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Abstract

A shared radix 2 division and square root
implementation using a self-timed circuit is presented.
The same execution time for division and square root is
achieved by using an on-the-fly digit decoding and a
root multiple generation technique. Most of the hardware
is shared, and only several multiplexers are required to
exchange a divisor multiple and a root multiple.
Moreover, quotient selection logic is accelerated by a
new algorithm using a 3-b carry propagation adder. The
implementation of the shared division and square root
unit is realized by assuming 0.3 um CMOS technology.
The wiring capacitance and other parasitic parameters
are taken into account. The execution time of floating
point 55-b full mantissa division and square root is
expected to be less than 30ns in the worst case of an input
vector determined by an intensive circuit simulation.

1 Introduction

Calculation time of a division and a square root is
fairly long compared with other floating point operations
such as a multiplication and an addition. So far, this long
delay time of division and square rootis suspected not to
affect the total performance of computer systems because
the appearance ratio between a multiplication and a
division is about 4:1 and a square root calculation rarely
occurs in ordinary applications. However, as clock
frequency of microprocessors increases, the problem of
data hazards due to a large number of pipeline stages
becomes more prominent. Moreover, some applications
such as three-dimensional graphics use division and
square root much more frequently than ordinary
applications. Thus, a speed-up technique other than
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improved device technology is needed for these
applications. The clock period can be shortened by the
faster device technology, but the latency clock count of
division or square root remains

Several algorithms to achieve a fast division and a
square root calculation have been proposed such as the
higher radix method, the Newton-Raphson method, and
so on [1-8). One of these speed-up methods, an adaptation
of aself-timed circuit to the radix 2 SRT algorithm-based
divider, was proposed to investigate a much faster
division unit by Williams et al. [6]. A self-timed circuit
implementation requires a somewhat larger silicon area
in contrast with ordinary SRT algorithm-based systems.
An implementation of the Newton-Raphson method also
requires an even larger area for a multiplier and a read
only memory (ROM). However, these two methods can
achieve very high performance for calculations.
Consequently, considering factors such as simplicity of
the pattern layout, the silicon area, power consumption
and other factors, we selected a self-timed circuit
implementation for a shared division and square root
calculation unit. In this paper, we report an
implementation of 55-b shared radix 2 division and
square root calculation unit by using a self-timed circuit.
To evaluate the performance of the calculation unit
quantitatively, 0.3 .2 m triple metal CMOS technology [9]
was assumed so that an intensive circuit simulation could
be performed. We also confirmed that the calculation unit
could give correct results by a functional simulation using
ahigh-level language.

Section 2 of this paper presents an overview of the
calculation unit. The calculation unit uses a fast and
simple quotient selection logic (QSL) and on-the-fly digit
processing blocks called PQR (position, quotient, reverse
quotient) to perform a square root function with a short
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Fig. 1 Configuration of the basic unit of the shared division and square root unit.

execution time. In Section 3, we focus on the QSL logic
using a 3-b carry propagation adder (CPA) and a 1-b
logical OR-gate. This QSL block can be used for both
division and square root without any special hardware.
The proof of the algorithm for this structure is also shown
in Section 3. Section 4 shows an implementation of the
root multiple generation block. Unlike the divider, the
square root unit uses a result feedback mechanism to
calculate a partial radicand. This feature usually affects
the calculation cpeed of a square root. In our
implementation, however, the execution time of a square
root is the same as that of a division. In Section 5, we
show the execution timing of the calculation unit. From
the analysis of critical paths, it becomes clear that the
execution time of a square root is equal to that of a
division. Section 6 presents a comparison between our
implementation and alternatives using synchronous
circuit implementations is shown. In this section, an
additional hardware cost to achieve the shared calculation
unit from a division unit is also disscussed.

