Very-High Radix Combined Division and Square Root with
Prescaling and Selection by Rounding

Tomas Lang
Dep. of Electrical and Computer Eng.
University of California at Irvine
e-mail: tlang@uci.edu

Abstract

An algorithm for square root with prescaling is devel-
oped and combined with a similar scheme for division.
An implementation is described, evaluated and com-
pared with other combined div/sqrt implementations.

1 Introduction

The implementation of very-high radix division
and square root is difficult because of the complex-
ity of the result-digit selection function. For division,
a technique that has been extensively studied to re-
duce this complexity is the prescaling of the operands
[3, 4, 11, 12, 21, 22|. In (7] it has been demonstrated
that this technique can be used to achieve a faster
implementation than other known dividers. Related
schemes are presented in [1, 19, 24].

For square root, an algorithm with operand
prescaling was presented in [13]. However, the result-
ing implementation is complex and is not compatible
with the corresponding division unit. In this paper we
present another algorithm for square root which can

btg [;]asily combined with the division implementation
of 7).

We then describe a combined implementation. Un-
der the assumption that division is more frequent than
square root, our main concern was not to increase the
time of division. In fact, by using the additional mul-
tiplier required for square root also for the scaling step
of division, we achieve a slight speed improvement. On
the other hand, since the execution of the recurrence for
square-root in one cycle would increase the cycle time,
we chose an implementation in which this recurrence is
done in two cycles.

A rough evaluation of the proposed implementation
is performed, in terms of execution time and area, using
as the basic unit the delay and area of a full adder.
Finally, we perform a comparison with another high
radix unit, with one unit that performs division and
square-root by successive approximations, and with two
units using lower-radix recurrences.

The combination of division and square root in a
single unit has been described in [5, 19, 16, 17, 18, 20, 9,
10, 25]. Moreover, units that use algorithms with suc-
cessive approximation also can perform both division
and square root.

1063-6889/95 $4.00 © 1995 IEEE

124

Paolo Montuschi
Dip. di Automatica e Informatica
Politecnico di Torino
e-mail: montuschi@polito.it

2 Square root with prescaling

In division, the prescaling consists of multiplying
the divisor and the dividend by a factor so that the
scaled divisor is close to 1. The corresponding approach
to square root is to prescale the operand so that the
scaled result is close to 1. However, as shown in [13]
this requires a complicated postscaling of the result,
and is not compatible with division. Here we develop
a different algorithm, which consists of performing a
modified scaled recurrence.

The standard recurrence is (already multiplied by
2-! to make it compatible with division [6]),

‘LU[] + 1] = TWU] - SU]Sj+1 —_ 2"13?_'_1'-_(1""'1)

w[0] = 27!z

where w(j] is the residual, r = 2° is the radix, S[j] =
T!_,sir~* is the partial result after step j, and z is the
operand. The result-digit selection function

sj+1 = sel(rw[j], S[j])

has to satisfy the residual bound (for max. redundant
digit set)

—S[i] + 274 < w[j] < S[j] + 2~1r~

Because of the term on s;‘-’ +1 in the recurrence, the se-

lection function for the initial digit is different than for
the rest. That is, the most significant k bits of the
square root are obtained as

S[1] = 27%s; = F(z)
Then, since S[0] = 0, the first iteration produces
w(l] = 2% w[0] — 2-1s32°F
and the rest of the iterations are
wlj + 1} = rw(j] — S[i]sj 41 — 2"ls?+1r"'

where J = j + g and 9 = 2,

As stated in the introduction, for high radix (r >
8{, the selection function is complex and a direct im-
plementation is not practical.

2.1 Scaled recurrence

To reduce the complexity of the selection function,
we perform a scaling of the residual so that

new(w[j]) = Mw(j] (1)

resulting in the scaled recurrence (calling w[j] the new
residual

w[j +1] = rwlj] - Tllsje1 — 27 1851077 (2)
and the first iteration
w{l] = 25" Mz — 274,527 (3)
where T[j] = M S[j] and t; = Ms;. The bound is
Ll= -ThHl+27"'Mr~7 <w[j+1]
< THl+2-'Mr? = U1 (4)

The factor M is chosen so that T7j] is close enough to
1 and the result digit can be obtained by rounding an
estimate of the shifted residual. That is,

T~ 1 and sj41 = [F+27} (5)

where ¥ is obtained by truncating the redundant (carry-
save or signed-digit) representation of rw.

