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Abstract
We present a new class of number systems, called
Semi-Logarithmic Number Systems, that constitute a
family of various compromises between floating-point
and logarithmic number systems. We propose arith-
metic algorithms for the Semi-Logarithmic Number
Systems, and we compare these number systems to

the classical floating-point or logarithmic number sys-
tems.

1 Introduction

The floating-point number system [5] is widely used
for representing real numbers in computers, but many
other number systems have been proposed. Among
them, one can cite: the logarithmic and sign-logarithm
number systems [8, 14, 13, 16, 7, 3, 9] the level-index
number system [12, 17, 18], some rational number sys-
tems [10], and some modifications of the floating-point
number system [19, 11]. Those systems were designed
to achieve various goals: e.g. to avoid overflows and
underflows, to improve the accuracy, or to accelerate
some computations. For instance, the sign-logarithm
number system, introduced by Swartzlander and Al-
expoulos [14], was designed in order to accelerate the
multiplications. As pointed out by the authors, “it
cannot replace conventional arithmetic units in gen-
eral purpose computers; rather it is intended to en-
hance the implementation of special-purpose proces-
sors for specialized applications”. That number sys-
tem is interesting for problems where the required pre-
cision is relatively low, and where the ratio

number of multiplications
number of additions

is relatively high. Roughly speaking, in such sys-
tems, the numbers are represented by their radix-2
logarithms written in fixed-point. The multiplications
and divisions are performed by adding or subtracting
the logarithms, and the additions and subtractions are
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performed using tables for the functions log,(1 + 27)
and log,(1 — 27), since:

{ log,(A + B)

log,(A — B)

The major drawback of the Logarithmic Number Sys-
tem arises when a high level of accuracy is required.
If the computations are performed with n-digit num-
bers, then a straightforward implementation requires
a table containing 2" elements. Interpolation tech-
niques allow the use of smaller tables (see [15, 2, 7]),
so that 32-bit logarithmic number systems become fea-
sible. Our purpose in this paper is to present a new
number system that allows the use of even smaller
tables. That number system will be a sort of compro-
mise between the logarithmic and the floating-point
number systems. More exactly, we show a family of
number systems, parameterized by a number k, and
the systems obtained for the two extremal values of
k are the floating-point and the logarithmic number
systems. With some of those number systems, multi-
plication and division will be almost as easy to perform
as in the logarithmic number system, whereas addition
and subtraction will require much smaller tables.

log;(A) + logy(1 + 2'°83(B)=logs(4))
logy(A) + log,(1 — 2108:(B)=10ga(4))

2 The Semi-logarithmic Number Sys-
tems

Let k be an integer, let = be a real number different
from 0, and define ex ; as the multiple of 2% satisfying

2¢ke < || < 9er.s 427" We immediately find

2% log, |z|
kz = % (1)
Define my ; as:
o _
k.o = 2ex,z
from
2% log, |z| — |2¥ log, |z|] 1
0< ok < %



we deduce:

|z

2ek,:

ISmk,,= <2-2*

Now let us bound the value 23 . This value is equal to
e . If we define o as 1/2%, by studying f(e) =1+
a —e*12(%), we easily deduce that f(a) is nonnegative
for 0 < a < 1, that is:

1

> (2
for k > 0. As a consequence, 1 <my o < 1+ %~ This
leads to the following definitions:

Definition 1 (Canonical Form) Let k be a positive
integer. Every non zero real number z will be repre-
sented in the Canonical form of the Semi-Logarithmic
Number System (SLNS for short) of Parameter k by
three values s, My . and er » satisfying:

® 3, =1

2¥F <14

® e i3 a multiple of 2%

e 1<m, < 23

® =8z X Mgy X 2=
Definition 2 (General Form) Let k be a positive
integer. Every non zero real number z will be repre-

sented in the General form of the SLNS of Parameter
k by three values s, Mgz and e; . satisfying:

e 5, =1

® epc i8 a multiple of 2-*

o1 <Smp < 142k

® I =8; XMy y X 2%k=

The representation of z with n mantissa bits in the
semi-logarithmic number system of parameter k will be
constituted by s, e ., and an n-fractional bit round-

ing of mp,.. In practice, since 1 < my, < 1+ 2°F,
My, has a binary representation of the form:

n digits
1.0000...000 xxxx. . .xx
k zeroes

Since the first £ + 1 digits of m; ; are known in
advance, there is no need to store them (this is sim-
ilar to the hidden bit of some radix-2 floating point
systems [5]). Exactly as for normalized floating point
representations, a special representation must be cho-
sen for zero. In the following, k is considered implicit,
and we write “m,” and “e,” instead of “my ;" and
“ek,.” Some points need to be emphasized:
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e If k = 0, then the semi-logarithmic system of or-
der k is reduced to a n-mantissa digit floating-
point system.

e if k > n then the semi-logarithmic system of order
k is reduced to a logarithmic number system.

e the canonical form is a non-redundant represen-
tation. In that form, comparisons are easily per-
formed: if the format of the representation is,
from left to right, constituted by the sign, the ex-
ponent — which is a multiple of 2~* — and then
the mantissa, then comparisons are performed ex-
actly as if the numbers were integers.

o the general form is a redundant representation.
For instance, if £ = 1, then v/2 has two possi-
ble representations, namely 1.0000000. . .x 201 —
the exponent and mantissa are written in radix
2 — and 1.011010100000100111... x 290, Al-
though the comparisons are slightly more diffi-
cult with the general form — this is due to the
redundancy —, we will prefer that form, because
the condition “1 < my . < 1+ 2-%” is easier to
check than the condition “1 < m; , < 2% and
because the general form leads to simpler arith-
metic algorithms. Anyway, the conversion from
the general form to the canonical form is easily
performed: assume 8; X m; X 2°= is in general
form. Compare m, with p; = 22™". If m, < Pi
then the number is already represented in canon-
ical form. If my; > pi, then add 2% to e, and
divide m, by p;. The obtained result will be the
representation of z in canonical form.

So the parameter k makes it possible to choose var-
ious compromises bétween the floating-point number
system and the logarithmic number system.

Exactly as in floating-point arithmetic, there are
some possible rounding modes. For instance, if we
define Z(z) as the number obtained by rounding m,
(in canonical form) to zero, then we get:

n z
20y = oo x 72Ty
2n

Similarly, we define:

e rounding towards +oo:

I(z) = 85 x [2" X P T ,2:::|='l|/a’?] w2l2* log, I=1 /2*




e rounding to the nearest:

N() = . 7~ sty

on
where |u] stands for the integer which is the clos-

est to u (a special choice must be taken when
2"my ;18 an odd multiple of 1/2).

3 Basic Arithmetic Algorithms

Now, let us present basic algorithms for multiplica-
tion, division, addition, subtraction and comparison.
We must notice that as soon as k is larger than 2 7 2,
these algorithms — and especially the multlphcatlon
and division algorithms — become very simple.

3.1 Multiplication

Assume we want to multiply s, x m, x 2°= by
Sy X my X 2°¥ where these values are represented in
the Semi-Logarithmic Number System of parameter k
(general form). This can be done as follows:

1. Compute s = s, X8y, m=my; Xmy ande =e, +
ey. s is the sign of the final result, and m has the
form 1.000...0mg_1mgmy4y ...my,. It is worth
noting that if ¥ > n/2 then the multiplication
m = my X my can be reduced to an addition
(mgy = 14€1,and my = l4€7, with 1,62 < 2‘"/2,
therefore m, x my = 1+ €; + €2 + €;1¢€2, and the

product €;€5 can be ignored, since it is less than
2-").

. The product m; xm, is between 1 and 142~ F+14
2-2k therefore the digits of weight 2~%+! and 2-*
of m, say mx_, and m;, may be different from
zero. In such a case, define m* as the number
constituted by the digits of m of weight greater
than or equal to 2=%~!. That is to say: m*
1.000...0mg_1mgmi41. Look up the values o
and 2% defined below in a small (8-entry) table
(with mg_1, my and my,; as address bits):

| —logy(m*) x 2¥]
ok
where |u] is the integer which is the closest to u.

a =

3. computehn=mx2*and é=e—a. fm>1,
then 7n is the mantissa of the result, while é is
its exponent. If 7 < 1% then multiply m by 227"
and subtract 2% from é: this gives the mantissa
and the exponent of the result — by the way, as
previously, if £ > n/2 + 2, these multiplications
can be reduced to additions.

