Simplifying Quotient Determination in High-Radix Modular Multiplication*

Holger Orup
Computer Science Department
Aarhus University
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, DENMARK
e-mail: orup@daimi.aau.dk

Abstract

Until now the use of high radices to implement modu-
lar multiplication has been questioned, because it involves
complex determination of quotient digits for the modulo re-
duction. This paper presents algorithms that are obtained
through rewriting of Montgomery’s algorithm. The deter-
mination of quotients becomes trivial and the cycle time
becomes independent of the choice of radix. It is discussed
how the critical path in the loop can be reduced to a single
shift-and-add operation. This implies that a true speed up
is achieved by choosing higher radices.

1 Introduction

Since the introduction of public key crypto systems [1, 12]
considerable effort has been directed toward fast hardware
implementation of modular multiplication of very large in-
teger operands. A review of techniques for speeding up
modular multiplication is included in [4]. It is recognized
that quotient determination, i.e. determination of the mul-
tiple of modulus to subtract at each reduction stage, is the
critical operation [4, 13]. This is the reason why, during
the last five years, Montgomery’s modular multiplication
method [7] has been considered the best candidate for faster
implementations. Compared to traditional SRT division,
the method requires additional pre- and post-processing,
but the time for this additional processing becomes neg-
ligible when several modular multiplications have to be
performed on intermediate results, as is the case when cal-
culating modular exponentials.

In our previous work [11, 10], we have studied the
possibilities of speeding up modular multiplication by us-
ing higher radices. A single chip modular exponentiation
processor using radix 32 multiplication has been success-

*This work has been supported by the Danish Natural Science Re-
search Council, grant no. 5.21.08.02.

1063-6889/95 $4.00 © 1995 IEEE

193

fully implemented [9]. It is based on a traditional division
method and is capable of exponentiating 560 bit operands
in less than 5.5 ms, corresponding to a throughput of more
than 100 Kbit/s, at a clocking frequency of 25 MHz. Ac-
cording to our knowledge, this is the fastest single chip im-
plementation for performing modular exponentials. Only
one implementation [13] has been reported to be faster. The
high radix approach has been criticized [4, 13] for a large
hardware depth (meaning a slow clocking frequency), for
a large hardware consumption and for having a non-trivial
determination of quotient digits. This is also our experi-
ence, but the high radix approach gives potential for sub-
stantial speed improvements of modular multiplication. In
the rest of this paper we will rewrite the original algorithm
of Montgomery and show how this leads to a high-radix
algorithm, suited for hardware implementation, where the
quotient determination becomes trivial, and the obtainable
clocking frequency is independent of the choice of radix.

2 High-radix modular multiplication algo-
rithm

In this section we will rewrite Montgomery’s algorithm
through a series of development steps. We will show how
this leads to an algorithm, where the quotient determina-
tion is trivial. Each of the presented algorithms is supplied
with an invariant, stating the algebraic relation between the
stimulus and the intermediate result, and an upper bound
for the range of the intermediate result. The range condi-
tion of stimulus has been matched such that the response of
the modular multiplication algorithm can be used as stim-
ulus for the same algorithm without additional processing.
This has implications on the usefulness of the algorithms
for e.g. modular exponentiation. All algorithms are ex-
pressed in terms of non-redundant radix 2* digit sets. This
is done in order to limit the description, but the ideas ap-
ply as well to other digit sets. See [5] for a high-radix
version of Montgomery’s algorithm using a symmetric re-

dundant digit set. Additional processing, that may have
to be performed when Montgomery’s method for modular
multiplication is used, is discussed in {7, 4, 5). The first
algorithm is a radix 2* version of the algorithm proposed
by Peter L. Montgomery [7] for multiplying two integers
modulo M.

Algorithm 1
(Radix 2% Montgomery Modular Multiplication)

Stimulus:

A modulus M > 2 with gcd(M,2) = 1 and positive
integers k,n such that 4M < 2%,

The integers R™' and M’ are given such that
(2*"R~') mod M = 1 and (-MM’) mod 2* = 1.
Integer multiplicand A, where 0 < A < 2M, and
integer multiplier B = Y"7_1(2%)b;, where digit
b; €{0,1,...,2* ~ 1} and 0 < B < 2M.