The scaled iteration is performed as follows:
siv1=y+271)

ti+1 = Msjn

wlj + 1] = rwlj] — Tlilsj41 — 27418541777
Tl +1) = TG + t41r7

With respect to the initial value S[1], instead of obtain-
ing it by a table look-up, we use the fact that

T=MS=M/z=x1
Consequently, Mz is an approximation of 1/z so that
S[1] =27%s; ~ Mz

To utilize the same hardware used for the selection of
the other digits, we make

51 = [2FMz 4 271 (6)

where 2¥ Mz is obtained by truncating the redundant
representation of 2¥ M z.

125

2.2 Scaling interval and bits of S[1]

To complete the algorithm, we now determine the
range of My/z and the number of bits of S[1] so that
the algorithm converges when

A. s is obtained by (6)
B. for j > 2, s; is obtained by (5) and |s;| < r—1.

Consequently, the following two bounds have to be sat-
isfied:

1. The convergence bounds given by (4).
2. For (j > 1),

1] 1
~l+ o < lulill <1- 5= = U2

L2 (7

To determine the scaling interval we follow a similar ap-
proach as in [7]. When the selection of s;j41 is done by

rounding as described by (5) and (6), the next residual
is bounded by

L= =27 '4(1-T[})sj+1 — 2" Ms*r~7 <wlj+1]
< 27 427 4 (1 -Th)sj1 — 27 Ms2r 7 =U

where the term 2~ is due to the truncation of the carry-
save representation of w[j] to t fractional bits.

Consequently, M is selected so that
(L>L1 and L>L2) and (U< U1l and U <U2)

The solution of these inequalities results in the required
range of T[j]. However, T'[j] is not known to obtain the
corresponding value of M. To base the calculation of
M on z, we use the following relation

Myz -7 ST < MYz +777 (8)

The detailed computations are reported in [15]. We
obtain the following results:

t = 2 (same as for division)
k=5b+3and s; <8r
I5j] < (r— 1) for j > 2

1 23 1 1 7 1
o= 22— < |
[4 327’] 8r\/z SMVz< 1+[2 81'] 8r\/z
9)

2.3 Computation of M

We now describe the computation of M so that the
range of (9) is satisfied. As we did in [7] for division®
M 1s computed by the following steps:

b

1The implementation has been somewhat improved in [14],
we use here this improved version.

1.

Obtain the pair of coefficients A, and C, (with a
and c fractional bits, respectively) as a function of
z,, the operand truncated to 7 fractional bits.

. Compute the carry-save representation of

P=C,— A,

where 6, = z, — z,, with z; being the operand
truncated to h fractional bits.

. Obtain the scaling factor M by rounding 27"7’,

that is o
M = round(2mP).2™™,

where 3m P is the truncation of the carry-save rep-
resentation of (2™ P) to the second fractional bit.

Derivation of the expressions for A and C as well as
for the number of bits required for each variable are
reported in [15]. The results are

c

3

216(4z, — 1)2z3/% (822 + 42,1 - I?)
2764828 — 73447417 + 1620230 + 36221% — 272,15 4 I°

(10)

216(4z, — I)*z3/?
2764828 — 7344412 + 16202313 + 362214 — 272,15 4 I®
(1)

where I = 2°7;

z; corresponds to the 7 = ([b/2] + 2) most-
significant fractional bits of z;

zn corresponds to the next ({6/2] + 4) bits of z;

{)1 requires 2 integer bits and [b/2] + 3 fractional
its;

C requires 1 integer bit and b + 8 fractional bits;
(however, since it can be proved from (10) that
C > 1, it is not necessary to store the integer bit

in the TABS module);
M requires 1 integer bit plus b + 5 fractional bits.
Implementation issues

We now consider the implementation of the iter-

ation so that its delay is similar to that of division.

