Cascaded Implementation of an Iterative Inverse-Square—Root
Algorithm, with Overflow Lookahead

Hercule Kwan
Trimble Navigation
2105 Donley Drive
Austin, Texas 78758

Abstract

We present an unconventional method of computing
the inverse of the square root. It implements the equiv-
alent of two iterations of a well-known multiplicative
method to obtain 2{-bit mantissa accuracy. We imple-
ment each “iteration” as a separate logic module and
ezploit knowledge about the relative error during com-
putation to reduce the size of the implementation. We
use overflow lookahead logic to facilitate the exponent
computations. No division ts required in the entire
process. Examples and error analysis are given.

1 INTRODUCTION

The square-root operation plays an important role
in computer arithmetic. The traditional Newton—
Raphson method is extremely powerful, but has the
drawback that it involves division, which does not lend
itself to easy implementation [5]. It can be seen in [1],
(2], [3], and [4]. Even one of the modern floating-
point digital-signal-processor (DSP) chips uses itera-
tive techniques to compute square root, provided that
an initial approximation or “seed” is generated first
[18]. Several papers ([6], [7], [8]) propose good ini-
tial values for the Newton-Raphson method. Most
of them use polynomial approximations to model the
square-root function. This approach further compli-
cates the problem, because quite a few coefficients
have to be calculated in order to get a good starting
value. Several binary square-rooting algorithms have
been described in [10] and [11]. Higher radix division
and square-rooting algorithms are presented in [12],
(13}, [14], [15], [16] and [17). These algorithms all use
higher-radix redundant number systems, whose goals
are to reduce the number of iterations. The higher
the radix, the fewer iterations, since more bits are
computed at each iteration. However, these meth-

1063-6889/95 $4.00 © 1995 IEEE

Robert Leonard Nelson, Jr.
Trimble Navigation
2105 Donley Drive
Austin, Texas 78758

Earl E. Swartzlander, Jr.
Department of Electrical and
Computer Engineering

University of Texas at Austin
Austin, Texas 78712

ods also have two disadvantages: As Hwang notes,
hardware complexity increases with the computation
of multiples of high-radix divisors; and digit selection
schemes are very complicated [19]. Furthermore, the
Sweeney-Robertson-Tocher (SRT) method often used
in higher-radix methods may not be that attractive in
high-speed DSPs. A nonlinear digital-filter approach
is presented in [20]. This method is quite interesting;
however, it uses a commercially available DSP proces-
sor and implements the algorithms in software instead
of hardware. Moreover, the nonlinear filter adds an
unnecessary layer of complexity to the problem, which
we naturally want to avoid.

In [21], Wallace proposed a method of comput-
ing the inverse of square root. He claimed that
his method is faster than the traditional Newton-
Raphson method; but, it involves two individual it-
erative equations and one needs to carry out multi-
plications in both equations at the same time. This
becomes slower and less efficient if we want to shorten
delay time and reduce hardware complexity.

This paper develops a method of forming the in-
verse of square root (i.e., one divided by square root).
The inverse of the square root is often more useful than
the square root itself, especially when used to normal-
ize vectors. To normalize a vector, one typically takes
the dot product of the vector with itself, computes
the square root, takes the inverse, and then multiplies
the vector components. The equation of the tradi-
tional Newton—Raphson method for the (non-inverse)
square root is

2i41 = 52+ =) ®

Its relative error, ¢;, is defined as

o=HY @)



and
&2

= Wt D) ®)

where a is the square, z; is the recursive solution ap-
proaching the square root of a, and ¢; is the error of
z; relative to the square root. This error equation
implies that after each iteration, the number of sig-
nificant mantissa bits is equal to about 1 more than
twice the previous number. This means that, with a
starting value of about 6-bit mantissa accuracy, we
achieve 27-bit accuracy after two iterations. (Even a
not-so-good starting value converges if this algorithm
is allowed many iterations.)

The equation of the less—well~known multiplicative
method [9)] is

€i41

3 b
Ziy1 = 26(5 - 5’-‘?) (4)
The relative error, ¢;, is defined as
z; - 1‘
€ = ——Zl (5)
Vi
and 1
1 = —el(e+3) (©)

where b is the inverse square, z; is the recursive so-
lution approaching the inverse square root of b, and
€; is the error of z; relative to the inverse square
root. While slightly inferior to the Newton-Raphson
method, this multiplicative method also almost dou-
bles the number of significant mantissa bits at each
iteration, so that only two iterations are needed for
single precision with a practical starting value.