Response:
An integer Sy, such that S, = ABR™' (mod M) and
0< 85, <2M.

Method:
So =0
fori:=0ton—1do

L:g := (((S: + b;A) mod 2¥) M’) mod 2F;
S,'+1 = (S, + M+ b,A) div 2k;
end
Where:

The following invariant holds at label L:

i-1 i-1
M8 = AN b2M 4 MY g2M A
3=0 =0
0 < S
< A+ M.
Correctness: The condition ged(M,2) = 1 is sufficient

to ensure the existence of R~! and M’. To establish the
invariant, note that ¢; = (S;+b;A)M’ (mod 2*)sog; M =
—(S; + b;A) (mod 2*) and, hence, that 2* divides S; +
&M + b; A in the updating of S;,;. The invariant holds
trivially for ¢ = 0. Assuming it holds for i = ¢, from the
updating of Sgy1, 25Spy) = S¢ + @M + beA, we then
obtain:

-1 -1

A BN 4 MY g2k
i=0 =0

+2%g, M + 2%b, A

[4 [4
A b2+ MY g0k,
j=0 =0

ket g, |

194

Hence the first part of the invariant holds fori = £+ 1. The
last part follows from 0 < ¢; < 2¥—1and0 < b; < 2% —1:

2k(e+1) _ 1
k(e+1) < ok e 1
2 Ser1 < A-(2F-1) 1
ok(e+1) _ 1
- k — ———————————
+M- (2% -1) T

Ser1 < A+ M.

By inserting conditions of stimulus we find upon exit from
the loop:

n—1 .
AB+M-)_q;2" and

3=0

2knsn
0 2kng,

2M -2M + M - 2kn

M .2k 4 M2k,

<
<
<

So R~'2kn S, = S, (mod M) = ABR™! (mod M) and
0 < S. < 2M which proves the correctness of Algo-
rithm 1. a

Montgomery’s method for modular multiplication has
been implemented for a standard DSP processor [2] and for
a board of field programmable gate arrays [13]. Further,
in [3, 17, 4, 6] some suggestions for hardware implementa-
tions are described. Apart from the DSP implementation,
where the radix is determined from the available instruc-
tion set, all proposals for a hardware implementation end
up with choosing radix 2 or radix 4.

However, for a given operand size, the number of iter-
ations in Algorithm 1 can be reduced by choosing a larger
radix. But it is not obvious that this leads to a smaller com-
putation time. The time for an iteration increases for higher
radices. This is mainly due to the quotient determination
which requires a k bit addition and a k x k bit multiplica-
tion. In the updating of S; 1, the calculation of multiples
and addition can be efficiently performed by constant time
adders, e.g. carry save adders, [11, 10]. Still the carry-out
from the k least significant bits of S; + ¢; M + b; A must be
computed in each iteration. Because the two statements of
the loop are strictly sequential, we are not able to reduce
the computation time by overlapping the execution of the
statements.

2.1 Avoiding multiplication in quotient determi-
nation

In the case of radix 2 , i.e. kK = 1, the multiplication
operation in the quotient determination in Algorithm 1 is
avoided. Because M’ mod 2 = 1, the statement reduces to
g := (S;+b;A) mod 2. For all values of modulus, having

the property M’ mod 2* = 1, the multiplication operation
is avoided in the general case of radix 2. This observation
leads us to transform modulus M to a new value M that
possesses the wanted property. The transformation is sim-
ple, M = (M’ mod 2¥) M, and only has to be performed
once. The resulting algorithm is:

Algorithm 2
(Avoiding Multiplication in Quotient Determination)

Stimulus:
A modulus M > 2 with ged(M,2) = 1 and nd positive
integers k,n such that 4M < 2¥" where M is given
by M = (M’ mod 25)M.
The integers R™' and M’ are given such that
(2*"R~') mod M = 1 and (-MM’) mod 2% = 1.
Integer multiplicand A, where 0 < A < 2M, and
integer multiplier B =YY" (2")'b,, where digit
b € {0,1,...,25 — 1} and 0 < B < 2M.

Response:
An integer Sy, such that S, = ABR™! (mod M) and
0< S, <2M.