We

will see that some modifications of the algorithm

presented in the previous section are required.

sented in the

A direct implementation of the iteration as pre-
previous section has the following critical

path:

1.
2.
3.
4.

selection function and recoding of s;;
computation of ¢; 43 = Ms;41
computation of 21¢;,8; 4,77

addition to produce w([j + 1]

126

Figure 1: Architecture of the unit for square root

This corresponds to two multiplications (delay of each
corresponding to the number of bits of the multiplier
s;+1) and one redundant addition. Since in division
there is only one multiplication, the delay of the iter-
ation for square root would be significantly larger. To
reduce this delay, the solution we adopt is to perform
each iteration of square root in two cycles (and one
cycle for division). The two cycles operate as follows:

Cycle A
o selection function and recoding of s;41
o computation of v[j + 1] = rw[j] — T[j]s; 41
o first part of computation of t; 4 = Ms;4,

Cycle B

¢ second part of computation of ¢;4; (in assimilated
form)

e computation of
wi+1]=oj +1] -2 41841777

o computation of T[j+1] = T[j] +¢; 4177 in assim-
ilated form

Moreover, initial cycles are required to:

Obtain M

Recode M and obtain w[0] = 4Mz, which is used
to produce w[l] = 8r(Mz/2) — 2~ 15,17~ 1)

Assimilate M and set T[0] = 0

Figure 2: Architecture of the unit for combined division and square root

As we see in Section 4.2, this requires two cycles. Fi-
nally, one cycle is required for the detection of the sign
of the last residual and the rounding.

The corresponding implementation is shown in Fig.
1. Note that to adapt to the signs of s;47 and M,
module MUL produces —t; 4, and register R stores —7.
Moreover, since s;4; is an integer and M is a fraction,

it is necessary to input 2-™+2z to MAC.

4 Combined Implementation

We now describe an implementation of a module
that performs both division and square root. This re-
quires only minor modifications to the implementation
for square root described in the previous section since
the implementation of division as described in [7] essen-
tially uses a subset of the modules utilized for square
root. The resulting implementation is shown in Fig.
2. We now indicate the way division is performed and
emphasize the modifications/additions with respect to
the implementation of Fig. 1:

e The calculation of M for division uses the same
approach as for square root. However, as discussed
in [15], the values A and C are different so another
module called TABD is needed. For division M
also requires 1 integer plus b + 5 fractional bits,
and we have:

2(d- + 1)

C=3ad + D+ a2y

(12)

127

2
= 2d.(d. + 1) + (1/2)?

— dy corresponds to the 7 = ([b/2] + 1) most-
significant fractional bits of d; (however, only
7 — 1 enter the TABD module since the first
fractional is always a 1);

— dp, corresponds to the next (|b/2] +4) bits of
d

A

(13)

— A requires 2 integer bits and /2 + 3 or (b +
1)/2+1 fractional bits, when b 1s even or odd,
respectively;

— C requires 1 integer bit and b + 3 fractional
bits; (however, since it can be proved from
(12) that C > 1, it is not necessary to store
the integer bit in the TABD module);

Moreover, multiplexers MUX1 and MUX2 select
between the parameters for division and square
root.

e The calculation of Md is performed using MUL.

This requires the inclusion of MUX4. The calcula-
tion of Mz is done simultaneously using MAC, so
that one additional input is required for MUXS.

The scaled dividend is stored in carry-save form in
register W as w[0]. On the other hand, Md has
to be assimilated and stored in the same register
as T. To be able to perform the calculation of M,
the multiplication of Md, and the assimilation in

two cycles, we perform the assimilation in a CLA
adder divided in two parts: the generation of the
carries (in module C-GEN) and the generation of
the sum (in module S-GEN). Only the delay of C-
GEN is included in the second cycle, whereas the
delay of S-GEN is overlapped with the quotient-
digit recoding in the next cycle.

Although this use of MUL for Md reduces by one
the number of cycles for division, it increases some-
what the area (with respect to the alternative of
using MAC for both Md and Mz) because the
width of MUL has to be increased from b + 6 bits
(size of M) to 53 bits (size of d).

The recurrence of division is performed in one cy-
cle using the recoder, the divisor stored in R and

MAC. The residual is stored in W and 3 in w.

4.1 Hardware requirements

The hardware requirements for the proposed
shared unit are:

Modules TABD and TABS for providing the coef-
ficients required from the L-approach. TABD has
([6/2]) inputs and (b + b/2 + 8) outputs when b is
even, and (b+ }b+1 {2+6) outputs when b is odd;
TABS has ([6/2] +2) inputs and (b + |b/2] + 13)
outputs;

Carry-save multiplier with accumulation on one
line (L-MUL) to compute P. The operands have
(15/2} + 4) and (|5/2] + 5) bits.