2 Implementation of Calculation Unit

Figure 1 shows the implementation of each SRT
division / square root stage. In our calculation unit, a radix
2 SRT algorithm with the redundant digit representation
(+1, 0, -1) is used. The stage consists of a partial
remainder / radicand formation block (PRF), a divisor
multiple formation block (DMF), a root multiple
formation block (RMF), and a quotient selection logic
(QSL) with an overlapped execution modules as in [1,6].
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In our implementation, the RMF block is modified with
an on-the-fly digit handling block (PQR). The PQR block
is based on carry propagation considerations [4,5,7]. The
signal "P" shows the bit position where the next digit is to
be determined. The signal "Q" is the quotient with carry
propagation at LSB, and "R" is the quotient without carry
propagation. The RMF block requires a nonredundant
representation of the quotient digit produced in the PQR
block. There is no additional hardware to realize a shared
calculation unit except for the divisor / root multiple
generation block. Moreover, the delay time of the RMF
block does not affect the critical path of the whole
calculation unit as shown in the following section.
Therefore, this implementation can realize the same
latency in both division and square root at the same
precision.

Figure 2 shows the block diagram for the whole
division / square root unit. This construction uses 5 stages
to achieve a zero-overhead self-timed calculation unit as
proposed by Williams et al. [6]. The precharge timing
controller which consists of a static flip-flop is used for
dynamic circuits in each stage. The accumulation of the
quotient digit is performed by the PQR block. The end of
a calculation can be detected with the P signal. To make
an IEEE754-compatible calculation unit, rounding and
normalization of quotient digits are performed with the
quotient from the Q signals (assumes a carry propagation)
and the partial remainder / radicand. This implementation
uses a dual-monotonic wire set as in [6]. The logic gate
consists of a precharge transistor and an n-channel pull-
down network.
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Table | Quotient selection table and statistics for
the shared radix 2 division and square root unit.
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3 Quotient Selection Logic Implementation

Figure 3 shows the configuration of the QSL block,
and Table I shows the quotient selection rule and statistics
from the functional simulation. When the digit code is
assigned as shown in Table II, the code q,;,» Which
indicates a sign of a digit, is the inverse of D exactly This
allows a simple logic circuit of the QSL and faster
execution of a partial remainder / radicand formation as
shown in Fig. 1. Moreover, the probability of selecting a
digit = 0 in our QSL is higher than that in a conventional
QSL, that is, the probability of selecting a digit = 0 is
about 42-43% for our division and square root in contrast
with the conventional value of 35%. These figures were
determined by our functional simulations. This feature
may cause an additional speed-up, because an execution
time of a partial remainder / radicand can be shortened
when a quotient digit is 0. Besides, as proposed by several
authors, the quotient selection logic for radix 2 SRT
calculation unit can be formed by using 3-b CPA [3, 6].
The main problem appears when using a 3-b CPA and the
result is +1.1 in binary. The QSL cannot discriminate a
correct digit in this situation, because a true value of the
partial remainder / radicand could lie in the range
[+3/2, 2) and [-2, -3/2). This problem can be resolved by
determining a latest quotient digit [3] or a latest partial
remainder / radicand as in [6]. On the other hand, our
design of the QSL does not use any former information.
Only a 1-b OR-gate and a related QSL circuit were added.
The proof of this algorithm is shown as follows.

(1) Division case

The equation of a partial remainder is defined as
P, =2p;-q,d -(1)

where the symbols are deﬁned as follows:

p, J*partial remainder,

q J* quotient digit (redundant form),

d divisor.

The divisor d is normalized in [1/2, 1).

The problem occurs when

2p,, €[:2,-32). -(2)
Therefore, if 2p cannot be in the range [-2, -3/2), the
problem has to be resolved. This situation of failure will
occur only when a digit q,, =1 Thus, the situation

-1 <2pl. -d=3/14 -3
is not wanted to appear in this case.
Then, the worst case is thatd = 1 - € ( € is a very small
number) from the assumption. From the relation (3), the
QSL is not wanted to set the digit to 1 when the relation

0<2p<l4 -4

is fulfilled.
Therefore, when the relation (4) is fulfilled, the QSL

replies that a digit = O as shown in Table I. The other
opportunity for fulfilling the relation (3) is the case that a
digit = 0. However, if we assume d = 0, relation (3)
becomes

-1<2p, = 3/4. -(5
In this case, the QSL always replies thata digit = -1. Then
the assumption of d = 0 cannot be allowed.
Consequently, the QSL with a3-b CPA and a 1-b OR-gate
is proven to give correct results.

