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ABSTRACT

High-speed coprocessors for computing nonlinear
Junctions are important for advanced scientific
computing as well as real-time image processing. In
this paper we develop an efficient interpolative
approach to such coprocessors. Performed on suitable
subintervals of the range of interest, our interpolation
which uses third degree polynomial is adequate for
many elementary functions of interest with double
precision mantissas. Our method requires only one
major multiplication, two minor multiplications and a
Jfew additions. The minor multiplications are for the
second and third degree terms, and their significant bits
are much fewer than those of the first degree term. This
leads to a very fast and efficient VLSI architecture for
such coprocessors. It appears that polynomial based
interpolation can yield considerable benefits over
previously used approaches, when execution time and
silicon area are considered. Further, it is possible to
combine the computation of multiple functions on a
single chip, with most of the resources on the chip
shared for several functions.

L. INTRODUCTION

With the recent advances in VLSI technology, special
purpose VLSI chip designs have become attractive and
cost-effective. In this paper we propose a reduced cycle
hardware to yield fast and accurate results for
nonlinear functions with double precision mantissas.
The importance of high-speed nonlinear function

generation for scientific computing as well as for signal
and image processing is being recognized by the
Computer Science community, as evidenced by the
several papers presented on the topic at recent
conferences [1]-[2] as well as in journals [3]-[4]. Our
proposed algorithm is somewhat function independent so
that the familiar elementary nonlinear functions--
reciprocal, square-root, trigonometric/inverse
trigonometric and logarithmic as well as application-
specific functions (Bessel, sigmoid etc.) can be readily
implemented.  Such high speed coprocessors for
evaluating nonlinear functions are needed for high
performance scientific computations as well as for real
time applications -- image processing, neural networks,
and on-line solution of partial differential equations [5]-
[6]. Currently used hardware realizations are based on
simple iterative equations such as Newton Raphson,
Cordic, etc. As pointed out by Koren and Zinaty (7],
their major drawback is linear convergence. This slows
down the calculation significantly, especially for high-
precision operands. On the other hand, fast algorithms
[8] that generate more bits per iteration, require huge
ROMS and multipliers. Some approaches even require
a divider; Koren's rational approximation technique is
one such example.

The basis of our method arises from three factors:
(1) The range of interest is divided into a suitable number

of intervals, say 2™ subintervals (2™ + 2 ™! )in case of
square-root). Then the m Most Significant Bits (m+1 in
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case of square-root) are used as an index to a look-up
table, wherein the coefficients of the interpolation
polynomial are stored.

(2) The computation is performed on the basis of operand
significance, wherein the second and third degree terms
of the interpolation polynomial are computed using only
the significant bits -- thereby minimizing large
multiplications.

(3) The interpolation is carried out using ‘Matched
Interpolation Polynomials (MIP)' discussed in the
paper.

In order to generate high accuracy results in a few clock
cycles, low degree polynomials are used. Admittedly,
several other possibilities exist, that include Least Mean-
Squares fitting and Chebyshev approximation [9]. Our
study, however, shows the gains from such
enhancements are suspect when actual arithmetic
(involving finite word length) is performed. In this paper,
therefore, we concentrate on the MIP approach. It uses
a new family of polynomials discussed in the paper.
Indeed, we show that the third degree MIP polynomials
is adequate for a large class of elementary and
trigonometric/inverse trigonometric functions with double
precision mantissa. ~ Significance based computation, as
explained in the paper, can yield considerable benefits
over previously used approaches, when execution time
and silicon area are considered.  As shown in [7], Koren
and Zinaty's method requires 7 additions, 10
multiplications and, as mentioned earlier, a division.
Unlike our method, their internal operands require much
larger number of bits, thereby making a single addition or
multiplication slower than ours. We estimate that the
throughput using our architecture will be greater by a
Jactor of 10 compared to Koren and Zinaty's. Wong's
fast division algorithm [8] uses an accurate estimate of
the quotient. @He has suggested Taylor series
approximation to compute quotients, which requires
seven cycles to obtain the same accuracy that can be
obtained in four cycles by our method. Further, his
algorithm is specific to division only.

The organization of the paper is as follows. Section II
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presents the MIP interpolation formulas. Section ITI
describes significance based computation and the
corresponding hardware models. In section IV we
describe the double precision (53 bit mantissa) case in
detail. A study of the precision for the 53 bit mantissa is
given in Section V. Comparison of MIP algorithm with
two other algorithms is presented in Section VI.
Concluding remarks are given in Section VII.