The module (RECOD) for recoding and rounding
the carry-save (unsigned) representation of P (b +
8) bits, to the radix-4 signed digit representation
of M of (b + 6) bits; the same hardware is used
also for the generation of the recoded digits sj4,.

One carry-save multiplier (MAC) of (b + 7) x
maz(n + b+ 5, [(n - 3(){b'|b + 10) bits, with one
line of accumulation and carry-save result of (n +
2b+ 10) bits. This multiplier performs also an ac-
cumulation of two lines only when the multiplier
i8 8j41 (i.e. of (b+ 5) or (b+ 1) two’s complement
weights).

}(.;)ne carry-save multiplier (MUL) of (b + 7) x (n)
its.

One converter (CONV) for converting M from
glgned-dlgit radix-4 into non-redundant binary
orm.

One two-step-adder (C-GEN, and S-GEN) for as-
similating the carry save representation of —Md
and =T of (n + b+ 7) bits.

One adder (ADD) for assimilating the two’s com-
plement carry save representation of #;4; of (2b +
10) bits; ‘

Hardware for on-the-fly-conversion and rounding

'(gTFC) and registers for storing intermediate and
al results.

128

4.2 Evaluation

We now present a rough evaluation of the imple-
mentation in terms of execution time and area. The
objective of this evaluation is to determine the effect of
the radix and to allow rough comparisons to other com-
bined implementations. In what follows the number of
bits of the operands is n and b = log, r.

4.2.1 Execution time estimation

To determine the execution time we need the num-
ber of cycles and the cycle time. As discussed before,
the following table shows the number of cycles for di-
vision and square root:

Division Square root
Scaling 2 2
Iterations n/b] 2[(n—3)/b
Post-corr. & round r 1 1]
Total 3+ [n/b] | 3+ 2[(n =3)/i

The cycle time of the combined square root and divi-
sion operation using the implementation of Fig. 2 can
be derived as the maximum delay of the paths in the
timing diagrams of Fig. 3. The actual cycle time de-
pends on the delay of the components. As we did in [7]
we now evaluate this time in full-adder delays (tp4)2
modules making the following assumptions on the delay
of the components:

o Carry-save multiplier of N1 by N2 bits with accu-
maulation of N3 operands. The delay is composed
of three terms: a driver, the generation of the
partial products, and the addition of the partial
products plus the accumulation operands. Conse-
quently,

tma,cs,N1,N2,N3 = Ldriver + tgenmul + tadd

We estimate tgpiyer = 144 and tgenmul = 0.5tp4.
Since we recode the multiplier to radix-4 the num-
ber of operands to add is [N1/2] 4+ N3; the ad-
dition is done in a tree of 4-2 carry-save and 3-2
carry-save adders, with delays of 1.5t 4 and 1tp 4,
respectively.

Recoding, including rounding, is about 1.5 tp4.

Carry-assimilate adders (and converters) of N1
bits use a carry-lookahead scheme with delay of
(1.5+0.3[log(N1)])tra

Register loading is 1.5¢t74 and multiplexers (2-to-
1 and 4-to-1 with decoded controls) have delay
Stra.

The only components whose delay cannot be readily
described in tp4’s are the TAB modules to determine
the A and C coefficients. We have explored several
alternatives as we did in [7] and have determined their
delay and area using the family of standard cells from
the ES2-ECPD10 library [8]. The delay and area of the
best alternatives are summarized in Table 1. In Fig. 3

2For modules that are not composed directly from full adders,
we use estimates obtained from implementations with standard
gates [8].

DIVISION
CYCLES1 &2

Figure 3: Timing diagrams for division and square root

we give the values of these delays for r = 512. Table 2
shows the cycle times for different values of b and the
corresponding execution times for n = 54 bits.

4.2.2 Area estimation

As an estimate of the area we use the number of
full adders in the multiplier modules and the equivalent
area in full adders of the modules TABS and TABS. We
use these modules since they should correspond to a
large portion of the total area and similar modules are
used in implementations of related algorithms so that
comparisons are easy to perform. This area estimate is
given in Table 2.