In our approach we use a cascaded implementation
of an iterative algorithm. In an iterative algorithm,
the output from a current iteration is fed back to be-
come the input to the next iteration. We implement
the equivalent of two iterations of the multiplicative
method; but, instead of feeding data back iteratively
through a single arithmetic unit, we use different logic
for the two cascades of computation. Each stage has
its own logic; and data are computed in a cascaded
fashion.

Our goal is to achieve rapid convergence. In the
first stage, we exploit the limited accuracy to remove
the bottom bits of the calculation; we exploit the small
error in the second stage to remove the middle of the
calculation. We use a lookup table for initial approx-
imations, because not too many bits are needed. The
sign of the error alternates at each iteration, as can
be seen in equation (6). We exploit this by control-
ling the sign of the error of the initial approximation

116

so that we know the sign of the error throughout the
computation.

In the first section, we review some basic concepts
behind the classical square-rooting algorithms. The
second section describes how to find good initial val-
ues for the multiplicative method. In the third sec-
tion, we discuss the actual hardware implementation
of our method. We then give two examples. Finally
we present a formal error analysis of our method.

2 INVERSE OF SQUARE ROOT

It is well known [9] that the multiplicative method,
as shown in equation (7), converges to the inverse
square root of b, provided that the initial value z,
is close enough to the actual value.

3 b
Tip1 = -‘h‘(g -3 z) (M
where
Jim z; = 7 (8)

On the other hand, if the initial value is too far from
the actual value, this equation will diverge. In that
case, the iterative solution will have the opposite sign
each time, as can be seen easily from the equation.
This is unlike the Newton-Raphson method, which
promises convergence with any initial value. How-
ever, with a good initial value, the iterative answer
given by this equation converges very fast and yields
almost twice the previous number of significant man-
tissa bits at each iteration. Let ¢; be the relative error
between z; and the actual value 1/v/b as defined in
equation (5). It can be shown that

€41 = —%E? (6 +3) (9)
Equation (9) shows that the relative error is always
negative after the first iteration. That is to say, the
factor (3 — 1bz?) adjusts z; at each iteration to be
less than the actual value as it approaches the inverse
square root.

Our objective is to achieve 24-bit mantissa accu-
racy in two “iterations” of the multiplicative method.
Instead of looping through this method twice, we im-
plement the equivalent by cascading two stages to-
gether. However, the implementation of each of these
stages is different. In the first stage, we need only
slightly more than 12 bits of accuracy. It is there-
fore unnecessary to use a full-sized 24x24-bit array



multiplier to compute the adjusting factor (3 — 1b27).
Thus we deliberately remove the bottom bits of the
calculations. In so doing, we reduce the size of our
implementation, shorten the computation delay, and
still maintain the required accuracy. The values of z?
used in the first stage are stored in read-only memory,
alongside the values of z; whose squares they repre-
sent. This not-too-great increase in the size of the
ROM eliminates the logic and time needed to mul-
tiply z; by itself to get the square. We use a de-
normalizing shifter to shift b before multiplying it by
z?. Since the second stage needs full accuracy, we
use multipliers with bigger sizes to fulfill the require-
ments. The adjusting factor computed at the second
stage has the form (1 + &), where 6 is a very small
number. The subtract operation that appears in the
equation (3 — 1bz?) is somewhat misleading; it can be
approximated by shifting bz? by one bit to the right,

n zeros

inverting. :.zlz'bits, and appending it to 1.00...00 to
form 1.00...00b,bn41bn42bn43 - . ., where by, bpy, ...
are the bottom bits of —1bz?. This is due to the fact
that 1bz? is very close to 0.5 and the adjusting factor
is a value close to 1 with a lot of zeros in the middle.
The final mantissa is obtained by multiplying z; by
the adjusting factor and has the form z; + éz;. Note
that the final form of the adjusting factor implies that
we can remove the middle of the calculation (all the
middle bits are zeros). There are two methods to cal-
culate the initial values for the first stage. As we shall

see, the knowledge of the sign of the error, o;, is very
useful.

o + -
Adjusting factor | 1 -6 |1+ 6
Ti41 - -
Adjusting factor | 1 +6 [ 1+ 6
Oi42 - ~

Table 1. Two approaches to compute inital values.