Method:
So =
fori:=0ton —1do

L: ¢ = (Si + b;4) mod 2k,
Siv1 = (Si + M +bA) div 2F;
end
Where:

The following invariant holds at label L:

i-1 i-1
28 = A b2+ M) g2M A\
0 < S;
< A+ M.
Correctness: Algorithm 2 is verified by using M=

(M’ mod 2%)M and M = —1 (mod 2¥).

Transforming M into M corresponds to moving the
common factor M’ (mod 2*) from the quotient determi-
nation to the updating of S;,;. Hereby, a single initial
multiplication replaces a multiplication in each iteration.
The penalty of using this algorithm is a larger range of the
resulting Sy, and a value of n that has increased by at most
one.

195

2.2 Avoiding addition in quotient determination

We can further reduce the quotient determination com-
plexity by replacing A by 2F A. This technique is also used
in [4] and [5]. Since the expression (S; + b;A) mod 2% in
Algorithm 2 then reduces to S; mod 2¥, we have avoided
the addition operation. In the update of S,+1 we replace
(Si + &M + b;A) div 2% by (S; + ¢: M) div 2% + b;A.
Compared to Algorithm 2 the number of iterations is in-
creased by one to compensate for the extra factor 2:
Algorithm 3
(Avoiding Multiplication and Addition in Quotient Deter-
mination)
Stimulus:
A modulus M > 2 with gcd(M,2) = 1 and positive
mtegers k,n such that 4M < 2%, where M is given
= (M’ mod 2%¥) M.
The integers R~' and M’ are given such that
(2*"R~1Ymod M = 1 and (—-MM’) mod 2’fv= 1.
Integer multiplicand A, where 0 < A < 2M, and
integer multiplier B = Y o (2%)'b;, where digit
by = 0, b; € {0,1,...,2 —1} for0 < i < n
and0 < B < 2M.
Response:
An integer Sp41 wiere Sp41 =
and 0 < Sﬂ+1 < 2M.
Method:
So = 0;
fori:=0tondo
Ly: ¢
Ly: Sin
end
Where:
The following invariant holds at label L:

i—1

ABR-! (mod M)

S; mod 2F;
= (S + ¢ M) div 2F + b;A;

i—1

2kis; %A b2+ M-S g2t N
3=0 §=0
0 < S
< 2*A+M.

Correctness: To verify the response, we note that g = 0
and b,, = 0, hence upon exit from the loop we get:

n n
KNS 0 = 2543 b2+ M) g2k
=0 j=0
n-1] o n—1)
2 = A b2M+ MY 28,
7=0 =0

S0 Sp41 = ABR™! (mod M) and0 < Sp4y <2M. O

Noting that ¢; = S; mod 2* and that M + 1 is divisible
by 2*, we can rewrite the statement at label L, in the loop:

(Si + ¢ M) div 2% + b, A

Si div 2% + (¢; M + S; mod 2*) div 2* + b, A
S; div 2% + (q;(M + 1)) div 2* + b, A

S div 2% + g;((M + 1) div 2¥) + b;A.

The same approach is used for a radix 2 version of Mont-

gomery modular multiplication in [6]. By calculating
(M + 1) div 2* once for each new value of M, this is
a simplification of the statement at label Ly. Now we do
not have to calculate the carry-out from the k least signifi-
cant bits of S; + ¢; M in the updating statement.

2.3 Utilizing quotient pipelining in modular mul-
tiplication

In [13] Montgomery’s modular multiplication algorithm
has been modified by applying quotient pipelining. The
idea is to delay the use of quotient digit ¢;_g, deter-
mined from information available in iteration i — d, by
d iterations. The effect is that d iterations are now avail-
able for determining a quotient. In [13] the penalty is
d extra iterations and an increased quotient digit range,
gi-a € {0,1,...,2%d+)-1} In Algorithm 4 we have
pipelined the quotient determination of Algorithm 3 with-
out increasing the quotient digit range but instead increas-
ing the range of the result:

Algorithm 4
(Modular Multiplication with Quotient Pipelining)

Stimulus:
A modulus M > 2 with gcd(M,2) = 1 and positive
integers k,n such that 4AM < 2%, where M is given
by M = (M’ mod 2*(4+V))\M and integer d > O is a
delay parameter.
Integer R™", where (2*"R~1) mod M = 1, and in-
teger M', where (—MM’) mod 2%@+) = | gre
given. ~
Integer multiplicand A, where 0 < A < 2M, and
integer multiplier B = Y "¥%(2%)ib,, where digit
b € {0,1,....,2* — 1} for0 < i < n, b; = 0 for
i>nand0 < B <2M.