II. ANEW FAMILY OF INTERPOLATION
POLYNOMIALS

The arithmetic in this paper is based on second and third
order polynomials belonging to a new family (MIP)
defined in this section. To begin the discussion, consider
that the operand is N bits wide, with the minimum and
maximum value spanning a semi-closed real interval
Limein = [a,b). In the floating point case, N represents the
word-length of the mantissa. The input word ‘A’ is
segmented into two fields: the upper field consisting of
M bits, and a lower field of L bits, such that M+L=N.
The upper field invokes a 2™ point grid on the interval
Lioamein» Where m < M; call the points on this grid as X;,
i=0,...,2". It is then reasonable to attempt to use
polynomial interpolation (of appropriate degree) with the
objective of estimating the value of a desired function
f{A). Indeed, suppose that a given N-bit operand ‘A’ lies
in the i-th interpolation interval I, = [X, X,,,). Then, our
objective is to use a polynomial of the form

P(A4) - d, ,+d,,y s...ed, .y r )]
which approximates f{A) over I, = [X;, X,,,) according to
some specified criterion. Here, y denotes the fractional
location of A in the i-th interpolation interval I, i.e.,
(4-X)) (4-X)
XX A

@

Note that A = X,,, - X,, the uniform grid interval. After
investigating the least-mean-squares (LMS) and the
Chebyshev criteria, versus the simpler ‘Matched
Interpolation Polynomials', we found that the latter is
quite accurate. Hence we concentrate here on MIP due
to its simplicity and intuitive appeal.



MIP Criterion

An interpolation polynomial P, (A) of degree r satisfies
the MIP criterion if

(@) Py(X) =1(X),
(®) P (X)) = (X)), and
(©) PO (X) =19(X), forj=1,..r-1.

where the superscript j denotes the j-th derivate.

Note that the polynomial is parameterized by the index i
of the interpolation interval. Further, note that the MIP
criterion imposes matching of the functional values at
both end points of the interpolation interval, and
matching of the derivatives up to degree r-1 at the left
end point.

MIP Polynomials

The interpolation polynomial of degree r which satisfies
the MIP criterion is unique and is given by

PA) = fivy (S - 1)

r o 3)
- yc E A] yl'l cj
J-2

where f; denotes the value of the function f at A=X,
(similarly for £,,), and A denotes the length of the
interpolation interval; recall from (2) that y denotes the
fractional location of A in the i-th interpolation interval L,
and y, = 1-y is its complement. Further, the coefficients
Cj, j=2,...1 are defined as

L UDlg, - r 90y
! (J-1) A

)

For brevity, the proof is omitted here.

Constructive Property of MIP Polynomials
The r-th degree MIP polynomial can be built using the (r-
1)-th degree polynomial by adding a new term as follows:

109

P(A) =P, (&) -y A"y e )

This property is important for two reasons. First, in
simulation studies the effect of going from the (r-1)-th to
the r-th degree is clearly given by the additive term on the
right hand side of (5). Similarly, a VLSI architecture
designed for the (r-1)-th degree interpolation can be
gracefully adapted for the r-th degree interpolation.
Secondly, since the additive correction term is of lower
significance, its computation can be tailored for
appropriate efficiency and accuracy.

Low Degree MIP Polynomials

PyA) = fi+ y g1y y A (10 0) ©)

@M 2
PA) = f,+ Uiyt vy A fPFP)

@
Ji 2
chyzAz —— i
O]

are the low degree interpolation polynomials used in this
paper, where the approximations to the derivatives
(signified by a hat) are given by

o
. ) . i - 1)
pACML’ @ Y

A A

®

III. SIGNIFICANCE BASED COMPUTATION

A model of our nonlinear coprocessor is shown in Fig. 1.
The Range Reduction Unit performs field separation
(sign, exponent, and mantissa) and reduction of the input
mantissa to a predetermined interval I, ... Concurrently,
the exponent is manipulated so that the final result
computation is facilitated. For example, to perform the
reciprocal operation, the normalized mantissa range is
selected as [0.5, 1). The second, and in fact the major
task is the computation of the function f(A) where A
denotes the range reduced mantissa; we will denote the



result asR. The third, and the last step is to denormalize
the result R to yield R,,,. The second of the above tasks