Table 1: Time and area for best TAB modules
b 9 11 14 18
D S D S D S D S
tra | 2 3 2 3 3 1 4 5
Apa | 60 | 310 | 140 | 670 | 340 | 1600 | 1650 | 7400

129

Table 2: Time and area for proposed implementation
{ b | 9 11 | 14 [18 |
Cycle time (tra) 8.5 9.5 9.5 9.5
No. cycles DIV 9 8 7 6
Exec. time DIV (tFA) 75 75 65 55
No. cycles SQRT 15 13 11 9
Exec. time SQRT (tra) | 125 | 125 | 105 85
Area mult. (Ara) 1100 { 1300 | 1600 | 2000
Area TAB (Ara) 400 900 { 2000 | 9100
Area mult.4+tab. (Apa) | 1500 | 2200 | 3600 | 11100

5 Other Related Implementations

For comparison purposes, we now make a rough
evaluation of the execution time of two other imple-
mentations for very-high radix units for shared divi-
sion and square root. As a reference, we also include
a radix-4 unit and a radix-8 unit with overlapping. To
make uniform evaluations, we use as a unit the delay
of a full adder, as done in Section 4.2. The evaluations
are rough since data routing delays are not included
nor do we perform some technology-dependent opti-
mizations. As done in Section 4.2, for the very-high
radix schemes we also give the area of the multipliers
and initial tables, in full-adder units. We have nor-
malized the implementations so that they use the same
type of units, such as carry-save multipliers, recoders,
and modules to generate scaling factors. More details
of these comparisons are given 1n [15].

Scheme A: Unit using result-digit selection by resid-
ual scaling

In [1], [2] and [19] a radix-2'7 division unit of this
type is described, which is based on multiplying the
residual by a short reciprocal of the divisor so that digit
selection can be done by rounding. The unit uses a 18 x
69 rectangular multiplier with an additional adder port.
This multiplier serves also as a 19 x 69 bit multiplier to
perform the multiplication of the residual by the short
reciprocal.

As mentioned, to compare with the method we are
proposing we have adapted the implementation so that
it uses the same features included in our scheme, when
appropriate. In particular, we consider a radix-2° 54-
bit divider. Moreover, we utilize the same method for
obtaining the short reciprocal (equivalent to the scaling
factor in the method we propose). The number of cycles
for division has been discussed in [7], and, for 54-bit

result, is
Ncycles,div =2+ 2[54/61

As indicated in [19], the computation of square root
requires two more cycles than division. With respect
to the cycle time, to the expression given in [7] for
division it is necessary to include another carry-save
adder because of the term depending on s]z +1, required
for square root. This results in

ta = tMPX,2,1 +1recod +tMA,CS,b+9,n,0 +t6—2—csa+treg

If the 6-2 adder is implemented by a cascade of one

Table 3: Time and area for scheme A
b 9 11 14 18
Cycle time (ip,g) 11 12 12 12
Cycles DIV 14 12 10 8
Ex. time DIV (tr4) | 155 | 145 | 120 | 95
Cycles SQRT 16 14 12 10
Ex. time SQRT (tra) | 175 | 170 | 145 | 120
Area (Ara) 1800 | 2500 | 4000 | 11500

level of 3-2 adders and one of 4-2 adders, the resulting
delay i8 tg_3_c,q = 2.5t 4.

With the assumptions of Section 4.2 we get the
execution times and areas (for the multiplier plus the
TABD and TABS modules) shown in Table 3.

Scheme B: Unit based on N ewton-Raphson approx-
imation

Such a scheme is used, for example in the Weitek
W4164 and W4364 chips. The data sheet [23] indi-
cates that the double-precision division takes seven cy-
cles, which include the initial approximation of the re-
ciprocal, the successive approximations, and the final
rounding. On the other hand, the computation of dou-
ble precision square root requires 8 cycles [23]. The
cycle time is probably determined by a multiplication-
accumulation (including recoding and register loading),

so that we estimate the cycle delay to be

1B = tlrecod +1Ma,CA 64,641+ lreg

(1 +11.6 4+ 1.5)tpA ~14tp,

where trecod is the recoding of non-redundant multiplier
Sfor this we assume a delay of 1tF4). Therefore, the
uration of the whole computation is

7-14tps = 10054
8:-14tps = 110tp,

We estimate that the area of the hardware for digit se-
lection and updating of the residual is about the area of
the multiplier, which has been estimated as 2500AF 4.

