Semi-Logarithmic Number Systems

Jean-Michel Muller and Arnaud Tisserand

CNRS, Laboratoire LIP

Ecole Normale Supérieure de Lyon
46 Allée d’Italie, 69364 LYON Cedex 07
FRANCE

Abstract
We present a new class of number systems, called
Semi-Logarithmic Number Systems, that constitute a
family of various compromises between floating-point
and logarithmic number systems. We propose arith-
metic algorithms for the Semi-Logarithmic Number
Systems, and we compare these number systems to

the classical floating-point or logarithmic number sys-
tems.

1 Introduction

The floating-point number system [5] is widely used
for representing real numbers in computers, but many
other number systems have been proposed. Among
them, one can cite: the logarithmic and sign-logarithm
number systems [8, 14, 13, 16, 7, 3, 9] the level-index
number system [12, 17, 18], some rational number sys-
tems [10], and some modifications of the floating-point
number system [19, 11]. Those systems were designed
to achieve various goals: e.g. to avoid overflows and
underflows, to improve the accuracy, or to accelerate
some computations. For instance, the sign-logarithm
number system, introduced by Swartzlander and Al-
expoulos [14], was designed in order to accelerate the
multiplications. As pointed out by the authors, “it
cannot replace conventional arithmetic units in gen-
eral purpose computers; rather it is intended to en-
hance the implementation of special-purpose proces-
sors for specialized applications”. That number sys-
tem is interesting for problems where the required pre-
cision is relatively low, and where the ratio

number of multiplications
number of additions

is relatively high. Roughly speaking, in such sys-
tems, the numbers are represented by their radix-2
logarithms written in fixed-point. The multiplications
and divisions are performed by adding or subtracting
the logarithms, and the additions and subtractions are

1063-6889/95 $4.00 © 1995 IEEE

201

Alexandre Scherbyna

State Technical University

Cathedral SAPU
31 Povitroflotski prospekt, KIEV, 252037
UKRAINE

performed using tables for the functions log,(1 + 27)
and log,(1 — 27), since:

{ log,(A + B)

log,(A — B)

The major drawback of the Logarithmic Number Sys-
tem arises when a high level of accuracy is required.
If the computations are performed with n-digit num-
bers, then a straightforward implementation requires
a table containing 2" elements. Interpolation tech-
niques allow the use of smaller tables (see [15, 2, 7]),
so that 32-bit logarithmic number systems become fea-
sible. Our purpose in this paper is to present a new
number system that allows the use of even smaller
tables. That number system will be a sort of compro-
mise between the logarithmic and the floating-point
number systems. More exactly, we show a family of
number systems, parameterized by a number k, and
the systems obtained for the two extremal values of
k are the floating-point and the logarithmic number
systems. With some of those number systems, multi-
plication and division will be almost as easy to perform
as in the logarithmic number system, whereas addition
and subtraction will require much smaller tables.

log;(A) + logy(1 + 2'°83(B)=logs(4))
logy(A) + log,(1 — 2108:(B)=10ga(4))

2 The Semi-logarithmic Number Sys-
tems

Let k be an integer, let = be a real number different
from 0, and define ex ; as the multiple of 2% satisfying

2¢ke < || < 9er.s 427" We immediately find

2% log, |z|
kz = % (1)
Define my ; as:
o _
k.o = 2ex,z
from
2% log, |z| — |2¥ log, |z|] 1
0< ok < %

we deduce:

|z

2ek,:

ISmk,,= <2-2*

Now let us bound the value 23 . This value is equal to
e . If we define o as 1/2%, by studying f(e) =1+
a —e*12(%), we easily deduce that f(a) is nonnegative
for 0 < a < 1, that is:

1

> (2
for k > 0. As a consequence, 1 <my o < 1+ %~ This
leads to the following definitions:

Definition 1 (Canonical Form) Let k be a positive
integer. Every non zero real number z will be repre-
sented in the Canonical form of the Semi-Logarithmic
Number System (SLNS for short) of Parameter k by
three values s, My . and er » satisfying:

® 3, =1

2¥F <14

® e i3 a multiple of 2%

e 1<m, < 23

® =8z X Mgy X 2=
Definition 2 (General Form) Let k be a positive
integer. Every non zero real number z will be repre-

sented in the General form of the SLNS of Parameter
k by three values s, Mgz and e; . satisfying:

e 5, =1

® epc i8 a multiple of 2-*

o1 <Smp < 142k

® I =8; XMy y X 2%k=

The representation of z with n mantissa bits in the
semi-logarithmic number system of parameter k will be
constituted by s, e ., and an n-fractional bit round-

ing of mp,.. In practice, since 1 < my, < 1+ 2°F,
My, has a binary representation of the form:

n digits
1.0000...000 xxxx. . .xx
k zeroes

Since the first £ + 1 digits of m; ; are known in
advance, there is no need to store them (this is sim-
ilar to the hidden bit of some radix-2 floating point
systems [5]). Exactly as for normalized floating point
representations, a special representation must be cho-
sen for zero. In the following, k is considered implicit,
and we write “m,” and “e,” instead of “my ;" and
“ek,.” Some points need to be emphasized:

202

e If k = 0, then the semi-logarithmic system of or-
der k is reduced to a n-mantissa digit floating-
point system.

e if k > n then the semi-logarithmic system of order
k is reduced to a logarithmic number system.

e the canonical form is a non-redundant represen-
tation. In that form, comparisons are easily per-
formed: if the format of the representation is,
from left to right, constituted by the sign, the ex-
ponent — which is a multiple of 2~* — and then
the mantissa, then comparisons are performed ex-
actly as if the numbers were integers.

o the general form is a redundant representation.
For instance, if £ = 1, then v/2 has two possi-
ble representations, namely 1.0000000. . .x 201 —
the exponent and mantissa are written in radix
2 — and 1.011010100000100111... x 290, Al-
though the comparisons are slightly more diffi-
cult with the general form — this is due to the
redundancy —, we will prefer that form, because
the condition “1 < my . < 1+ 2-%” is easier to
check than the condition “1 < m; , < 2% and
because the general form leads to simpler arith-
metic algorithms. Anyway, the conversion from
the general form to the canonical form is easily
performed: assume 8; X m; X 2°= is in general
form. Compare m, with p; = 22™". If m, < Pi
then the number is already represented in canon-
ical form. If my; > pi, then add 2% to e, and
divide m, by p;. The obtained result will be the
representation of z in canonical form.

So the parameter k makes it possible to choose var-
ious compromises bétween the floating-point number
system and the logarithmic number system.

Exactly as in floating-point arithmetic, there are
some possible rounding modes. For instance, if we
define Z(z) as the number obtained by rounding m,
(in canonical form) to zero, then we get:

n z
20y = oo x 72Ty
2n

Similarly, we define:

e rounding towards +oo:

I(z) = 85 x [2" X P T ,2:::|='l|/a’?] w2l2* log, I=1 /2*

e rounding to the nearest:

N() = . 7~ sty

on
where |u] stands for the integer which is the clos-

est to u (a special choice must be taken when
2"my ;18 an odd multiple of 1/2).

3 Basic Arithmetic Algorithms

Now, let us present basic algorithms for multiplica-
tion, division, addition, subtraction and comparison.
We must notice that as soon as k is larger than 2 7 2,
these algorithms — and especially the multlphcatlon
and division algorithms — become very simple.

3.1 Multiplication

Assume we want to multiply s, x m, x 2°= by
Sy X my X 2°¥ where these values are represented in
the Semi-Logarithmic Number System of parameter k
(general form). This can be done as follows:

1. Compute s = s, X8y, m=my; Xmy ande =e, +
ey. s is the sign of the final result, and m has the
form 1.000...0mg_1mgmy4y ...my,. It is worth
noting that if ¥ > n/2 then the multiplication
m = my X my can be reduced to an addition
(mgy = 14€1,and my = l4€7, with 1,62 < 2‘"/2,
therefore m, x my = 1+ €; + €2 + €;1¢€2, and the

product €;€5 can be ignored, since it is less than
2-").

. The product m; xm, is between 1 and 142~ F+14
2-2k therefore the digits of weight 2~%+! and 2-*
of m, say mx_, and m;, may be different from
zero. In such a case, define m* as the number
constituted by the digits of m of weight greater
than or equal to 2=%~!. That is to say: m*
1.000...0mg_1mgmi41. Look up the values o
and 2% defined below in a small (8-entry) table
(with mg_1, my and my,; as address bits):

| —logy(m*) x 2¥]
ok
where |u] is the integer which is the closest to u.

a =

3. computehn=mx2*and é=e—a. fm>1,
then 7n is the mantissa of the result, while é is
its exponent. If 7 < 1% then multiply m by 227"
and subtract 2% from é: this gives the mantissa
and the exponent of the result — by the way, as
previously, if £ > n/2 + 2, these multiplications
can be reduced to additions.