In our implementation, we impose a condition that
the sign of o; of bz? must be predictable. If the sign
of b and z? each is predictable, then o; is predictable.
If we use an initial value slightly bigger than the in-
verse square root, then og is positive. Then the first
adjusting factor, (3 — 1bz?), must be slightly smaller
than 1 in order for the recursive solution to converge
to the actual value. On the other hand, if we use an
initial value slightly smaller than the inverse square
root, then gy is negative. The adjusting factor, there-
fore, must be made greater than 1 to bring the solution
close to the actual value. Table 1 summarizes o; of the

117

two approaches. Now let us discuss which is better for
implementation.

We need to reduce the accuracy of the number b
and the initial estimates of z; and z? in such a way
that the result is, in one case, no smaller than the
full-length number or, in the other case, no larger.

In the latter case (op negative), we can satisfy this
requirement simply by truncating the full-length val-
ues. The first case (g positive) is more of a problem.
One exact way is to first negate the number, truncate
it, and then negate it again. This is hard and time-
consumning. A better way is to add 1s in all bits to
be truncated, and then truncate the sum. However,
delay time is not improved either. To shorten delay
time, we can approximate the value by truncating the
number first and “jamming” the new LSB to 1. This
method is easier and produces a value very close to
the exact method.

Let us define two functions. The first one is
pseudofloor(). It gives the largest fixed point number
after truncation that is smaller than the argument.
The second function is pseudoceiling() and it gives
the smallest fixed point value that is bigger than the
argument. These two functions are similar to the inte-
ger functions floor() and ceiling(). The difference is
that our functions do not return integer results; they
operate on the mantissa bits after the binary point
and produce results with the precision required by our
computations.

Assume a number b is in the range of [b;, b;4+1). To
start with negative error, one needs to make %bz? < %,
or equivalently, bz? < 1 so that the adjusting factor is
a little bit bigger than 1. We need to find the pseud-
ofloor of b and z? in order to make sure that bz? is less
than 1. It is very easy to obtain the pseudofloor of b;
Jjust truncate the bottom bits of b to zeros. The value
z; is obtained from the biggest number in the interval,
i.e., bottom bits of the number are all ones. Square it
and truncate the bottom bits to zeros. This gives the
pseudofloor of z?. Multiplying b and z? yields a num-
ber slightly less than 1. Shifting the product one bit
to the right divides it by 2. Subtract the number from
%. That produces an adjusting factor slightly bigger
than 1.

On the other hand, if one uses positive o;, the pseu-
doceilings of b and z? need to be calculated so that bz?
will be greater than or equal to 1. The pseudoceiling of
a number v is obtained by adding 1 to the least signif-
icant bit, truncating the sum to the desired number of
bits and keeping the truncated number slightly bigger
than v.

We should note that extra addition associated with



truncation is needed in the first stage of our compu-
tations if we start with positive o;. Delay in com-
putations will therefore increase substantially and it
counteracts our original goal. Therefore, we choose to
implement the negative—error approach.

3 IMPLEMENTATIONS

Before we describe our implementation, let us de-
fine some notation. A floating point number v can be
represented as sy €y,7 €v,6.. . €y,0 My 23 My 21 ... My 1
my,0, Where e, ; denotes the i-th exponent bit of num-
ber v and m, 4 the j-th mantissa bit of number v. Let
4 be a value between 1/4 and 1 and whose exponent
LSB and 7 mantissa MSBs match the 8-bit address
(i-e. ew,0mu23...my 16 = €y 0my 33.. .My 16). Let r
and ¢ be the initial value and its square obtained from
the ROM look-up table respectively, where r = 1 /Vu
and ¢ = 1/u. The exponent is calculated indepen-
dently and in parallel with the mantissa. We use the
exponent LSB to perform a trivial 1-bit denormaliza-
tion of mantissa. The mantissa of the result depends
only on the exponent LSB and the mantissa of the in-
put. The exponent of the result, with one exception,
depends only on the exponent of the input. Thus this
problem no longer involves floating point calculations
but fixed point. The resulting exponent combines with
the mantissa answer to form again a floating point an-
swer. The exception occurs when the denormalized
input mantissa is equal to 1/4, which leads to an un-
normalized output mantissa of 2. But we put special
logic to anticipate this exception. When this “over-
flow lookahead” detects the occurrence, it adds a 1 to
the exponent of the result. We need not correct the
mantissa, since the only error is in the MSB, which is
never actually generated.