Response:
Integer Sy 442 where Sp 442 = ABR™' (mod M)
and 0 < Sn+d+2 <2M.

196

Method:
So:=0; ¢-q4:=0; g_g41:=0; ..
fori:=0ton+ddo
Ly: ¢ := S mod?2%
Lz . Si+l = S,’ div ?j+
gi—a((M + 1) div 25(@+D) 4 p, A;

- g-1:=0;

end;
d-1 _
Sntds2 =258 441 + E Gnti+12%;
=0
Where:

The following invariant holds at label L, :

i—1

oki S + Z qj2kj

J=i-d
i—1 — t—d-1
= 2%4-3 b2M 4+ M- Y g2 N\
=0 j=0
0 < S
< 2¥(A+ M).

Correctness: To establish the invariant, note that M=
—1 (mod 2¥(4+1)) 50 2%(d+1) divides M + 1 and note that
2k(S; div 2¥) = S; — g;. The invariant holds trivially for
+ = 0. Assuming it holds for i = ¢, from the updating of
Se+1 at label Ly, we then obtain:

2K(E+D G, |

24 (5, div 2F)

+ 2k(t+l)qt_d((ﬁ+ 1) div 2k(d+l))

+ Zk(l-H)blA

2%(Se ~ ge) + 25" Dgp_g(M + 1) + 25+, 4

-1 —d-1
= %A b9+ M-) g2M
=0 =0
-1)
_ E g2 — 2klg, 4 ok(-d)g,
i=t—d
+ 2k(l—d)q‘_dﬁ+ 2k(t+l)b¢A
14) — 4—d) [4)
= 2%A.) b4 M- g2t - Y g2k,
i=0 =0 i=t+1-d

Hence the first part of the invariant holds for i = ¢ + 1.
The last part is established by noting that,

M +1.< () —)M < 2+,

So (M + 1) div 2@+1) < M. The updating of Sg;; at
label L, then gives:

Ser1 < (2%(A+ M)) div 2k
+@F-1)M+(2k-14
< 2KA+ M).

Hence the last part of the invariant holds for i = £ + 1.
To verify the response, we note that go = 0 and b; = 0 for
J 2 n, hence upon exit of the loop we get:

n+d
2k(n+d+l)Sn+d+l + Z qukj
j=n+1
n+d "
= 2%4-) b2 + M) g0k
7=0 =0
d—1
228 tar1 + Y gajr12¥)
3=0

n—1 n—1
A- Z b,-2’°j + H . Z qj+12kj.
=0 =0
So after the last statement of the algorithm we obtain
Sn+d+2 = 14.812_1 (mod M) and 0 < Sn+d+2 <2M.0O
The last statement in Algorithm 4 is just a left shift of
Sn+d+1 Where the d last quotient digits are shifted in from
the right. Algorithm 4 is clearly an improvement of the
quotient pipelined version in [13]: There is no calculation
involved in the quotient determination. The quotient digit
range has not increased by a factor of 29, otherwise imply-
ing an increased complexity in the calculation of multiples
Gi—d((M+1) div 25(@+D), where (M +1) div 2¥@+D jsa
pre-calculated integer. However, compared to the quotient
pipelined algorithm in [13], Algorithm 4 has an increased
range of the result. In [13] the pipelining technique was
applied in order to perform overlapping calculations of
quotient digits, hereby reducing the hardware depth for a
radix 4 modular multiplication algorithm. In Algorithm 4 it
could seem meaningless to apply pipelining because of the
trivial quotient determination. The calculation of multiples
becomes more time consuming for higher radices, but we
use the pipeline technique for performing overlapping cal-
culations of the multiples g;_4((M + 1) div 2%(¢+1) and
b; A. All of these operands are available after iteration i —d,
and the resulting multiples are not needed before iteration
i. If convenient, we could even perform an addition of
the multiples before iteration . Then we have reduced the
time for an iteration to the time for a shift and an addition
of two words, S;4; := S; div 2% + T;_4. Because of the
increased range of the result and the increased number of
iterations, we should choose d to be as small as possible.
The calculation of the multiples can be performed in about
log, k steps by two pipelined adder-trees if a redundant
representation of the resulting muitiples is allowed [16].