2Our simulations tend to show that that case is rather un-
likely to occur

203

Proof of the Algorithm

From
| - logy(m*) x 2¥]

we easily deduce

—log,m* — 271 < a < —log,m* +27%1

therefore
oo 2™ cmx20< x o277
m* -
The term 7 is equal to 1 + = = m — m* is less

than 2-*-T'and we have assumed m* > 1427 (if this
is not true, then the bits my;_; and m; are equal to
zero, and m is the mantissa of the result). Therefore

m 9-k-1
me ST
This gives
927 <(+27%) (14 5=
< 5=F (1+2 k=1) (14-27% 4 27%-1)
31_-1.2_5(1-*-2)(2 k+2 —-2k- 1+2 2k— 2)
< a=x (142 x 27k 4 27%)
1+2-k 2 —k
=g =142

If m x 2% < 1, then (since m/m* > 1):

227" < mx2 <1

therefore,

l<mx2*x22 <22 <1427F

3.2 Division
Assume we want to divide s; X m; x 2°= by

8y X my x 2°¥, where these values are represented in

the Semi-Logarithmic Number System of parameter &

(general form). This can be done as follows:

1. Compute m = =, I k > n/2, this division
can be reduced to a subtraction (m; = 1+ €,
and my = 1+ €3, with €1,€2 < 2-1/2 therefore
my/my =1+€e—€3—€162+€2+..., and all the
terms but 1+ €; — €3 can be neglected). Even if
k < n/2, the fact that m, is very close to 1 can
be used to accelerate the division process using an
iterative division method such as Goldschmidt’s
algorithm [1]. Also compute e = e, — ey and
8 = 8; X 8y (s is the sign of the final result).

2.from1<m, <1+2*and1<my <1+2°F,
we deduce 1.‘_%,; <m= 2= <14 2-k,
which implies 1 — 2% < m < 1+ 2-%. There-
fore, m has the form 1.000.. 00mpymeya...or
0.111...1mpyympyy... f mp = 0, then m is the

mantissa of the result, and e remains unchanged.
If mg =1, then

my

® Look up the values a and 2* defined below
in a small (2-entry) table (the values only
depend on my4,):

_ | —logy(m*) x 2*]
a= oF
where |u] is the integer which is the closest
to u, and m* = 0.111...1my,.

compute m = m x 2% and é = e — a. If
i 2> 1, then i is the mantissa of the result,
while € is its exponent. If s < 1 then mul-
tiply 1 by 227" and subtract 2-* from the
new computed value é: this gives the man-
tissa and the exponent of the result — as
previously, if k > n/2 + 2, these multiplica-
tions can be reduced to additions.

3.3 Addition and Subtraction

Assume we want to compute (s; X m, x 2¢<) &
(8y x my x 2°v), where these values are represented
in the Semi-Logarithmic Number System of param-
eter k (general form). Exactly as in floating-point
arithmetic, the basic method consists of “aligning”
the mantissas (i.e. rewriting both numbers with the
same exponent), adding the aligned mantissas and re-
normalizing the result. In the following, we assume
that e, is larger than or equal to ey (if this is not
true, exchange both numbers).

1. Define u = [e; —e,] and v = e, —e, —u (v satis-
fies 0 < |v| < 1/2, and u is an integer). Perform a
u-bit right shift of m,, then look up the value of
B =27"in a (k — 1)-address bit table. Multiply
the shifted m, by 8. This gives a new value my.

. Add (or subtract, depending on the signs) my,
and my. This gives a value p. From this, deduce
the sign of the result. If p < 0, replace p by |p]-
K p > 2, then perform a 1-bit right shift of p,
which gives a value m, and add 1 to e,, which
gives a value e; otherwise, perform a J-bit left
shift of p where j is such that after the shift, the
most significant “1” of p appears in the position
of weight 2°; this gives a value m, and subtract j
from e, this gives a value e (if all the digits of p

204

are zero the result of the operation is the special
code chosen for the number zero). m has the form
1lmy...mpmpyq...my,.