A small ROM table is easily implementable in to-
day’s VLSI technologies. It also occupies a very small
area in the circuit layout. Moreover, hardware exe-
cution of a table lookup is extremely fast, compared
to software-instruction execution. We store the initial
approximations and their squares in a ROM look—up
table. We use the least significant bit (LSB) of the ex-
ponent and the upper 7 bits (MSBs) of the mantissa
of the number to form the address of the ROM table.

The initial approximations are computed accord-
ing to the rules we mention in Section 2. It is neces-
sary to store only the required number of bits of these
numbers in the ROM table. By experimentation with
a simulation, we have decided to store 8 bits of z;
and 12 bits of z7. (We actually use 9 bits of z; if

we count the implied 1 in the beginning of the num-
ber.) To get these initial values of z;, truncate them
to 8-bit accuracy after the binary point. Square the
truncated values and truncate them to 12-bit values
to form z}. The reasons for this choice are as follows:
To start the computation, we need at least 6 bits of
mantissa accuracy. We want to estimate the error,
which should be less than 2~22, in the first adjusting
factor (3 — 1bz?). That is why we need about 12-
bit accuracy in z?. These errors are due to argument
truncation and function truncation. Argument trun-
cation is caused by our truncating the input number
as the address to our ROM table. This address is not
an exact representation of the input argument since
it can be applied to the range of numbers with the
same address. Function truncation comes from the
ROM table where the number retrieved has only 8-
bit accuracy. Therefore, the adjusting factor needs to
compensate these errors and steer the initial estimate
so that it converges to the actual value.

In our implementation, the exponent computation
depends on whether the final mantissa overflows (i.e.,
mantissa > 2.0). If it overflows, we need to add 1 to
the exponent of the result and (implicitly) renormal-
ize the mantissa to 1 (all mantissa bits cleared). Since
we do not know the result until the last stage, the
exponent computation would be slowed down. How-
ever, overflow occurs only when the input mantissa is
1/4, with address 1000 0000; and mantissa bits all ze-
ros. Therefore, we detect this situation early in the
beginning, so that this information is available to the
exponent circuit ahead of time.

To realize this function, we literally need a 24-input
gate. Of course, explicit implementation of a 24-input
gate is not practical in most technologies. However,
the extremely loose requirement on propagation time
due to the parallel computation of the mantissa allows
the use of a tree of cascaded smaller gates to emulate
the 24-input gate. With these cascaded smaller gates,
we achieve overflow lookahead and remove the depen-

‘dency on the mantissa computations.

118

3.1 Algorithm

The mantissa is calculated in two separate stages.
In the first stage, we use the knowledge of the error
and force the adjusting factor to be slightly bigger
than 1. First form the address pointing into the ROM
table by combining the exponent LSB and the upper
7 MSBs of the mantissa of v (i.e. ey,my,,...my,,).
This 8-bit address is used to obtain the initial value
and its square from the ROM table.



We use a group of 2:1 multiplexers to form a denor-
malizing shifter. The input value b is shifted one bit
to the right if the exponent LSB is equal to 1.

The value bz? is close to 1. By subtracting one half
of bz? from 1.5 yields a result extremely close to 1. If
the product bz? is slightly bigger than 1, it has the rep-

n zeros

. ’-—/&\ L.
resentation 1.00...00b,b, 4105420543 . ... Division by
n zeros

2 yields 0.100...00 bnb"+1bn+2bn+3 ...and (%—-%b:ﬁ)g
n+l zeros

= 1.00...000 Bn5n+15n+21—7"+3 .... The lower bits are

shifted one bit to the right, inverted, and placed in a

register to form the adjusting factor.