197

3 Example hardware architecture

To get an impression of the speed potential of Algorithm 4

‘we will discuss a hardware architecture for executing the

algorithm. Figure 1 shows an example architecture where
k = 8 and d = 3, i.e. the radix is 2® and the architecture
has 3 pipeline stages. The architecture includes registers

B

bit3

A (M + 1) div 28G+D
l register I I

multiplexor net

register]

multiplexor net

last 3 quotient digits

Figure 1: Hardware architecture using radix 2% and
pipelined into 3 stages.

for the operands A, B and (M + 1) div 28G+1)_ A small
register for holding the last 3 quotient digit (g;—1,¢;—2
and ¢;_3) is also depicted. This register is used in the
last statement of Algorithm 4. All intermediate results
are redundant represented and an 4-2 adder is used for
adding two redundant represented integers. As described
in [10], a multiple of A or (M + 1) div 283+ can be
calculated by feeding the binary representation through a
multiplexor network. Then the multiple is represented as
the sum of a number of integers. In this case, where the
radix is 28, the number of integers that represents a multiple
is four. These four integers can then be compressed into
two integers by using an 4-2 adder. Hence, a multiple
is redundant represented as two integers. In the figure,
the upper pairs of multiplexor networks and 4-2 adders
are used for calculating the multiples of A and of (M +
1) div 283+, After this calculation, the multiples are

added by a third 4-2 adder giving T3 = b; A +g;_3(M +
1) div 25CG+1), Finally, T;_; is added to S; div 28 by the
4-2 adder shown in the lowest part of the figure. All of
the multiplexor networks and 4-2 adders are latched. This
implements the pipeline.

The cycle time of Algorithm 4 (the time for computing
a single iteration of the loop) is determined by the critical
path, i.e. the circuitry with the longest delay between two
latches. Since the delay of the multiplexor network is
approximately the delay of a single 4-1 multiplexor plus
the set-up delay of a latch, the cycle time of Algorithm 4
is seen to be equal to the (longer) delay of an 4-2 adder.
In modern CMOS technologies the delay of the 4-2 adders
(including the latch set-up delay) is, by a conservative
estimate, less than 5 ns. As an example, we will perform
modular multiplication with 512 bit operands. If n is set
to 69 the stimulus conditions of Algorithm 4 are fulfilled.
Then the number of cycles in the loop is 69 + 3 + 1 = 73.
Since the first multiple of A, byA, is delayed by 3 stages
in the pipeline, the first cycle of the loop can begin after
3 clock periods. So, from the input are available to the
result is present 76 clock periods are elapsed. With a 5 ns
clock period this is 380 ns. Note that the result is redundant
represented and that A and B, in this example, are assumed
to be non-redundant represented. This means that the
result has to be converted to non-redundant representation
before it can be used as input for a new multiplication. The
conversion must be performed by a carry completion adder.
According to Algorithm 4 the result can be up to 8-69—1 =
551 bit wide. The fastest carry completion adders for these
very large operands have a delay proportional to log, 551
but they are quit large in comparison with a carry ripple
adder. In [13] a carry ripple adder with an asynchronous
carry completion detection circuit is proposed. It is utilized
that the average carry propagation length is the logarithm of
the operand bit length, i.c. log, 551 < 10 for our example.
If we estimate the average time for a conversion from
redundant to non—redundant representation to be 10 clock
periods a total of 83 clock periods, or 415 ns, is used for
the multiplication.