x>1 B

prmemevest

. 1 Reduced age NONLINEAR Bfocesslm unit
Fo IEEE SPF or DPF input

FTFU: DPF to fixed-point conversion unit,
MCU: Mantissa computing unit

(Note: The shaded stripe indicates the block
needs function select bits)

is, as might be expected, the most challenging and is
indeed the focus of the paper. As the block diagram
indicates, all steps within this task are implemented in
direct hardware with simple control signal derived from
the clock (hence a microcontroller is not needed).
Further, the various terms in the interpolation arithmetic
are computed in accordance with their significance.
Specifically, the higher order terms are computed using
smaller word lengths (without loss of accuracy --
practically speaking). The algorithmic explanation is
given below.
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Third Order Interpolation Algorithm

It is useful to rewrite equation (7) as
Py(4) = f+yg, sy yh+y vy, ©
where
gi - (f[,l'.f’): h[ = A (.f[(l)'.ffl))s
@ 10)
Ji o
q; " Az( ‘T M ‘(2)]

The bit vector b; = [f; g; b; q] is stored in the RAM as the
i-th word; here an underbar denotes the bit vector of the
associated quantity. The width of the RAM clearly equals
the sum of the field widths chosen for f, g, h, and g, The
address i is generated from the "M’ MSBs of the input
vector A, 1.e., the address bits are
X = [Xus Xz - - %ol
= [y s - - 8yl

Note that the remaining bits of the input vector A can be
thought of as a vector

Y =D Y2
= [Bnper Bypz- - -+ 8]

Clearly, A=[{X Y] A little thought will indicate that
the value of the bit vector Y with a binary point to the left
is the quantity y used in equations (3) through (9). The
upper K bits of Y are also used for a table lookup.
Specifically, the bits of [y, , ....ypela Y= [¥g,....
% ] are used as an address to a ROM. Each entry of the
ROM has two fields. The first contains D, = YY, where
Y.=1-Y, the other contains D, = Y°Y,.

Application

As an application of the third order interpolation, we
consider a mantissa length of 53 bits (IEEE double
precision format is 1.m, where m is 52 bits wide) and
discuss the implementation of one function: the
reciprocal. Through the theoretical considerations and



simulations we find that the design parameters shown in
Table 1 are satisfactory to ensure accuracy up to the ulp.
It is useful to remark that the size of the RAM required is
approximately 2 Mbits. The use of a RAM permits use of
the same memory space for use with any one of several
functions. A ROM could of course be used also for the
case where specific nonlinear function is required, or a
partitioned ROM for the multi-function case,

Table 1 53 Bit Mantissa

IV. DETAILS OF 53 BIT MANTISSA
ALGORITHM

We discuss in detail the 4-clock-cycle computation of
nonlinear functions for double precision mantissa (IEEE
floating point standard P754). Although we have
successfully investigated the applicability of the the third
degree MIP interpolation polynomial of equation (9) to
the reciprocal, square-root, sine, and arctangent functions
attention is focused here primarily on the first one (REC).

Recall from Section II that M MSBs of the input form the
index i to the interpolation interval I = [X,, X,,,), while
the remaining bits (denoted by y) determine the relative
position of the input value within L. For computing the
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linear term all bits of y are used, but in order to minimize
the computations only the significant bits of y (denoted
byy) are used in the computation of second and third

degree terms. Now, a trade off exists between the
number of bits used for X, and those used in y in the
pursuit of desired accuracy. If 14 bits are used for X,
then our simulations indicate that 24 MSBs of y must be
used for y. Although a practical sized RAM is achieved,
the depth of the ROM becomes 2% (since the function
y(1-y) is a symmetric function). Surprisingly, by a
recursive __application _of _significance  based
interpolation, the depth of the ROM can be reduced to
2. Specifically, the quantity yy, can be computed using
a second order interpolation as opposed to a direct table
lookup; this results in a 1024 word ROM instead of a 2%
word ROM.

Note, that the quantity yy, needs to be computed for only
half the range of y since y, is defined to be (1-}). For the
other half range of y, the same result is obtained by
complementing the bits of i Furthermore, our simulation
results indicates that only 12 MSBs of y are needed for
the third degree term in (11) to guarantee the accuracy.
Details on the second degree interpolation for 24 bit
arguments can be found in [11].