(2) Square root case
The equat.ion of a partial radicand is defined as

P, =2p,-q,,(2Q+q,,2°®Y) -(6)
where the symbols are defined as follows
P, j® partial radicand,
q j® quotient digit (redundant form),
Q J* quotient (nonredundant form, Q_=0),
Q. =Q+q,,2%(j=0,1,2,..) -(7)
The value of Q. lies in the range [1/2, 1).

The problem occurs only when q, =1 Unlike in the case
of a division, the QSL examines p Thus, the same as the
division case, the relation

2< 2p,-(2Q,+ 276 = 312
gives a condition of failure.
On the other hand, the relation

1<2Q+ 2 -2°¢0 <2 -(9)

is always fulfilled because of the normalization of a given
radicand.
From the relations (8) and (9),

-1/2-2°00 <p <1/4-2°62  -(10)
is the failure condition when a digit = 1. As Table I clearly
indicates, when the QSL selects a digit = 1, the partial
radicand P, does not exist in the range (10).

-(®)

Finally, the QSL with a 3-b CPA and a 1-b OR-gate is
proven to give correct results for both a division and a
square root. Thus, when the QSL encounters the +1.1 of
partial remainder / radicand, the QSL can always take a
digit = +1, because the case of a digit = -1 never occurs in
this situation. This feature also can be obtained by using a
4b CPA. However, our implementation obtains these
results with a 3-b CPA and without any former
information on the quotient selection. This QSL block can
realize a fast quotient selection logic with very simple
hardware.

4 Root Multiple Generation

To perform a square root calculation, the root multiple
calculation must be taken into account. If the quotient Q is
expressed by using a redundant digit form, the carry save
adder (CSA) must have four inputs for the root multiple
and former partial radicand indicated in a redundant form.
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Thus, the delay time of the partial radicand formation
(PREF: also used for partial remainder formation) becomes
longer. This additional delay in the PRF affects the total
delay of the calculation unit. Moreover, if the QSL is
overlapped, it also needs the next PRF for a prediction of
aquotient digit. This fact might cause an additional delay.

On the other hand, an on-the-fly digit decoding and a
root multiple generation in a nonredundant digit form can
be performed as reported in [4,5]. This technique can
shorten delay time to make a root multiple digit in a
nonredundant form, and merely the 3-input CSA in the
PRF is needed. Figure 4 and Figure 5 show our
implementation of the on-the-fly digit decoding block and
the root multiple generation block respectively. Pa)is a bit
position indicator at o bit position. At an initial state (0*
iteration), Pioj = 1 and Pja) (n # 0) = 0. When the iteration
proceeds, Py = 1 and P (k # j ) = 0 in the j* iteration.
Thus, P is a kind of a shift register. As mentioned
previously, Q and R are the current quotient assuming the
carry propagation or without, respectively. At the initial
state, Q and R are cleared to 0. Figure 6 shows how this
on-the-fly block works. Figure 7 shows how the root
multiple generation block works. In the root multiple
generation process, a root multiple bit for a positive
quotient digit is negated to perform a subtraction at the
CSAs in PRF. In addition, a divisor multiple formation

P‘ ) R 8] P 8+ R [+
j10)] Q - §10)] jle+1] leml jle+1]
Pjp1 >
RMn(+) RMn+1(+)
RMn(-) RMn+1(-)

Fig. 5 Root multiple generation logic.

P 0000.. 0100..
RM(#) 0.0QQQ.. Q01
RM(-) 0.RRRR.. R11

Fig. 7 Operation of the root multi
gegnordlon logic. .