In the above estimate for the computing time it turns
out that about 15% of the time is used for conversion into
non-redundant representation. As described in [10) and
in [14] it is also possible to perform multiplications where
the inputs are in redundant representation. Regarding the
multiplier B, this does not imply serious trouble: The
multiplier is scanned digit by digit from the least signifi-
cantend, so a conversion into non-redundant representation
may be done on-the-fly. The required circuitry for a regis-
ter capable of holding a redundant represented operand will
be about double the circuitry for holding a non-redundant
represented operand. Regarding the multiplicand A, the

198

penalty for using a redundant representation is larger: The
required circuitry for computation of the multiples b; A will
expand and the depth of the adder-tree will increase. This
means that the delay parameter d must be increased. So, it
is possible to obtain a further improvement of the compu-
tation time at the cost of additional circuitry.

In the computation of modular exponentials, also with
512 bit operands, the average number of required multipli-
cations is 768 for a sequential algorithm. This can be done
in 768 - 415ns~ 319us, which corresponds to a throughput
of more than 1.6 Mbit/s. If a parallel algorithm is applied,
see [10], the computing time is equal to the time for per-
forming 512 multiplications, 212 us, and a throughput of
more than 2.4 Mbit/s is achieved. This is four times faster
than the fastest known implementation [13]. Furthermore,
if the modulus is a composite, and the prime factorization
is known, it possible to speed up the computation by us-
ing the Chinese Remainder Theorem. This technique is
applied in [13] to improve the time by about a factor of
four.

The hardware consumption for the example architec-
ture in Figure 1 is two multiplexor networks, four latched
4-2 adders and registers for the input operands. Each
multiplexor network consists of four rows of latched 4-1
multiplexors and each 4-2 adder consists of two rows of
fulladders where one of these is latched. Compared to
the exponentiation processor in [9] this is an increase in
circuitry of two rows of latched fulladders, two rows of
latched 4-1 multiplexors plus the cost for modifying six
rows of 4-1 multiplexors into latched 41 multiplexors.
In [9] a large quotient determination unit and a carry com-
pletion adder are also included. There is no longer a need
for the quotient determination unit. The circuitry cost of
the primitive hardware components used in the exponen-
tiation processor is analyzed in [8]. The transistor count
for the complete exponentiation processor is 304,000. We
estimate that the architecture in Figure 4, capable of multi-
plying 512 bit operands, can be implemented by not more
than 300,000 transistors.

The above example architecture illustrates the poten-
tial of Algorithm 4. We could achieve even higher speeds
by choosing higher radices and adding more circuitry to the
architecture. A radix 2! version could be implemented
by adding a level in the trees for calculating multiples.
This would increase the number of pipeline stages by one,
increase the number of latched 4-2 adders by four and
double the circuitry for the multiplexor networks. The
number of clock periods for a 512 bit operand multipli-
cation would then be 4 + 38 + 5 = 47 for producing a
redundant represented result and 57 for producing a non—
redundant represented result. This is about 31% reduction
of the total computing time for the radix 28 version. A 512

bit exponentiation would have a throughput of 2.3 Mbit/s
if the sequential exponentiation algorithm is applied or 3.5
Mbit/s if the parallel algorithm is applied.

4 Summary

In this paper we have rewritten a high-radix version of
Montgomery’s modular multiplication algorithm in order
to obtain a trivial quotient determination, where the mul-
tiplication and addition operation is avoided by a simple
transformation of modulus. The result is a quotient deter-
mination that is reduced to a trivial extraction of the least
significant digit of the partial modular product, S; mod 2*.
By applying a pipeline technique we have enabled overlap-
ping computations. This implies that the critical computa-
tion path can be reduced to a shift-and-add operation that
is efficiently implemented by a constant time adder. We
have achieved a modular multiplication algorithm, where
the critical hardware path is independent of the choice of
radix. For a fixed high radix, the cost of the proposed algo-
rithms, over Montgomery’s algorithm, is a few extra iter-
ation cycles, additional pre-processing for the transforma-
tion of modulus and a wider range of the final result. When
several modular multiplications have to be performed on
intermediate results, this cost is more than compensated by
the faster time for an iteration and the possibility to reduce
the number of iterations through the choice of radix. By
pipelining the formations of the multiples, the only limita-
tion to the choice of radix is the size of the circuitry, not
the cycle time.