Scheme C: Radix-4 unit

This unit is described in [6] and shares the same
hardware for division and square root. As indicated in
[6], the delay per iteration can be approximated by

Ts,p1v
TB,sqrr

tc =taset +tousser +tmMux +tcsa + lreg

With the delays given in Section 4.2.1 and translating
the delay given in (6] for the digit selection as tg,¢; =
2.5tp4 we get

tc =6tpa

For a 54-bit mantissa, 27 cycles plus one for rounding
are required so that the execution time is

Te =28tc ~ 170tp4

We do not estimate the area since in this case no mul-

tipliers are used and therefore it is not directly compa-

;:}l:le with the estimate made for the very high-radix
emes.

130

Scheme D: Radix-8 with overlapping stages

In [9] a method is described for the design of a
radix-8 shared division and square root unit, with over-
lapped radix-4 stage and radix-2 stage. As can be ob-
tained from [9], the corresponding cycle time is

= tcsa1+ipsm +tmpx,2,1 + tariver +
tMPx5,1 +1tcsaz+treg

tp

where tpga is the delay of the radix-4 digit selection
module. This module is similar to that of Scheme C,
but has two more inputs because of the tighter bounds
required. We estimate tpsay = 3tr,.

Moreover, we estimate that the delay of the block
CSA1 equals tr4, whereas the delay of the second CSA
istcsaz = 0.5tp4. Then, the cycle time is

ip = (0.5+3.0+ 0541405405+ 1~5)tFA =8tr4s

For a 54-bit mantissa, division requires 18 iterations
plus one cycle for rounding, resulting in

Tp,p1v = 19tp =~ 150t 4

On the other hand, for square root there are 16 cycles
for iterations plus one for initialization of the first 6
bits plus one for postcorrection, so that

Tp,sQrr = 18tp ~ 145tp,

Table 4 summarizes the characteristics of the schemes
we have compared.

6 Conclusions

We have presented an algorithm for very-high radix
square root in which the result selection is obtained by
rounding an estimate of the residual. This is made
possible by scaling the recurrence by a factor M in
such a way that MS[j] is close to 1. This approach
has the advantage that it is possible to combine the
square root with the division algorithm presented in [7].
The combined implementation presented minimizes the
time of division, so that the square root recurrence is
performed in two cycles.

We perform a rough evaluation of the implementa-
tion and compare with other related schemes. From
this comparison, we conclude that for division the
scheme we present (for r = 512) produces a speed-up
of 1.3 with respect to the faster of the other schemes
(Scheme B), whereas for square root the speed-up is
0.9. Moreover, the implementation presented here has
an estimated area of 60% of Scheme B.

Acknowledgments
We thank Roberto Tempo and Piera Del Col.

References

{1] W. S. Briggs and D. W. Matula, “Method and Ap-
paratus for Performing Division Using a Rectangular
Aspect Ratio Multiplier,” U.S. Patent No.5 046 038,
September 1991.

Table 4: Summary of time/area characteristics [tra/Aral

=39 F=11 F=14 =18
UNIT [[DIV [SQRT [AREA || DIV | SQRT | AREA || DIV | SQRT [AREA |[DIV | SQRT | AREA
our 75 125 1500 75 125 2200 55 105 | 3600 55 85 11100
7. 165 | 175 1800 || 145 | 170 7500 || 120 | 145 | 4000 95 120 | 11500
UNIT || DIV | SQRT | AREA
B 100 [110 [250000
C 170 | 170 -
D 150 | 145 -
(1): estimated area of multiplier only (not available area of lookup tables)

[2] W. S. Briggs T. B. Brightman and D. W. Matula,
“Method and Apparatus for Performing the Square
Root Function Using a Rectangular Aspect Ratio Mul-
tiplier,” U.S. Patent No.5 060 182, October 1991.

M. D. Ercegovac, “A Division With Simple Selection
of Quotient Digits,” Proc. 6th IEEE Symposium on
Computer Arithmetic, 1983, pp.94-98.

M. D. Ercegovac and T. Lang, “Simple Radix-4 Divi-
sion with Operands Scaling,” IEEE Trans. Comput.,
Vol.C-39, pp.1204-1208, September 1990.

M. D. Ercegovac and T. Lang, “Module to Perform
Multiplication, Division and Square Root in Systolic
Arrays for Matrix Computations,” Journal of Paral-
lel and Distributed Computing, Vol. 11, No.3, March
1991, pp.212-221.