(DMF) block and a function selector are provided to
realize a shared division and square root calculation unit.

§ Calculation Timing

We have mentioned the construction of the shared
division and square root unit. In this section, an execution
timing of each block is discussed. Figure 8 illustrates the
timing of the calculation unit. The lateral length of each
rectangle in Fig. 8 means the delay time of each circuit
block.

It can easily be seen in Fig. 8 that if the summation of
the delay times of the PQR and RMF (Tpgn + Trpe) is less
than that of the PRF (T,,.), the total execution time of a
square root is the same as that of a division. In our
implementation, this condition can be fulfilled. Namely,
the delay time (T, por + Tpue) 18 almost the same as (T, ).

Figure 9 shows an overview of the precharge timing
control block. This block is controlled by a completion
signal from the QSL block. The zero-overlapped
execution is realized by using a 5-stage configuration as
in [6]. If the perfect timing control is needed, completion
signals from the QSL, PQR, and PRF are required.
However, as the PQR and PRF block have many output
signals, it is difficult to determine all these signals for a
completion detection. For this reason, our design neglects
a completion-check on these signals. As shown in Fig. 1,
the QSL block completes the execution after the arrival of
the signal q,,,- The PQR and PRF are also brought to
completion after the arrival of the signal q,,,- Wedesigned
the circuit to ensure that the completion signal from the
QSL block occurs within a certain range of time around
the generation of the PQR and PRF signals.
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6 Simulation Result and Comparison with
Synchronous Implementations

First, we have confirmed that our division and square
root unit computes correct results by using a functional
simulation software written in a high-level language on an
engineering workstation. The results from our calculation
unit were compared with both the results from a
commercial floating point co-processor and the results
from the simulation of calculations using a classical
nonrestoring method.

Following the functional simulation, we also
performed a SPICE circuit simulation on our calculation
unit. To obtain reliable results, we estimated a wiring
capacitance by assuming a floor plan of the calculation
unit. By considering the layout pattern for each bit
partition of the calculation unit, we settled a width of bit
slice to be 25 £ m. As it stands, a total lateral width of the
shared division and square root unit is about 1500 £ m. A
wiring capacitance is estimated to be about 0.2pF/mm

from the specification of a device process. The device
process technology is 0.3 12 m triple metal CMOS [9].

Figures 10 and 11 show the simulation resuits of the
signal timing. The signal names are defined in Fig. 9. In
Fig. 10, the precharge control signal PREC n' is disabled
and the circuit block is prepared for the evaluation before
the data signals (such as P,Q,R and so on) reach the circuit
block. Figure 11 also shows the timing relationship
between the precharge signal 'PREC n+1' and data signal
q,, and Qs (quotient digit). Thus, the circuit block is
always prepared for evaluation when the data signals
arrive at the circuit block. This fact ensures 'zero-
overhead execution' in a self-timed circuit as in [6].

Next, we estimated a delay time to calculate one digit
in the worst case. The worst case is that the digit = +1 or
-1 is successively selected. As a result, the calculation
time for one digit is 0.50ns at Vdd = 3.3V both for a
division and a square root. The calculation time to obtain
a 55-b full mantissa result is 29.5ns including 2.0ns loss
of time in an initialize/loop control circuit.
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Fig. 10 The simulation result of node
voltage around the precharge signal
'PREC n' in the calculation unit.
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Fig. 11 The simulation result of node
voltage around the precharge signal
'PREC n+1' in the calculation unit.