References

[1] Whitfield Diffie and Martin E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information Theory,
IT-22(6):644-654, November 1976.

[2] StephenR.Dusséand Burton S. Kaliski Jr. A Cryptograhpic
Library for the Motorola DSP56000. In Ivan B. Damgird,
editor, Advances in Cryptology — EUROCRYPT ’90. Pro-
ceedings, volume 473 of Lecture Notes in Computer Sci-

ence, pages 230-244. Springer-Verlag, Berlin, 1991.

[3] Stephen E. Eldridge. A Faster Modular Multiplication Al-
gorithm. International Journal of Computer Mathematics,

40:63-68, 1991.

{4] Stephen E. Eldridge and Colin D. Walter. Hardware Imple-
mentation of Montgomery’s Modular Multiplication Algo-
rithm. IEEE Transactions on Computers,C-42(6):693-699,

June 1993.

[5] Peter Kornerup. High-Radix Modular Multiplication for
Cryptosystems. In Earl Swartzlander, Jr., Mary Jane Ir-
win, and Graham Jullien, editors, Proceedings. 11th IEEE
Symposium on Computer Arithmetic, pages 277-283. IEEE

Computer Society Press, Los Alamitos, California, 1993.

199

(6]

(7]

(8]

[

[10]

(11]

[12]

(13]

(14)

[15]

(16]

(17]

Peter Kornerup. A Systolic, Linear-Array Multiplier for
a Class of Right-Shift Algorithms. IEEE Transactions on
Computers, C-43(8):892-898, August 1994,

Peter L. Montgomery. Modular Multiplication Without
Trial Division. Mathematics of Computation, 44(170):519—
521, April 1985.

Holger Orup. Area Reduction for Bit-Sliced Layouts using
a Commercial Development System. This article is not
published. It is available from the author.

Holger Orup. A 100Kbit/s Single Chip Modular Exponen-
tiation Processor. In HOT Chips VI, Symposium Record,
pages 53-59. Stanford University, 1994. Only the slides
from the presentation at HOT Chips VI are printed in the
Symposium Record. An abstract is available from the au-
thor.

Holger Orup and Peter Kornerup. A High-Radix Hardware
Algorithm for Calculating the Exponential ME Modulo
N. In Peter Kornerup and David W. Matula, editors, Pro-
ceedings. 10th IEEE Symposium on Computer Arithmetic,
pages 51-56. IEEE Computer Society Press, Los Alamitos,
California, 1991.

Holger Orup, Erik Svendsen, and Erik Andreasen. VICTOR
an Efficient RSA Hardware Implementation. In Ivan B.
Damgird, editor, Advances in Cryptology ~ EUROCRYPT
'90. Proceedings, volume 473 of Lecture Notes in Computer
Science, pages 245-252. Springer-Verlag, Berlin, 1991.

R. L. Rivest, A. Shamir, and L.Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosys-
tems. Communications of the ACM, 21(2):120-126, Febru-
ary 1978.

M. Shand and J. Vuillemin. Fast Implementations of RSA
Cryptography. In Earl Swartzlander, Jr., Mary Jane Ir-
win, and Graham Jullien, editors, Proceedings. 11th IEEE
Symposium on Computer Arithmetic, pages 252-259. IEEE
Computer Society Press, Los Alamitos, California, 1993.

Naofumi Takagi. A Radix-4 Modular Multiplication Hard-
ware Algorithm Efficient for Iterative Modular Multiplica-
tions. In Peter Komerup and David W. Matula, editors,
Proceedings. 10th IEEE Symposium on Computer Arith-
metic, pages 35-42. IEEE Computer Society Press, Los
Alamitos, California, 1991. This article also appears as
[15].

Naofumi Takagi. A Radix-4 Modular Multiplication Hard-
ware Algorithm for Modular Exponentiation. /EEE Trans-
actions on Computers, C-41(8):949-956, August 1992.

C. S. Wallace. A Suggestion for a Fast Multiplier. /EEE
Transactions on Electronic Computers, EC-13(1):14-17,
February 1964.

Colin D. Walter. Systolic Modular Multiplication. /EEE
Transactions on Computers, C-42(3):376-378, March
1993.

