Reducing the Number of Counters Needed for Integer Multiplication

Robert M. Owens

Raminder S. Bajwa

Mary Jane Irwin

Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA., 16802

Abstract

In this paper we consider the problem of multiplying
reasonably small integers using fewer counters than that
required by straightforward partial product accumulation.
Not surprisingly the method we use is based on the ob-
servation that integer multiplication can be formulated as
aperiodic convolution. However, instead of using some-
thing like the Fast Fourier Transform to compute the ape-
riodic convolution, we use what are known as ¢ “fast” con-
volution algorithms. In this way we can construct multi-
pliers for as small as eighteen bit integers which use fewer
counters than that required by straightforward partial prod-
uct accumulation. Because of the perceived “overhead”
involved with an aperiodic formulation of integer multi-
plication, the ability to do this goes somewhat against the
conventional wisdom that aperiodic formulation of integer
maultiplication gains an advantage over a straightforward
partial product formulation only for fairly large integers.

1 Partial Product Formulation

We will first consider the partial product formula-
tion of integer multiplication. The formulation we de-
scribe is not new and has previously been considered
in several different forms by several authors [4, 3]. A
good overview of this formulation is given in [1]; we
present only a sketch in the following. We assume
in this paper that an integer representation system is
defined by integer numbers r, the radix, and n, the
precision. Within a given system, an integer z is rep-
resentation by a sequence of integer numbers z¢, z,
<<y Zn-1 such that

n-1
$
zzzz;r

i=0

and z; < r. The equivalent binary precision b of a
given representation system is given by

b = nlog,(r)

1063-6889/95 $4.00 © 1995 IEEE

38

In turn, a given representation system is said to have
b bits of precision. We will say in this paper that
two different representation systems are equivalent if
they have the same binary precision. We assume in
this paper that the radix is a power of two. Un-
der this assumption translation of a number between
equivalent representation systems is trivial (it is just
a regrouping of the underlying bits).

We will now consider the partial product formula-
tion of the product of two b bit integers. In this case,
the product is given by

i=0
b~1b-1
DM LT
=0 j=0

It is instructive to view this summation as an array
where initially each element is one of the z;y;’s such
that the elements in the i** row are those z;y’s,
such that j iand 0 < k < b and the ele-
ments in the #** column are those z;y;’s, such that
i+ k i. Note that each z;y; has the value of
either 0 or 1. Hence we have an array of 0 and 1’s.
The final product can be obtained by consecutively
applying a counter to each column of the array. Each
application of counters reduces the number of rows.
Application terminates when there is only a single
row.

Counters can be identified by a pair (p, ¢) of num-
bers. The first number p indicates the number of in-
puts (which are all input from a given row). The sec-
ond number ¢ indicates the number of outputs (which
are all output to consecutive columns). In this paper
we will consider only the use of (3, 2) and (2, 2)
counters. It is then straightforward to show [3] that
for b > 3 the minimum number of counters needed
to reduce the partial produce array is b(b — 2) (3, 2)
counters and b (2, 2) counters. In Table 1 we present

Table 1
Partial Product Costs

bits [(3, 2) (2, 2) cost
counters | counters
6 24 6 426
12 120 12 2004
18 288 18 4734
24 528 24 8616
30 840 30 13650
36 1224 36 19836
60 3480 60 56100
126 15624 126 250866

data for multipliers of some selected sizes whose im-
plementation is based on a partial product formula-
tion.

The figures in the column labeled cost in Table 1
represent the sum of gate inputs for all the gates
needed to implement the counters. This cost function
1s used by many VLSI CAD programs to estimate the
chip area needed to implement given circuit.

2 Aperiodic Formulation

We will now consider the aperiodic formulation of
the product of two b bit integers. In this case, the
product is given by

i=0

where
n-1
z = E ZTiYi-j
ji=0

Note that the z;’s are nothing more than the aperiodic
convolution of the z;’s and the y;’s. However, instead
of using something like the Fast Fourier Transform
to compute this aperiodic convolution, we will con-
sider in this paper using two of the so called “fast”
convolution algorithms.

We will first assume that n = 2 and that 2 evenly
divides b. Hence, while z and y still have b bits of
precision, zo, 1, Yo, and y; only have b/2 bit of pre-
cision. The first fast convolution algorithm [2] we will
consider is given in Figure 1.

Note that the fast algorithm uses only three smaller
multiplications while the straightforward way to com-

39

Gy = ZTo bo = wo
a =z by =y
ay = 2o+ 21 by =y + u
m; = a;b;, i = 0, 1, 2
20 = my
21 =My —mg — My
Z2 = m

Fig. 1. Fast Aperiodic Convolution Algorithm (n = 2)

Table 2
Operation Breakdown for n = 2

([Operation | Number I
addition of two b/2 bit integers
producing a /2 + 1 bit sum 1
multiplication of two 5/2 bit integers
producing a b bit product 2
multiplication of two b/2 + 1 bit integers
producing a b+ 2 bit product 1
addition of three b + 2 bit integers
producing a b+ 1 bit sum 1
addition of three b + 1 bit integers
producing a 2b bit sum 1

pute the aperiodic convolution needs four. A simple
argument shows that three smaller multiplications is
minimal for n = 2. This algorithm can be used
recursively to build multipliers which use order wise
fewer counters than partial product multipliers. How-
ever, in this paper we will assume that the smaller
submultiplications are simply implemented as partial
product multipliers.

Note that while it would initially appear tempting
to generate the final product z directly from the m;’s,
we instead elect to first generate the z;’s and then in
turn generate the final product z from the z;’s. We
do this for the following reason. If the final product
were generated directly then some of the m;’s would
need to be negated. In some cases this would result
in values of approximately 2b bit of precision having
to be added together in order to generate the final
product. However, in generating the 2;’s while some
of the m;’s still need to be negated, the result has at
most b + 1 bits of precision. This occurs because the
z;’s themselves are both positive and have at most
b+ 1 bits of precision.