The computation of the first degree term of (11), y*g,
involves a 40 x 44 bit multiplication, and thus defines the
duration ofthe clock cycle. This clock cycle duration is
considerably greater than the time for the computation of
yy. which uses only 16 bit operands for its multiplier.
Therefore, these computations can be scheduled in
parallel with the principal computations. The sizes of the
hardware blocks used in these secondary computations
are quite small compared to those of the main
computations. Fig. 2 shows the flow diagram for
computations for 53 bit mantissa.

Fig. 3 shows the main building blocks of the 53 bit
architecture such as the input/output registers, the RAM,
multipliers, the accumulators and various multiplexers
that control the data flow (the oval representing second
order interpolation contains the ROM). The input word
is divided into X, (14 msb's) and y (38 Isb's) of which the



X; bits are used to address the RAM which consists of
four partitions. Values of £, g, A, and g, are stored in
these partitions respectively. In the first cycle, the values
off, g, b; and g, are read from the RAM. While the first
degree correction term ie., y*g, is being computed by the
40 x 44 bit mmltiplier, the product y”*g, is generated by
a 12 x 18 multiplier and is added to f, The sum
fi+957%q, is denoted by S1. Simultaneously, bits of ) are
used to generate the product yy,, using the II order
interpolation (as shown in the previous section). In the

‘Input r4
Range
Reduction
A
X Y
=3 -
RAM. LOOKUP .
ti.9.h.q; '3
—hgh | oM
| Lookup
?
= high
Il ORDER
INTERPQLATION
yy,
y
i v
fl+y°|+99chl+§23cql Bl AR
A
Bix) Yy,
X
y 3
Conversion
> % DP
Format
‘Output

Fig. 2 Flow diagram for computation for 53 bit mantissa

second cycle, the first degree correction term is available
and is added to S/ to yield a new sum S2. Also, A, is
multiplied by yy, using a 26x36 bit multiplier. The
product 33, *h, i.e., the II degree correction term is added
to S2 to yield the final result. Details of the hardware
timing are given in Table 2.
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V. ARITHMETIC ERROR STUDY

To demonstrate the accuracy of our proposed scheme, we
present a computer simulation study for the reciprocal
function. A program was written in MACSYMA which
permits 128 decimal digit precision. The following
parameters were used:

Input word length = 52bits
Hidden '1' bit = 1bit
Width of f; = 60 bits
Width of g, = 43 bits
Width of b, = 31 bits
Width of g, = 17bits
Width of ACC_1 = 60 bits
Width of ACC_2 = 60 bits
Size of Multiplier 1 = 40x44
Size of Multiplier 2 = 26x36
Size of Multiplier 3 = 12x18

For 50,000 random vectors (inputs), the fractional ulp
rate was found to be 0.095. No 2*ulp or larger errors
occurred.

Table 2

Unit Cyclel Cycle2 Cycle3 Cycle4

Imput X, X, X, X

Ml gy, - - -

M2 g, - - -

ACC_1 fi+q*y, fi+q*y, - -

+8,*Y,
Mult 3 -- - h*y, -
ACC2 -- - fi+q,*y,--
+g,*y, +h, *yyc

Out. - - - Resultl

VI. COMPARISON WITH OTHER
ALGORITHMS

In this section, we compare the MIP algorithm with two



other algorithms. The first of these is due to Wong and
Goto. Described in [13], their method uses the Taylor
series to approximate the desired function. An N bit

wide operand X is decomposed as X = X, + AX

where

AX - ¥ A X, (13

Here, A, denotes the weight of X;, which is in the range
[0, 1). So f(X) = f{X,+A X) can be approximated using

X | NPUT
88, 884 ‘f 52
(FUN_SEL) VX (14msB's) y(38LSB's) |
) TN 24 i
Order
RAM a8 4

NNNNNNNY ;
N 4okda )

\MULTIPLIER:

MULTPLIER

f(A)
Fig. 3 Architecture for "53 Bit™ nonlinear MCU

the Taylor series:

f(Xg+AX) = Cy+ Cy AX

4
+ Y cax)! 9
1-2

where C, =10 (X, ) /il

The cleverness of Wong and Goto consists primarily in
keeping only the significant terms in the evaluation of
(AX):, specifically terms multiplied by A*, where k is
suitably chosen, are discarded to simplify computation.