Table Il Comparison of the latency of calculation and hardware
cost between a conventional circuit design and the design using

a self-timed circuit.
Circuit style Latency for Har:l:::rf f:;?St
Ovlp : with overlapped execution 55b calculation | Total cost regls‘;e(s registers
Synchronous design

Radix 2 Ovlp, 4-stage(dbit / iteration)] 74.1ns | 1270 | 688 | 291-b
Radix 4, 2-stage (4bit / iteration) | 75.5ps | 1060 | 470 | 295-b

Self-timed design (radix 2 Ovlp, 5-stage)
shared division / square root unit 29.5ns | 1837 | 1507 | 165b
Y using on-the-fly block 29.5ns 1645 1315 | 165-b

Division only --------eseseeeereeecenee..

without on-the-fly block 31.5ns 1545 1215 | 165-b

Hardware cost is normalized at the static 1-b CSA as 1.

Table III shows the comparison between conventional
synchronous implementations and our design of a self-
timed circuit implementation. In the synchronous circuit
design, we considered two examples which are widely
used for commercial floating point co-processors. One is
using 4 stages of radix 2 quotient selection logic with
overlapped execution. The other is using 2 stages of radix
4 quotient selection logic without overlapped execution.
These examples can produce 4 digits per iteration cycle.
In addition, we assume that a penalty delay time due to a
latch loss is 0.5ns per iteration cycle. From Table III, the
latency of the self-timed implementation is about 1/3 of
the latency of the synchronous design. From the circuit

‘simulation, most of the speed-up is accomplished by
using a dynamic circuit with n-channel pull-down
network. This feature is achieved most effectively with

the zero-overlapped execution timing [6]. That is, the
dynamic circuit can run without the penalty of the
precharging time.

Next, considering the hardware cost, the silicon area of
the self-timed implementation is larger than the
conventional one, because the self-timed implementation
uses many calculation stages to achieve fast execution
and also uses a dual-monotonic wire set which requires a
redundant circuit. However, the self-timed design
requires less registers compared to the synchronous
design, that is, the full bit width of the partial remainder p
represented in the carry-save form, the quotient digit Q
and R signals, as shown in Fig. 1, must be stored at the end
of each iteration cycle in the synchronous design. In
addition, the bit position signal P requires 14-b (1/4 of the
full bit width) registers, because there are bit positions
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where the P signal never varies from 0 at the beginning of
an iteration loop as shown in Fig.12. On the other hand,
these signals are dynamically preserved at dynamic nodes
in the self-timed design. Therefore, registers for the p, P
and R signals are not needed. Only a register for the Q
signal is needed for the mantissa rounding at the end of
the 55-b iteration. When the implementation uses a
register component with large layout size, the silicon area
difference between the synchronous and the self-timed
design becomes smaller. If we assume that the silicon area
of a 1-b register is about twice that of a 1-b CSA circuit,
the cost ratio between our self-timed implementation and
the synchronous circuit in radix 4 and radix 2 with
overlapped execution as shown in Table III is about 1.7
and 1.4, respectively. Moreover, considering other
additional hardware, e.g. a final adder in full bit width, an
incrementer for mantissa rounding, and so on, this ratio
will be smaller than 1.7. In addition, our implementation
of a shared division and square root unit requires a
relatively small additional hardware compared with a
division unit as shown in Table III. There are not any
disadvantages in a calculation speed by adding a square
root function. Consequently, the self-timed design can
achieve a very fast division and square root unit by
trading silicon area for speed at an acceptable rate.

7 Conclusions

(1) The shared division and square root unit with a self-
timed circuit requires a latency of 29.5ns to calculate the
mantissa of a 55-b result from the circuit simulation if a
0.3 12 m triple metal CMOS technology is assumed.

(2) The new implementation of the QSL block using a
3-b CPA and a 1-b OR-gate allows for fast execution of
the quotient selection for both division and square root
calculations without any former information on the
quotient selection.

(3) By using the on-the-fly digit decoding and the root
multiple formation blocks, the latency of square root is
shortened and becomes the same as that of division.

(4) The silicon area of the self-timed circuit
implementation of the shared division and square root
unit is estimated to be less than 1.7 times larger than the
conventional one using a synchronous circuit.
Considering the large advantage in latency of calculation,
the self-timed circuit implementation is applicable to
high-end computing systems which require a very high
performance in floating point division and square root
calculations.
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