 dm+8 | Sm+10 | 6m+12 | "m+14 2™ x (t + 2b)
ALOC — — 1 3m+143 | 4m+145 | 5Sm+147 | 6m+I49 | Tm+I4+11 [2™ x (£ +20) + 2T x |

Table 4: The required table size for double-precision square roots with M cycles (bits)

Method | M=3 M=4 M=o M=06
DA+NR 2% x 27 — 25 x 15
=1728M — —_ =120K
LA+NR — 2P x 28 x 2 — —
— =448K — —
LOC 2T % (17 + 1086) 27 x (12 + 106) 2% x (10 + 106) 27x (9+ 106
=7.9M =472K =58K =14.4K
ALOC Il 2 x (15 + 1os}(+2II x11 | 2" x (13+1068) +2° x 8 | 25 x (11 + 106) + 2° x 6 —
=990 =121 =29.6 —

3.3 Comparisons

In this section, we compare our converging al-
gorithms (LOC and ALO(? to the multiplicative
Newton-Raphson method (NR in short) with the di-
rect approximation P§DA+ R) and with the linear ap-
proximation (LA+NR) with equal numbers of cycles
M on a multiply-add unit.

Table 3 shows the result. The precision or the
number of correct bits of the result can be evaluated
by [—log;|Gn - X — VX|| for the NR method and
|~logz }Sn — VX|| for our method. Here also, the
table width ¢ for each method is assumed to be large
enough not to diminish the accuracy of the final result.
The result indicates that the proposed algorithm can
form square roots faster than the Newton-Raphson
method with look-up tables of nearly same size.

When we calculate double-precision (53-bit) square

roots for the IEEE standard, |G, - X — vX| < 2-%3

or |S, — vVX| < 2758 must be satisfied. Table 4 shows
how large look-up tables are required with M cycles
for each method. From Table 4, if we set M = 8,
m must be 13 for DA+NR, while m = 7 for LOC.
Required table sizes are 120K bits for DA+NR and
14.4K bits for LOC. This shows that LOC can form
double-precision square roots with about 1/8 the table
size required for the NR method. In this case, ALOC
is no better than LOC, because the same m(= 7) is
required.

Table 4 also shows that the necessary iterations of
the multiplicative Newton-Raphson method is at least
2, otherwise the required table size becomes impracti-
cally large. This means the NR method needs at least
6 cycles in forming double precision square roots. By

Algorithm ALOC, however, M = 5 can be achieved
us{ﬁg 29.6K bits table and M = 4 using 121K bits
table.

The proposed linear converging algorithm can cre-
ate double-precision square roots faster than the
Newton-Raphson method. In contrast to the compli-
cated quadratic converging iterative formula involving
three multiplications, our linear converging iterative
formula is only one multiply-accumulate operation. It
contributes to high-speed square root operations.

4 Conclusion

We have proposed multiplicative division and
square root methods suitable for implementation on a
multiply-add unit. An efficient initial approximation
method and fast converging algorithms are important
to achieve the desired precision with small numbers of
cycles and with small look-up tables.

In the case of division, we have proposed an effi-
cient initial approximation method and an accelerated
higher order converging algorithm. The combination
of them enables a single iteration of the converging
algorithm to produce double-precision quotients.

For the calculation of square root, we have proposed
a new converging algorithm. The iterative formula of
our algorithm consists of one multiply-accumulate op-
eration and can be executed in one cycle on a multiply-
add unit. When we calculate double-precision square
roots with 6 cycles, our method requires only 1/8 the
size of look-up tables compared to the multiplicative
Newton-Raphson method. Furthermore, even with 4
cycles our method requires nearly same size of look-up
tables as the Newton-Raphson method with 6 cycles.

Acknowledgments

The authors would like to thank the members of
Professor Yajima’s Laboratory at Kyoto University for
their valuable comments on this work.

References

(1] D. Ferrari, A division method using a parallel
multiplier, IEEE Trans. on Computers EC-16
(Apr.1967),224-226

[2] C. V. Ramamoorthy, James R. Goodman and
K.H.Kim, Some properties of iterative square-
rooting methods using high-speed multiplication,
IEEE Trans. on Computers C-21 (Aug. 1972),
837-847

[3] D. L. Fowler and J. E. Smith, An accurate high
speed implementation of division by reciprocal
approximation, Proc. of 9th Symp. on Computer
Arithmetic (Sep.1989), 60-67

[4] D. DasSarma and D. W. Matula, Measuring the
accuracy of ROM reciprocal tables, IEEE Trans.
on Computers, Vol.43, No.8(Aug.1994),932-940

[5] N. Anderson, Minimum relative error approxima-

tions for 1/t, Numerische Mathematic 54 (1988),
117-124

[6] M. Schlute and E. Swartzlander, Exact round-
ing of certain elementary functions, Proc. of 11th

Symp. on Computer Arithmetic (Jun. 1993), 138
145

[7] M. Ito, N. Takagi, and S. Yajima, Efficient Initial
Approximation Methods for Division and Square
Using a Multiply-Add Unit, IPSJ SIG Notes 95-
HPC-55-10 (Mar. 1995), 73-80

Appendix
Here we derive Algorithm LOC from the following
continued fraction representation of v X:

VX = U+ (VX -U,)

X-U;
= U, + —_—
" VX +U,
X -U?
= U+ y
" (Un+Unot) + (VX = Unoy)
X -U?
= Un + nX—U’
(Un+Un-1) + 7X+(;-:x
— U2
= U, + X "X—U’ml
(Un + Un—l) + (U‘_1+U-_,)+(\/7(‘TU-.-2)

= .. (33)

where U;’s (0 < i < n) are arbitrary real numbers.
Substituting (VX —U; = V;) for all s into (33) yields

__x-w
T Ui+ Ui+ Viey

(34)

In order to set all the denominators in (34) equal to a
certain constant K irrelevant to ¢, U’s and V’s should
have the following relation:

Ui = K-Ui-1-V;; and
X -U?
Vi = ——, 35
= (35)
where lim (U; + Vi) = VX.
$— 00
An asymptotic equation of U can be obtained by elim-
inating V in (35).
X-UZ,
K b
X -U}
K

Ui=K-Ui_, -

)=VvX. (36)

where lim (U; +
$—00
Substituting S; = %& — into (36) yields

1 X K
.= 2 fullell im(=-K-S;) = VX.
S; _.S"_1+(4 Kz)’ whereihm(3 K-S;) X

(37)
Setting Sp = 1/4 — X/K? completes the derivation of
the proposed algorithm.