An examination of the algorithm then reveals that
the following operations are required.

A program was written to compute the number of
counters needed for multipliers whose implementation
is based on this fast convolution algorithm. The data
produced by this program is conservative in that the

Table 3

Fast n = 2 Algorithm Costs
" bits | (3, 2) (2, 2) cost | over-
counters | counters head
6 36 16 688 0.573
12 129 28 2260 0.354
18 276 40 4696 0.256
24 477 52 7996 0.201
30 732 64 12160 | 0.166
36 1041 76 17188 | 0.141
60 2817 124 45940 | 0.088
126 12156 256 196288 | 0.043

program does not exploit many tricks which can be
used to reduce the number of counters. In Table 3 we
present data for multipliers of some select sizes.

The figures in the column labeled overhead in Table
3 represent the percentage of counters not being used
to directly implement the underlying smaller submul-
tipliers.

We will now assume that n = 3 and that 3 evenly
divides b. Hence, while z and y still have b bits of
precision, 2o, 1, Z2, Yo, ¥1, and y; only have b/3 bit
of precision. The second fast convolution algorithm
we will consider is given in Figure 2. While we can
site no reference for this algorithm, we do not claim
it’s discovery.

Note that this fast algorithm uses only six smaller
multiplications while the straightforward way to com-
pute the aperiodic convolution needs nine. An ex-
haustive search shows that six smaller multiplications
is minimal for n 3. Note that periodic convo-
lution needs a minimum of 5 multiplications but we
are using aperiodic convolution. Again this algorithm
can be used recursively to build multipliers which use
order wise fewer counters than either partial prod-

a = Zo bo = wo
a =5 b = n
ay = z bz = y2
a3 = o+ 21 b3 =y + n
ag = 2o+ 22 by = yo + 2
as =z, + 22 bs =y + ¥
m; =a,-b.-, i=0, 1, ...,5
20 = My
2 = m3g —myg — My
Z2 = my —my — my + My
z3 = mg — my — my
24 = M2

Fig. 2. Fast Aperiodic Convolution Algorithm (n = 3)

40

Table 4
Operation Breakdown for n = 3
[[Operation | Number ||
addition of two b/3 bit integers
producing a 5/3 + 1 bit sum 3
multiplication of two b/3 bit integers
producing a 2b/3 bit product 3
multiplication of two 5/3 + 1 bit integers
producing a 2b/3 + 2 bit product 3
addition of three 2b/3 + 2 bit integers
2 producing a 2b/3 + 1 bit sum 2
addition of four 2b/3 + 2 bit integers
producing a 2b/3 4 2 bit sum 1
addition of five 2b/3 + 2 bit integers
producing a 2b bit sum 1
Table 5
Fast n = 3 Algorithm Costs
" bits | (3, 2) 2, 2) cost | over-
counters | counters head
6 55 31 1097 0.773
12 163 49 2951 0.562
18 319 67 5573 0.443
24 523 85 8963 0.366
30 775 103 13121 | 0.312
36 1075 121 18047 | 0.271
60 2755 193 45431 | 0.179
126 11335 391 184097 | 0.093

uct multipliers or the previous fast convolution mul-
tiplers. However, as stated earlier, we will assume
that the smaller submultiplications are simply imple-
mented as partial product multipliers.

Note that as with the previously presented fast con-
volution algorithm, we elect to first generate the 2;’s
and then in turn generate the final product z. An
examination of the algorithm then reveals that the
following operations are required.

Again the program we wrote was used to compute
the number of counters needed for multipliers whose
implementation is based on this fast convolution al-
gorithm. In Table 5 we present data for multipliers
of some select sizes.

3 Comparison

Figure 3 concisely captures the relative (to partial
product multipliers) costs of the different multiplier
formulation.

As can be seen, partial product multipler multi-
plers are the most cost efficient for less than 18 bits.

Overhead
-
o

++R:8,
o8} Banae S SR

0.8 A 1 i " L L -y
40 50 60
Number of bits

Fig. 3. Multiplier cost comparison

The fast convolution n = 2 multiplers are the most
cost efficient for between 18 and 54 bits. Lastly, the
fast convolution n = 3 multiplers are the most
cost efficient for more than 54 bits. Since, floating
point word (mantissa) sizes from 24 to 112 are com-
monly used, both of the fast convolution multiplier
have their “place”.

4 Conclusions

We have shown in this paper that it is possible to
multiply reasonably small integers using fewer coun-
ters than that required by straightforward partial
product accumulation. However, we have not con-
sidered a number of other issues. One of these issues
is routing area. The cost function we have chosen
is thought to be a good estimation of gate area but
completely ignores chip area devoted solely to inter-
connect. Another of these issues is speed. Both of
these issues are far more complex and interrelated
than they appear at first. For example as is the case
with partial product based multipliers, speed can be
increased by using more than the minimal number
of counters. Also there is the same tradeoff between
regularity of layout and speed. We are continuing to
investigate these issues.

References

[1] L. Dadda. On Parallel Digital Multipliers. Alta
Freq, pages 574-580, 1976.

[2] H. J. Nussbaumer. Fast Fourier Transform and
Convolution Algorithms. Springer-Verlag, 1982.

41

[3] W. J. Stenzel. A Class Of Compact High-Speed
Parallel Multipliers Schemes. Technical Report
TR UIUCDCS-R-75-756, Department of Com-
puter Science, University of Illinois at Urbana,
Sept. 1975.

[4] C. G. Wallace. A suggestion for a fast multiplier.
IEEE Trans. on Computers, pages 14-17, Feb.
1964.