2Our simulations tend to show that that case is rather un-
likely to occur
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Proof of the Algorithm

From
| - logy(m*) x 2¥]

we easily deduce

—log,m* — 271 < a < —log,m* +27%1

therefore
oo 2™ cmx20< x o277
m* -
The term 7 is equal to 1 + = = m — m* is less

than 2-*-T'and we have assumed m* > 1427 (if this
is not true, then the bits my;_; and m; are equal to
zero, and m is the mantissa of the result). Therefore

m 9-k-1
me ST
This gives
927 <(+27%) (14 5=
< 5=F (1+2 k=1) (14-27% 4 27%-1)
31_-1.2_5(1-*-2)(2 k+2 —-2k- 1+2 2k— 2)
< a=x (142 x 27k 4 27%)
1+2-k 2 —k
=g =142

If m x 2% < 1, then (since m/m* > 1):

227" < mx2 <1

therefore,

l<mx2*x22 <22 <1427F

3.2 Division
Assume we want to divide s; X m; x 2°= by

8y X my x 2°¥, where these values are represented in

the Semi-Logarithmic Number System of parameter &

(general form). This can be done as follows:

1. Compute m = =, I k > n/2, this division
can be reduced to a subtraction (m; = 1+ €,
and my = 1+ €3, with €1,€2 < 2-1/2 therefore
my/my =1+€e—€3—€162+€2+..., and all the
terms but 1+ €; — €3 can be neglected). Even if
k < n/2, the fact that m, is very close to 1 can
be used to accelerate the division process using an
iterative division method such as Goldschmidt’s
algorithm [1]. Also compute e = e, — ey and
8 = 8; X 8y (s is the sign of the final result).



2.from1<m, <1+2*and1<my <1+2°F,
we deduce 1.‘_%,; <m= 2= <14 2-k,
which implies 1 — 2% < m < 1+ 2-%. There-
fore, m has the form 1.000.. 00mpymeya...or
0.111...1mpyympyy... f mp = 0, then m is the

mantissa of the result, and e remains unchanged.
If mg =1, then

my

® Look up the values a and 2* defined below
in a small (2-entry) table (the values only
depend on my4,):

_ | —logy(m*) x 2*]
a= oF
where |u] is the integer which is the closest
to u, and m* = 0.111...1my,.

compute m = m x 2% and é = e — a. If
i 2> 1, then i is the mantissa of the result,
while € is its exponent. If s < 1 then mul-
tiply 1 by 227" and subtract 2-* from the
new computed value é: this gives the man-
tissa and the exponent of the result — as
previously, if k > n/2 + 2, these multiplica-
tions can be reduced to additions.

3.3 Addition and Subtraction

Assume we want to compute (s; X m, x 2¢<) &
(8y x my x 2°v), where these values are represented
in the Semi-Logarithmic Number System of param-
eter k (general form). Exactly as in floating-point
arithmetic, the basic method consists of “aligning”
the mantissas (i.e. rewriting both numbers with the
same exponent), adding the aligned mantissas and re-
normalizing the result. In the following, we assume
that e, is larger than or equal to ey (if this is not
true, exchange both numbers).

1. Define u = [e; —e,] and v = e, —e, —u (v satis-
fies 0 < |v| < 1/2, and u is an integer). Perform a
u-bit right shift of m,, then look up the value of
B =27"in a (k — 1)-address bit table. Multiply
the shifted m, by 8. This gives a new value my.

. Add (or subtract, depending on the signs) my,
and my. This gives a value p. From this, deduce
the sign of the result. If p < 0, replace p by |p]-
K p > 2, then perform a 1-bit right shift of p,
which gives a value m, and add 1 to e,, which
gives a value e; otherwise, perform a J-bit left
shift of p where j is such that after the shift, the
most significant “1” of p appears in the position
of weight 2°; this gives a value m, and subtract j
from e, this gives a value e (if all the digits of p
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are zero the result of the operation is the special
code chosen for the number zero). m has the form
1lmy...mpmpyq...my,.