A simulation study of this method was conducted for the
reciprocal function under conditions identical to those for
our MIP algorithm. Specifically, the number of bits for
table lookup are taken to be 14 for both MIP and
Wong/Goto algorithms. Thus, the table size was taken to
be 16384 words for both approaches, and the
interpolation itervals are identical, namely 2%, Also,
both algorithms are restricted to third order polynomials.
The width of the operand is 53 bits (whose MSB is set to
1 so the range of the input is [1, 2) ). Written in
MACSYMA language, the simulation program yields the
following results:

Wong/Goto (Reciprocal)
Probability of 1ulp errors: 0.156

Probability of 2 or more ulp errors: 0.0

With an ulp error probability of 0.156, the Wong/Goto
approach clearly yields inferior results.

The second algorithm used for comparison is the third
order Chebyshev polynomial approximation. We
simulated this method for the reciprocal function under
the same conditions as those used for the MIP and
Wong/Goto algorithms. The width of operand is again 53
bits. The simulation results are given below.

Chebyshev (Reciprocal
Probability of one ulp errors: 0.109
Probability of 2 or more ulp errors: 0.0



Thus the probability of single ulp errors is 0.109, while
two or more ulp errors do not occur.

We therefore conclude that the MIP approach (proposed
in this paper) results in slightly better performance than
even the Chebyshev polynomial approach. The reasons
for this are so far not clearly understood. However, we
conjecture that while Chebyshev polynomials are optimal
in theory, their performance degrades quickly when 'finite
word-length coefficients and arithmetic' are used, as one
must for a VLSI architecture.

VIL. CONCLUSIONS

We have developed an efficient basis for the computation
of nonlinear functions in a coprocessor. It was shown
that accurate results can be obtained in four clock cycles
for mantissa widths of up to 53 bits (IEEE double
precision format). It appears that polynomial based
interpolation can yield considerable benefits over
previously used approaches, when execution time and
silicon area are considered. Also, it is possible to
combine the computation of multiple functions on a
single chip, with most of the resources on the chip shared
for several functions. Current effort involves replacing
the 40x44 multiplier with a 20x44 multiplier without
increasing the latency of the overall hardware.

REFERENCES

(1] Proc. 11-th Symposium on Computer Arithmetic,
pp. 80-155, IEEE Computer Society Press, June
1993.

M. Taiji, J. Makino, E. Kokubo, T. Ebisuzaki, and
D. Sugimoto, "HARP Chip: A 600 Mflops
application-specific LSI for astrophysical N-body
simulations,” Proc. Hawaii Intntl. Conf. on System
Sciences, pp. 302-311, Jan. 1994.

E. P. O'Grady, and B-K Young, "A hardware
oriented algorithm for floating point function
generation," IEEE Trans. on Computers, Vol. 40,
pp. 237-241, Feb. 1991.

[2]

B3]

114

[4]

(3]

[6]

7]

(8]

(]

[10]

[11]

[12]

[13]

M. D. Ercegovac, and T. Lang,
"Multiplication/division/square root module for
massively parallel computers,” Integration, the
VLSI Journal, pp. 221-234, Dec. 1993.

Proc. IEEE International Workshop on VLSI
Signal Processing, (Ed: L. D. J. Eggermont, and E.
Deprettere), 1993.

Proc. IEEE International Conference on Wafer
Scale Integration, (Ed: V. K. Jain, and P. Wyatt),
1992.

I. Koren "Evaluating elementary functions in a
numerical coprocessor based on rational
approximations,” IEEE Trans. on Computers, pp.
1030-1037, 1990.

D. Wong, and M. Flynn, "Fast division using
accurate quotient approximations to reduce the
number of iterations," JEEE Trans. on Computers,
pp. 981-995, Aug. 1992.

K. Hwang et al "Evaluating elementary functions
with Chebyshev polynomials on pipeline nets,"
Proc. 8th Symp. Computer Arithmetic, pp. 121-
128, May 1987.

"IEEE Standard for binary floating point
arithmetic”, ANSVIEEE Standard No. 754,
American National Standards Institute, Washington
DC, 1985.

V. K. Jain, S. A. Wadekar, and L. Lin, "Universal
nonlinear component for WSL," IEEE Trans. on
Components Hybrids and Manufacturing
Technology, pp.-656-664, Nov. 1993.

V. K Jain, and L. Lin, "Nonlinear DSP
coprocessor cell -- one cycle chip®, Proc. 1994
IEEE Workshop on VLSI Signal Processing, Oct.
1994.

W. F. Wong, and E. Goto, "Fast evaluation of the
elementary functions in double precision,” Proc.
20th Annual Hawaii Int. Conf. on System Science,
1994.