Define m* as 1.m; ... mgmi41 and look up the
values & and 2% defined below in a (k+1)-address
bit table (with m;, my, ..., miy; as address
bits):

|~ log,(m*) x 2¥]
a= o

.computem=mx2*andé=e—a. fm>1,

then 71 is the mantissa of the result, while é is

its exponent. If a < 1 then multiply i by 22"

and subtract 2-* from the new computed value

é: this gives the mantissa and the exponent of the

result — as previously, if k¥ > n/2 + 2, this last

multiplication can be reduced to an addition.

Provided that k > n/2+2, the only “large multipli-

cation” that appear in the arithmetic algorithms is the
calculation of 1 = m x 2% of the addition/subtraction
algorithm (this is a multiplication of two n-bit inte-
gers). It is possible to avoid this n x n multiplication
by slightly modifying the algorithm: if, instead of only
returning a and 2% the table used also returns 2-°,
then one can compute @ as (m—2"°) x 2 + 1. It
is easy to show that m — 2= < 2-%+1 therefore,
the multiplication (m — 2~%) x 2% is the multiplica-
tion of a n — k + 1-bit number by an n-bit number.
If k > n/2, this leads to a significant reduction in the
size of the required multiplier and the time of com-
putation. Moreover, this method does not increase
the amount of memory that is required: we only need
n —k + 1 bits of 2=* (since its k¥ — 1 most significant
bits are zeroed when they are added to m), and we
only need the most n — k + 1 bits of 2%, since the in-
fluence of its less significant bits is negligible.
The addition/subtraction algorithm is the only algo-
rithm that requires the use of a large table (that con-
tains 2¥+1 values). This should be compared to the
2" values that are required when implementing a Log-
arithmic Number System without interpolations. If a
table with 2¥+1 elements cannot be implemented, one
can use two tables with 2** +! elements, and decom-
pose the computation of i in two steps:

® Define j = %ﬂ In the first step, look up in a
(4 +1)-address bit table (with m;, my, ..., mj4,
as address bits the values a; and 2 satisfying:

_ [— logz(l.mlmz e m_,-+1) X 2k]
= oF

a)

and compute m(!) = m x 221, One can show that
m(1) is between 1 and 1+ 2-7+1.

look up in a (j + 1)-address bit table (with m}"),
mg-i)l, .«+y Mgy as address bits) the values a3
and 2°? satisfying:

OO m),)

| 108, (1.000. i) x 2
2’:

Qg =

and compute m = m(1) x2%2 and é = e—ay —as.
If @ > 1, then 7 is the mantissa of the result,
while ¢ is its exponent. If iz < 1 then multiply m
by 227" and subtract 2-* from the new computed

value é: this gives the mantissa and the exponent
of the result.

If tables of size 2*3*+1 are still too large, then both
previous steps can be decomposed again.
3.4 comparisons

Assume we want to compare £ = s; X m; X 2°< and
Y = Sy X my X 2°v, where these values are represented
in the Semi-Logarithmic Number System of parame-
ter k (general form). We assume that both numbers
are positive (if their signs are different, then the com-
parison is straightforward, and if both numbers are
negative, the required modification of the algorithm is
obvious). We also assume that e, > e, (if this is not

true, exchange x and y). The comparison can be done
as follows:

oeIfe;—ey >2%thenz >y
e if e; = ey then z > y if and only if m; > my

o if e, — e, = 2%, then multiply my by the pre-
computed value 2-2° — if k > n/2 then this
multiplication can be reduced to an addition —

this gives a value my. Then z > y if and only if
mgy > my

Static accuracy of the Semi-Loga-

rithmic Number System
In this section we evaluate the Maximum Relative
Representation Error (MRRE) and the Average Rel-
ative Representation Error (ARRE) [4] of the semi-
logarithmic number systems. We perform the compu-
tations for the case of the “rounding-to-zero” mode.
In the other cases, the computations are very similar.
Figure 1 presents the relative error %—Q for = be-
tween 1 and 2, n = 4, and k = 2. For the evaluation of

205

0.06 T

0.04 T

0.3 T

0.02 T

0.0t

1 1.2 1.4 1.6 1.8 2

Figure 1: Relative error between 1 and 2 for n = 4
and k=2

the average errors, we assume Hamming’s logarithmic
distribution of numbers [6], that is:

ﬁl—i where 1 <z <2

Maximum Relative Representation
Error (MRRE)

Assume z is between 1 and 2. We have:

P(z) =

4.1

n T
T12% log, =1 /2%
|2 x2L2 logg:J/Z
2n

z— Z(x) z— X 2[2" log, 7 /2*
z o z
. VELEN
This can be rewritten as: A x 22—:-, with:

A

2"z _ 2"z
2[?2" logg z_l /2% 2[_2" logg :J /3%

B = |2%logyz]| —2*log,z
The maximum possible values for A and B are 1 and
0, and it is possible to find z such that A is as close
as possible to 1, and B is as close as possible to zero.
From this we deduce:
MRRE =27" (3)

As a consequence, the floating-point system,
the logarithmic number system, and all the semi-
logarithmic number systems lead to the same value
of the MRRE.
4.2 Average Relative Representation Er-

ror (MRRE)

We want to evaluate

1
zln2

z — 2(z)

z

dz

ARRE = /1 ’ 4)

Table 1: ARRE and MRRE of the Semi-logarithmic Number Systems for different values of &

i Rounding to zero

Rounding to nearest

[MRRE _ARRE MRRE ARRE
[Floating Point || 2-" 0.36 x 2" 2-n-T 0.18x 2"
SLNS (k>2) || 27" [27" Th(@)(I—2"m2) | 2" | 2" *In(2)(1 -2 *1n2)
SINS(k=4) || 2™ 0.33x 277" 2~n-T 0.17x2°"
Logarithmic || 2-" 0.35 x 2" 2-n-1 0.17 x 2~"

Let us define A, as the domain where

|2% log, z| /2* equals c. In that domain '_f 2 is
equal to
2"z PA 2¢
(F ‘[?J)"m ®

From this, we deduce:

/ ! X dzz/ 1 xlxzcd
s, zIn2 a. zIn2 2 g%

Since A, is equal to [2", 2¢+1/ 2"), we deduce:
2c—n-1

/ 1 . d 1 1
A, 2In2 R T2 \2 " g

The extremal possible values for ¢ are 0 (for z = 1)

13
and Jlfl:';z-l-s==ln2(for:!:=2).
This gives (by defining { as ¢ x 2*):

z — 2Z(z)

z— 2(z)

[2*1n2]

2ix27*-n-1 1 1
ARRE = 2 n2 (2’-,‘2_; - 2(.'_._1),(2—&)

=0
|_2"ln2_| 2ix2"’—n-—1 22"‘ -1
2 2GFDxz*

i=0

Therefore:

ARRE ~ 20222 -ay gzz‘*—l

In2
~ 27" 1xIn(2) x (1-2"*In2)
using 227" ~ 142-*1n2. This approximation is not
valid for small values of k (say for k < 1). For k = 0

(which is the case of the floating-point representation),
the ARRE is equal to

/’ 1 2 I
L, zn2 22 T TIng

206

It must be noted that the ARRE for the semi-
logarithmic number system of parameter k is very
close to the ARRE of the logarithmic number system
(that is to say 27"~ 1In2) as soon as k > 2.

Table 1 sums up the different values of the maxi-
mum and average relative representation error for var-
ious cases. An immediate conclusion from this ta-
ble is that the floating-point, logarithmic and semi-
logarithmic number systems lead to approximately the
same accuracy.

5 Conclusion

We have proposed a new class of number systems,
called semi-logarithmic number systems. They con-
stitute a compromise between the floating point and
the logarithmic number systems: if the parameter k
is larger than n/2 + 2, multiplication and division are
almost as easily performed as in the logarithmic num-
ber systems, whereas addition and subtraction require
much smaller tables. The best value for k¥ must result
from a compromise: if k is large, the tables required for
addition may become huge, and if k is small, the algo-
rithms become complicated. Values of k slightly larger
than n/2 are probably the best choice. With the semi-
logarithmic number systems, the average and max-
imum representation errors are approximately equal
(in fact slightly better, but the difference is negligi-
ble) to those of the floating-point and the logarithmic
number systems. The domain of application of the
semi-logarithmic number systems is the same as that
of the logarithmic number systems: special purpose
processors for solving problems where the ratio

number of multiplications
number of additions

is relatively high.

References

[1] S.F. Anderson, J.G. Earle, R.E. Goldschmidt,
and D.M. Powers. The IBM 360/370 model
91: floating-point execution unit. IBM Journ.
of Res. and Dev., January 1967. Reprinted in

[2]

3]

[4]

[5]

(6]

[7]

[8]

[

[10]

[11]

E.E. Swartzlander, Computer Arithmetic, Vol. 1,
IEEE Computer Society Press Tutorial, 1990.