Define m* as 1.m; ... mgmi41 and look up the
values & and 2% defined below in a (k+1)-address
bit table (with m;, my, ..., miy; as address
bits):

|~ log,(m*) x 2¥]
a= o

.computem=mx2*andé=e—a. fm>1,

then 71 is the mantissa of the result, while é is

its exponent. If a < 1 then multiply i by 22"

and subtract 2-* from the new computed value

é: this gives the mantissa and the exponent of the

result — as previously, if k¥ > n/2 + 2, this last

multiplication can be reduced to an addition.

Provided that k > n/2+2, the only “large multipli-

cation” that appear in the arithmetic algorithms is the
calculation of 1 = m x 2% of the addition/subtraction
algorithm (this is a multiplication of two n-bit inte-
gers). It is possible to avoid this n x n multiplication
by slightly modifying the algorithm: if, instead of only
returning a and 2% the table used also returns 2-°,
then one can compute @ as (m—2"°) x 2 + 1. It
is easy to show that m — 2= < 2-%+1  therefore,
the multiplication (m — 2~%) x 2% is the multiplica-
tion of a n — k + 1-bit number by an n-bit number.
If k > n/2, this leads to a significant reduction in the
size of the required multiplier and the time of com-
putation. Moreover, this method does not increase
the amount of memory that is required: we only need
n —k + 1 bits of 2=* (since its k¥ — 1 most significant
bits are zeroed when they are added to m), and we
only need the most n — k + 1 bits of 2%, since the in-
fluence of its less significant bits is negligible.
The addition/subtraction algorithm is the only algo-
rithm that requires the use of a large table (that con-
tains 2¥+1 values). This should be compared to the
2" values that are required when implementing a Log-
arithmic Number System without interpolations. If a
table with 2¥+1 elements cannot be implemented, one
can use two tables with 2** +! elements, and decom-
pose the computation of i in two steps:

® Define j = %ﬂ In the first step, look up in a
(4 +1)-address bit table (with m;, my, ..., mj4,
as address bits the values a; and 2 satisfying:

_ [— logz(l.mlmz e m_,-+1) X 2k]
= oF

a)



and compute m(!) = m x 221, One can show that
m(1) is between 1 and 1+ 2-7+1.

look up in a (j + 1)-address bit table (with m}"),
mg-i)l, .«+y Mgy as address bits) the values a3
and 2°? satisfying:

OO m), )

| 108, (1.000. i) x 2
2’:

Qg =

and compute m = m(1) x2%2 and é = e—ay —as.
If @ > 1, then 7 is the mantissa of the result,
while ¢ is its exponent. If iz < 1 then multiply m
by 227" and subtract 2-* from the new computed

value é: this gives the mantissa and the exponent
of the result.

If tables of size 2*3*+1 are still too large, then both
previous steps can be decomposed again.
3.4 comparisons

Assume we want to compare £ = s; X m; X 2°< and
Y = Sy X my X 2°v, where these values are represented
in the Semi-Logarithmic Number System of parame-
ter k (general form). We assume that both numbers
are positive (if their signs are different, then the com-
parison is straightforward, and if both numbers are
negative, the required modification of the algorithm is
obvious). We also assume that e, > e, (if this is not

true, exchange x and y). The comparison can be done
as follows:

oeIfe;—ey >2%thenz >y
e if e; = ey then z > y if and only if m; > my

o if e, — e, = 2%, then multiply my by the pre-
computed value 2-2° — if k > n/2 then this
multiplication can be reduced to an addition —

this gives a value my. Then z > y if and only if
mgy > my

Static accuracy of the Semi-Loga-

rithmic Number System
In this section we evaluate the Maximum Relative
Representation Error (MRRE) and the Average Rel-
ative Representation Error (ARRE) [4] of the semi-
logarithmic number systems. We perform the compu-
tations for the case of the “rounding-to-zero” mode.
In the other cases, the computations are very similar.
Figure 1 presents the relative error %—Q for = be-
tween 1 and 2, n = 4, and k = 2. For the evaluation of
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Figure 1: Relative error between 1 and 2 for n = 4
and k=2

the average errors, we assume Hamming’s logarithmic
distribution of numbers [6], that is:

ﬁl—i where 1 <z <2

Maximum Relative Representation
Error (MRRE)