In the first stage, bz = 0.0an@n—-10n-2... (bi-
nary). The adjusting factor, (3 — 1bz?), is equal to
1.08,8n-13n—2.... We use a 15-bit by 12-bit multi-
plier to compute bz?. Then we use a 16-bit by 9-bit
multiplier to compute the product of z; and the ad-
Justing factor. The logic diagram of the first stage is
shown in Figure 1.

eomz2...M16 | ROM [— z2 (12_b1t)
(Address) | TABLE | | o (g )

I e v

2x1
MUXs
15 (12

15 x 12 Array Multiplier

L
[o]o[p] .- [pd]

ol | L] |
X16 19

16 x 9 Array Multiplier

)
Figure 1. Logic diagram of the first stage.

l:i)in_ar
oin

L1

In the second stage, we first compute z? and then
multiply the entire (not truncated) b to it. A 24-bit
precision, not 24x24, array multiplier is needed. In
this stage, bz? is slightly smaller than 1. From our
previous description, we know that the product bz?
has the form (1 +6). Multiplying the adjusting factor
to z; results in z; + 6z;. This suggests that we can
add a very small number, §z;, to z;. We remove the
middle of the calculation because all the bits in the
middle are zeros. If the final mantissa exceeds 2, then

119

it is renormalized to 1 again (all mantissa bits set to
0) and the exponent of result will increase by 1. The
result is the final mantissa. Figure 2 shows the logic

of the second stage. z from first stage

[Array Multiplier

l b |
Por Squaring

L

Ariay Multiplier

|

2
bz® 0 0 {Bottom part
2 [«
L Array M-ltiblicr
that produces
24-bit accuracy
: [ z from first stage | :
| [
14 Adder i bz I I
T = Bimaypont  _  _ _ _ _ ~ '
e [

Final Mantissa I

Figure 2. Logic digram for the second stage.

The exponent is computed as follows. We start with
an input number v of the form 2°+~1%7 [1, 2). We
want to find its inverse square root 2127 [1, 2). First
obtain the exponent value of v. Examine the LSB of
ey. If LSB is zero, the exponent is even; otherwise, it
is odd.

When exponent is even,

e even — 127 = %(—e., + 126)
even = -;-(—e., + 126 + 254)
€even = %m + 63 (10)
When exponent is odd,
€oad—1271 = %(—e., +125)
€'odd = -;—(—e., + 125 4 254)
odd = %T,v.'f+ 62 (11)

where €’.yen and €’,44 are the exponents of result when
input exponent is even and odd respectively.



If an overflow occurs in the final mantissa, then
add 1 to the sum. The result is the exponent of the
inverse square root of v. The logic implementation
of the exponent circuit is shown in Figure 3. Note
that the logic in the middle adds a 1 to each of the
input bits. Also we integrate the overflow bit with the
exponent circuit since the exception only occurs when
the input exponent is odd.

We now summarize our method in Sections 3.1.1
and 3.1.2.

3.1.1 Mantissa

The initial value for the mantissa of the inverse of
square root of v can be found by looking up in the
ROM table.

(1) First form the 8-bit address by combining the
exponent LSB and the upper 7 MSBs of the mantissa
of v (i.e. ey,0my 33.. .My 16)-

(2) Then obtain the value pointed to by this address
from the ROM table. (Note: The exponent of this
value will be passed to another separate path to com-
pute the final exponent, as described in Section 3.1.2).

(3) The value obtained is the initial value z, for
equation (7).

(4) Set b to 0.111:,,23 ce.My g,

(5) If the exponent LSB of v is 1, then shift b one
bit to the right. Otherwise, if the exponent LSB of v
is 0, then b stays unchanged.

(6) After 2o and b are estimated, apply them to
equation (7) to obtain z;, the mantissa of the inverse
of square root of v computed from the first stage.
(Note: The computations in this step are greatly re-
duced as we describe in Section 3.1.)

(7) Apply z; and b to equation (7) to obtain the
mantissa of the inverse of square root of v.

(8) If the mantissa is equal to or greater than 2, set
all the mantissa bits to zeros. Add 1 to the exponent
computed in Section 3.1.2.

3.1.2 Exponent

The exponent can be computed easily by the following
steps:

(1) Obtain exponent €v,7€y,6 - - . €y,0 Of the floating
point number v.

(2) Invert exponent and obtain & 78, 5 - 5 0.

(3) Shift & 76,550 by 1 bit to the right.

(4) i the exponent is even (i.e., e, o = 0), then add
001111113 or 63 (Hex) to the shifted number; other-
wise add 00111110, or 62 (Hex).

(5) If there is an overflow in the mantissa of result,
add 1 to the sum obtained in step (4).

120

(6) The final sum is the exponent for the inverse
square root of v.

Lastly, combine the mantissa and exponent bits
computed above. The result is the inverse of square
root of the number v.