M.G. Arnold, T.A. Bailey, J.R. Cowles, and J.J.
Cupal. Redundant Logarithmic Number Systems.
In M.D. ercegovac and E.E. Swartzlander, ed-
itors, 9th Symposium on Computer Arithmetic,
pages 144-151, Santa Monica, CA, Sept. 1989.
IEEE Computer Society Press.

M.G. Arnold, T.A. Bailey, J.R. Cowles, and
M.D. Winkel. Applying features of IEEE 754 to
sign/logarithm arithmetic. IEEE Transactions on
Computers, 41(8):1040-1050, August 1992.

W.J. Cody. Static and dynamic numerical char-
acteristics of floating-point arithmetic. IEEE
Transactions on Computers, C-22(6):598-601,
June 1973.

D. Goldberg. What every computer scien-
tist should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5-47, March
1991.

R.W. Hamming. On the distribution of numbers.
Bell Systems Technical Journal, 49:1609-1625,
1970. Reprinted in E.E. Swartzlander, Computer
Arithmetic, Vol. 1, IEEE Computer Society Press
Tutorial, 1990.

H. Henkel. Improved addition for the logarithmic
number systems. IEEE Transactions on Acous-
tics, Speech, and Signal Processing, 37:301-303,
1989.

N.G. Kingsbury and P.J.W. Rayner. Digital fil-
tering using logarithmic arithmetic. FElectronic
Letters, 7:56-58, 1971. Reprinted in E.E. Swartz-
lander, Computer Arithmetic, Vol. 1, IEEE Com-
puter Society Press Tutorial, 1990.

D.M. Lewis. An accurate LNS arithmetic us-
ing interleaved memory function interpolator. In
MJ. Irwin E.E. Swartzlander and G. Jullien, ed-
itors, 11th Symposium on Computer Arithmetic,
pages 2-9, Los Alamitos, CA, June 1993. IEEE
Computer Society Press.

D.W. Matula and P. Kornerup. Finite Precision
Rational Arithmetic: Slash Number Systems.
IEEE Transactions on Computers, C-34(1):3-18,
January 1985.

S. Matsui and M. Iri. An overflow/underflow free
floating-point representation of numbers. Journal

207

[12]

[13]

(14]

[15]

[16]

[17]

[18]

[19)

of Information Processing, 4(3):123-133, 1981.
Reprinted in E.E. Swartzlander, Computer Arith-
metic, Vol. 2, IEEE Computer Society Press Tu-
torial, 1990.

F.W.J. Olver. A closed computer arithmetic.
In 8th IEEE Symposium on Computer Arith-
metic. IEEE Computer Society Press, May 1987.
Reprinted in E.E. Swartzlander, Computer Arith-
metic, Vol. 2, IEEE Computer Society Press Tu-
torial, 1990.

T. Stouraitis and F.J. Taylor. Floating-point to
logarithmic encoder error analysis. IEEE Trans-
actions on Computers, C-37:858-863, 1988.

E.E. Swartzlander and A.G. Alexpoulos. The
sign-logarithm number system. IEEE Transac-
tions on Compulers, December 1975. Reprinted
in E.E. Swartzlander, Computer Arithmetic, Vol.
1, IEEE Computer Society Press Tutorial, 1990.

F.J. Taylor. An Extended Precision Logarithmic
number System. IEEE Transactions on Acous-
tics, Speech, Signal Proc., 31:231, 1983.

F.J. Taylor, R. Gill, J. Joseph, and J. Radke.
A 20 bit logarithmic number system processor.
IEEE Transactions on Computers, 37(2):190-
200, February 1988.

P.R. Turner. Implementation and analysis of
extended SLI operations. In P. Kornerup and
D. Matula, editors, proceedings of the 10th IEEE
Symposium on Computer Arithmetic, pages 118—
126. IEEE Computer Society Press, June 1991.

P.R. Turner. Complex SLI arithmetic: represen-
tation, algorithms, and analysis. In M.J. Irwin
E.E. Swartzlander and G. Jullien, editors, 11th
Symposium on Computer Arithmetic, pages 18-
25, Los Alamitos, CA, June 1993. IEEE Com-
puter Society Press.

H. Yokoo. Overflow/underflow-free floating-
point number representations with self-delimiting
variable-length exponent fields. IEEE Trans-
actions on Computers, 41(8):1033-1039, August
1992.