Assume z is between 1 and 2. We have:

P(z) =

4.1

n T
T12% log, =1 /2%
|2 x2L2 logg:J/Z
2n

z— Z(x) z— X 2[2" log, 7 /2*
z o z
. VELEN
This can be rewritten as: A x 22—:-, with:

A

2"z _ 2"z
2[?2" logg z_l /2% 2[_2" logg :J /3%

B = |2%logyz]| —2*log,z
The maximum possible values for A and B are 1 and
0, and it is possible to find z such that A is as close
as possible to 1, and B is as close as possible to zero.
From this we deduce:
MRRE =27" (3)

As a consequence, the floating-point system,
the logarithmic number system, and all the semi-
logarithmic number systems lead to the same value
of the MRRE.
4.2 Average Relative Representation Er-

ror (MRRE)

We want to evaluate

1
zln2

z — 2(z)

z

dz

ARRE = /1 ’ 4)




Table 1: ARRE and MRRE of the Semi-logarithmic Number Systems for different values of &

i Rounding to zero

Rounding to nearest

[ MRRE _ARRE MRRE ARRE
[ Floating Point || 2-" 0.36 x 2" 2-n-T 0.18x 2"
SLNS (k>2) || 27" [ 27" Th(@)(I—2"m2) | 2" | 2" *In(2)(1 -2 *1n2)
SINS(k=4) || 2™ 0.33x 277" 2~n-T 0.17x2°"
Logarithmic || 2-" 0.35 x 2" 2-n-1 0.17 x 2~"

Let us define A, as the domain where

|2% log, z| /2* equals c. In that domain '_f 2 is
equal to
2"z PA 2¢
(F ‘[?J)"m ®

From this, we deduce:

/ ! X dzz/ 1 xlxzcd
s, zIn2 a. zIn2 2 g%

Since A, is equal to [2", 2¢+1/ 2"), we deduce:
2c—n-1

/ 1 . d 1 1
A, 2In2 R T2 \2 " g

The extremal possible values for ¢ are 0 (for z = 1)

13
and Jlfl:';z-l-s==ln2(for:!:=2).
This gives (by defining { as ¢ x 2*):

z — 2Z(z)

z— 2(z)

[2*1n2]

2ix27*-n-1 1 1
ARRE = 2 n2 (2’-,‘2_; - 2(.'_._1),(2—&)

=0
|_2"ln2_| 2ix2"’—n-—1 22"‘ -1
2 2GFDxz*

i=0

Therefore:

ARRE ~ 20222 -ay gzz‘*—l

In2
~ 27" 1xIn(2) x (1-2"*In2)
using 227" ~ 142-*1n2. This approximation is not
valid for small values of k (say for k < 1). For k = 0

(which is the case of the floating-point representation),
the ARRE is equal to

/’ 1 2 I
L, zn2 22 T TIng
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It must be noted that the ARRE for the semi-
logarithmic number system of parameter k is very
close to the ARRE of the logarithmic number system
(that is to say 27"~ 1In2) as soon as k > 2.

Table 1 sums up the different values of the maxi-
mum and average relative representation error for var-
ious cases. An immediate conclusion from this ta-
ble is that the floating-point, logarithmic and semi-
logarithmic number systems lead to approximately the
same accuracy.

5 Conclusion

We have proposed a new class of number systems,
called semi-logarithmic number systems. They con-
stitute a compromise between the floating point and
the logarithmic number systems: if the parameter k
is larger than n/2 + 2, multiplication and division are
almost as easily performed as in the logarithmic num-
ber systems, whereas addition and subtraction require
much smaller tables. The best value for k¥ must result
from a compromise: if k is large, the tables required for
addition may become huge, and if k is small, the algo-
rithms become complicated. Values of k slightly larger
than n/2 are probably the best choice. With the semi-
logarithmic number systems, the average and max-
imum representation errors are approximately equal
(in fact slightly better, but the difference is negligi-
ble) to those of the floating-point and the logarithmic
number systems. The domain of application of the
semi-logarithmic number systems is the same as that
of the logarithmic number systems: special purpose
processors for solving problems where the ratio

number of multiplications
number of additions

is relatively high.
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