3.2 EXAMPLES

3.2.1 v = 0.03568

Mantissa: (1) Exponent €y,0My,232 . ..My 16
000100102. (2) The smallest z in this address range
(from the ROM table) = 1.31640625. (3) From the
ROM table, z? = 1.732421875 (01.10 1110 1110,). (4)
b = 0.100 1001 0001 0010 13. (15-bit after exponent)
(8) bz? / 2 =0.011 1111 0100 10113 and the adjusting
factor (2 — 15z%) = 1.000 0000 1011 0100;. (6) Result
obtained from the first stage = 1.323637484 (13-bit
accuracy). (7) Apply the above result to the second
stage. The result is 1.32351108 (26-bit accuracy).

Exponent: (1) Exponent e, zéy6...6,0 = 0111
1010;. (2) & 7¢v6---€v,0 = 10000101,. (3) Since ey o
= 0, the exponent is even. (4) After shifting 1 bit to
the right, the number is 01000010,. (5) 01000010, +
00111111, = 100000015.

3.2.2 v = 24.678

Mantissa: (1) Exponent ey,o0my 23...my 16 1100
01013. (2) The smallest z in this address range (from
the ROM table) = 1.60546875. (3) From the ROM ta-
ble, z2 = 2.577148437. (4) Since the exponent LSB of
vis 1, b = 0.011 0001 0101 1011,. (5) bz / 2 = 0.011
1111 1100 1100, and the adjusting factor (§ — bz?)
= 1.000 0000 0110 0110;. (6) Result obtained from
the first stage = 1.61046624 (14-bit accuracy). (7)
Apply the result to the second stage. The result is
1.61040463 (26-bit accuracy).

Exponent: (1) Exponent e, 7év6...€50 = 1000
00115. (2) & 765685 = 01111100,. (3) Since ey 0
= 1, the exponent is odd. (4) After shifting 1 bit to
the right, the number is 00111110,. (5) 00111110, +
001111102 = 01111100,.

4 ERROR ANALYSIS

We estimate our proposed method’s error by com-
puting the relative error in the initial value of z that
we use to seed the first stage, then propagating this
error through two iterations of equation (5). This er-
ror as a function of z is the worst-case error in the



ey

€6

L]

o

es €1 €0  Overflow
I 1oL

87 86 85

81 8o

Figure 3. Logic implementation of the exponent circuit.

sense that we assume that it is the greatest possible
error for any initial value of z in its neighborhood.
Although intermediate computational errors due to
rounding, truncation, and the substitution of the ones-
complement for the twos-complement negative in the
first stage do contribute to the overall error, we rely on
a margin of several guard bits at each level to assure
that these are small compared to the final rounding to
a 24-bit mantissa. We note specifically that small er-
rors early in the computation share in the benefit from
the relative-error reduction predicted by equation (5).
The initial value of z has two error components,
one from truncating the address to reduce the table’s
length and the other from truncating the entries to
reduce its width. The address-truncation error is

Az
€address = T
L dz b
db =z
z2Ab
2 for 25<b
= _W or .256<b< .5 (13)
2
— o<
768 for 5<b<1 (14)

Because of the 8-bit address that we use, Ab is
1/128 of the interval [.25,.5), which is 1/512, or 1/128
of the interval [.5,1), which is 1/256.

Truncating the table entries introduces an error

Az 1
€entry = —:L‘— = 556_2 (15)

121

Az is 1/256 because we store a 8-bit mantissa fraction.
The worst-case total relative error is then

1 z?
——— 25<b<.
€total 5562 ~ 1536 for .25 <b< .5 (16)
L 2 o s<hel (1)
256z 768 =

We pass this error through two iterations of equation
(5) to get the relative error for the complete method.
We then multiply this relative error by z to convert
it to the error relative to the most-significant man-
tissa bit, which allows us to compare it directly to the
rounding error for a 24-bit mantissa, which is 2724,
The greatest such error occurs for b = .5, z = v/2 and
is 27279 which is almost four bits below the rounding
error for the final result.

5 CONCLUSIONS

We present a method of computing the inverse
square root based on a multiplicative algorithm. We
implement the equivalent of two iterations of this al-
gorithm. By exploiting the error equation, we greatly
reduce the complexity of our implementation. The
first stage provides a minimum number of significant
mantissa bits to achieve 24-bit accuracy at the second
stage. Our method increases the speed of computa-
tions and is very useful in DSP applications. It can
also be easily extended to double—precision floating
point numbers.