(3]

(4]

M. D. Ercegovac and T. Lang, “Division and Square
Root: Digit-Recurrence Algorithms and Implementa-
tions,” Kluwer Academic Publishers, U.S.A., 1994.

M. D. Ercegovac, T. Lang and P. Montuschi, “Very-
High Radix Division with Prescaling and Selection by
Rounding,” IEEE Transactions on Computers, Vol. C-
43, No.8, August 1994, pp.909-918.

European Silicon Structures, ES2 ECPD10 Library
Databook, April 1991.

J. Fandrianto, “Algorithm for High Speed Shared
Radix 8 Division and Radix 8 Square-Root,” Proc.
9th IEEE Symposium on Computer Arithmetic, Santa
Monica, CA, pp.68-75, September 1989.

J. B. Gosling and C. M. S. Blakeley, “Arithmetic Unit
with Integral Division and Square Root,” IEE Proceed-
ings, Part E, Vol. 134, pp.17-23, January 1987.

J. Klir, “A Note on Svoboda’s Algorithm for Division,”
Information Processing Machines, (Stroje na Zpracov-
ani Informaci), 1963, No.9, pp.35-39.

E.V. Krishnamurthy, “On Range-Transformation
Techniques for Division, ” IEEE Trans. Comput., vol.
C-19, No. 2, Feb. 1970, pp. 157-160.

T. Lang and P. Montuschi, “Higher Radix Square Root
with Prescaling,” IEEE Trans. Comput., Vol. C-41,
No.8, Aug. 1992, pp.996-1009.

T. Lang and P. Montuschi “Improved Methods to
a Linear Interpolation Approach for Computing the
Prescaling Factor for Very High Radix Division,” L.R.
DAI/ARC 6-94, Politecnico di Torino.

(8]
9]

(10]

(11]

(12]

(13]

(14]

131

[15] T. Lang and P. Montuschi, “On the Design of Very-
High Radix Combined Division and Square Root with
Prescaling and Selection by Rounding,” I.R. DAI/ARC
7-94, Politecnico di Torino.

S.E. McQuillan, J.V. McCanny and R. F. Woods,
“High Performance VLSI Architecture for Division and
Square Root,” Electronic Letters, Vol.27, No.1, pp.19-
21, January 1991.

S.E. McQuillan and J.V. McCanny “VLSI Module for
High Performance Multiply, Square Root and Divide,”
IEE Proceedings, Part E, Vol.139, No.6, pp.505-510,
June 1992.

S.E. McQuillan, J.V. McCanny and R. Hamill, “New
Algorithms and VLSI Architectures for SRT Division
and Square Root,” Proc. of the 11th IEEE Sympo-
sium on Computer Arithmetic, July 1993, Windsor,
Ontario, Canada, pp.80-86.

D.W. Matula, “Design of a Highly Parallel IEEE Float-
ing Point Arithmetic Unit,” Symposium on Combina-
torial Optimization Science and Technology (COST),
at RUTCOR/DIMACS, April 1991.

P. Montuschi and L. Ciminiera, “Reducing Iteration
Time When Result Digit is Zero for Radix-2 SRT Di-
vision and Square Root with Redundant Remainders,”
IEEE Transactions on Computers, Vol. C-42, No.2,
February 1993, pp.239-246.

A. Svoboda, “An Algorithm for Division,” Inf. Proc.
Mach., Vol.9, pp.25-32, 1963.

[22] C. Tung, “A Division Algorithm for Signed-Digit
Arithmetic,” IEEE Trans. Comput., Vol.C-17, 1970,
pp-887-889.

[23] Weitek, W4164 and W4364 Floating Point Processors,
Technical Overview, Oct. 1990.

[24] D. C. Wong and M. J. Flynn, “Fast Division Using Ac-
curate Quotient Approximations to Reduce the Num-
ber of Iterations,” IEEE Trans. Comput., Vol. 41, Aug.
1992, pp.981-995.

[25] J. H. P. Zurawski and J. B. Gosling, “Design of a High-
Speed Square Root Multiply and Divide Unit,” IEEE
Trans. Comput., Vol.C-36, pp.13-23, January 1987.

(16]

[17]

18]

[19]

[20]

[21]