References

(1] F. B. Hildebrand, Introduction to Numerical
Analysis, New York:Dover, 1987.

(2] A. Ralston and P. Rabinowitz, A First Course
in Numerical Analysis, New York: McGraw-Hill,
1978.

[3] C. V. Ramamoorthy, J. R. Goodman and K.
H. Kim, “Some Properties of Iterative Square—
Rooting Methods Using High-Speed Multiplica-
tion,” IEEE Transactions on Computers, vol. C-
21, no. 2, pp. 837-847, October 1972.

[4] C.T.Fike, Computer Evaluation of Mathematical

Functions, Englewood Cliffs, N.J .:Prentice-Hall,
1968.

[5] R. Hashemian, “Square Rooting Algorithms for
Integer and Floating-Point Numbers,” IEEE
Transactions on Computers, vol. 39, no. 8, pp.
1025-1029, August 1990.

[6] M. W. Wilson, “Optimal Approximations for
Generating Square Root for Slow or No Divide,”
Commaunications of the ACM, vol. 13, no. 9, PP.
559-560, September 1969.

(7] W. A. Beyer, “A Note on Starting the Newton-
Raphson Method,” Communications of the ACM,
vol. 7, no. 7, p. 442, July 1964.

(8] R. F. King and D. L. Phillips, “The Logarith-
mic Error and Newton’s Method for the Square
Root,” Commaunications of the ACM, vol. 12, no.
2, pp. 87-88, February 1969.

[9] W. James and P. Jarratt, “The Generation of
Square Roots On a Computer with Rapid Multi-
plication compared with Division,” Mathematics
of Computation, 19, pp. 497-500, 1965.

(10] G. Metze, “Minimal Square Rooting,” IEEE
Transactions on Electronic Computers, vol. EC-
14, pp. 181-185, April 1965.

[11] S. Majerski, “Square-Rooting Algorithms for
High-Speed Digital Circuits,” IEEE Transactions
on Computers, vol. C-34, no. 8, pp. 724-733, Au-
gust 1985.

(12] V. G. Oklobdzija and M. D. Ercegovac, “An On-
Line Square Root Algorithm,” IEEE Transac-
tions on Computers, vol. C-31, no. 1, pp. 70-75,
January 1982.

122

[13] L. Ciminiera and P. Montuschi, “Higher Radix
Square Rooting,” IEEE Transactions on Com-
pulers, vol. 39, no. 10, pp. 1025-1029, October
1990.

{14] M. D. Ercegovac and T. Lang, “Radix—4 Square
Root without Initial PLA,” Computer Science
Department Technical Report, UCLA, March
1989.

P. Montuschi and L. Ciminiera, “Simple Radix 2
Division and Square Root with Skipping of Some
Addition Steps,” 10th IEEE Symposium on Com-
puter Arithmetic, pp. 202-209, Grenoble, France,
June 1991.

P. Montuschi and L. Ciminiera, “On the Efficient
Implementation of Higher Radix Square Root Al-
gorithms,” 9th IEEE Symposium on Computer
Arithmetic, pp. 154-161, Santa Monica, CA,
September 1989.

[17] J. Fandrianto, “Algorithm for High Speed Shared
Radix 8 Division and Radix 8 Square Root,” 9th
IEEE Symposium on Computer Arithmetic, pp.
68-75, Santa Monica, CA, September 1989.

[18) DSP96002 IEEE Floating—Point Dual-Port Pro-
cessor User’s Manual, Motorola Inc., 1989.

[15]

(16]

[19] K. Hwang, Computer Arithmetic: Principles, Ar-
chitecture and Design, New York:John Wiley &
Sons, 1978.

[20] N. Mikami, M. Kobayashi and Y. Yokoyama, “A
New DSP-Oriented Algorithm for Calculation of
the Square Root Using a Nonlinear Digital Fil-
ter,” IEEE Transactions on Signal Processing,
vol. 40, no. 7, pp. 1663-1669, July 1992.

[21] C. S. Wallace, “A Suggestion for a Fast Multi-
plier,” IEEE Transactions on Electronic Comput-
ers, vol. EC-13, pp. 14-17, February 1964.



