167 MHz Radix-8 Divide and Square Root Using Overlapped Radix-2 Stages

J. Arjun Prabhu and Gregory B. Zyner

SPARC Technology Business, Sun Microsystems, Inc.
Mountain View, California

Abstract - UltraSPARC’s IEEE-754 compliant floating
point divide and square root implementation is presented.
Three overlapping stages of SRT radix-2 quotient selection
logic enable an effective radix-8 calculation at 167 MHz
while only a single radix-2 quotient selection logic delay is
seen in the critical path. Speculative partial remainder and
quotient calculation in the main datapath also improves
cycle time. The quotient selection logic is slightly modified
to prevent the formation of a negative partial remainder
for exact results. This saves latency and hardware as the
partial remainder no longer needs to be restored before
calculating the sticky bit for rounding.

I. INTRODUCTION

The SRT algorithm provides a means of performing
non-restoring division [1], [2]. More bits of quotient are
developed per iteration with higher radices, but at a cost
of greater complexity. A simple SRT radix-2 floating
point implementation (Fig. 1) requires that the divisor
and dividend both be positive and normalized,
1/2<D, Dividend <1 . The initial shifted partial remainder,
2PR[0], is the dividend. Future partial remainders are
developed according to the following equation,

PR;.; = 2PR; -g;,D. (1

where q is the quotient digit {-1, 0, or +1} which is
solely determined by the value of the previous partial
remainder and is independent of the divisor, an
attractive feature for square root. Discussion of the
quotient digit selection function will be deferred until
the next section. The partial remainder is often kept in
redundant form so that carry-save adders can be used
instead of slower and larger carry-propagate adders. The
partial remainder is converted to non-redundant form
after the desired precision is reached. The quotient digits
can also be kept in redundant form and converted to
non-redundant form at the end, or the quotient and
quotient minus one (Q and Q-1) can be generated on the
fly according to rules developed by Ercegovac [3].

The SRT algorithm can also be used for square root

1063-6889/95 $4.00 © 1995 IEEE

155

allowing utilization of existing division hardware. The
simplified square root equation looks surprisingly
similar to that of division [4]:

PR;,; = 2PR; -q;, ((2Q;+q;, 127* 1), 2

The terms in parentheses are the effective divisor. For
square root, the so-called divisor is a function of the
previous quotient bits (root bits to be more precise) [4],
hence on-the-fly quotient generation is required.

Quotient selection logic (gslc) for a radix-2 SRT
implementation will be discussed in Sections II and III
with emphasis on how it can be modified to better
constrain the partial remainder in the case of exact
results. Preventing the partial remainder from
unnecessarily going negative for exact results leads to a
one cycle savings in generating the sticky bit.

It will be demonstrated in Section IV that overlapping
radix-2 quotient selection logic stages can provide an
effective timing solution for generating multiple bits of
quotient per cycle. The timing benefits of speculative
datapath calculations of the partial remainder, quotient,
and next divisor occurring in conjunction with quotient
digit selection will be shown. A comparison of
overlapped radix-2 versus radix-4 implementations will

also be discussed.
n-bit datapath

[—
v | S |
[2PR,

Q.Q-1 logic

CinL—l iff g=1

shift left by one

quotient digit (selects)
Gisv) -q

3:2C8A

T

PR,y

Fig. 1. Simple SRT Radix-2 Divide, Square Root Implementation
II. QUOTIENT SELECTION LOGIC

The logic which generates quotient selection digits is
the central element of an SRT division implementation.

Early research indicated that only the upper three bits of
the redundant partial remainder are necessary inputs for a
radix-2 quotient digit selection function [5), [6].
However, more recent studies have shown that four bits
are required to correctly generate quotient digit selection
digits and keep the partial remainder within prescribed
bounds [7], [8], [9], [10]. The selection rules can be

expressed as:
1,if 0S2PR,$3/2

0,if 2PR; = -1/2
-1,if -5/2<2PR; -1

9iv1 = 3)

The quotient selection logic is designed to guess
correctly or overestimate the true quotient result. e.g.
predicting 1 instead of 0, or O instead of -1. The SRT
algorithm corrects itself later if the wrong quotient digit
has been chosen.

TABLE 1
TRUTH TABLE FOR RADIX-2 QUOTIENT SELECTION LOGIC
2PR, cotimased quoticnt digity, | comments
1000 don’t care 2PR never <-5/2
100.1 don’t care 2PR never <-5/2
101.0 -1* 2PR never < -5/2, but 2PR could
be 101.1 when 2PR, is 101.0
101.1 1
1100 1
110.1 1
111.0 -1 2PRcould = 111.1
1111 0 2PR could = 000.0
000.0 +1
000.1 +1
001.0 +1
001.1 +1
010.0 don’t care 2PR never > 312
010.1 don't care 2PR never > 312
o110 don’t care 2PR ncver > 32
o11.1 don’t care 2PR never > 3/2

The truth table for SRT radix-2 quotient selection logic
has several don’t care inputs because the partial
remainder is constrained -5/2 <2PR,<3/2 . The estimated
partial remainder is always less than or equal to the true
partial remainder because the lower bits are ignored.
There is a single case, 2PR,;, = 101.0, where the
estimated partial remainder can appear to be out of
bounds. By construction, the real partial remainder is
within the negative bound, so -1 is the appropriate
quotient digit to select. There are two other cases where
the quotient digit selected based on the estimated partial
remainder differs from what would be chosen based on
the real partial remainder. However, in both of these
instances of “incorrect” quotient digit selection, the
quotient is not underestimated and the partial remainder
is kept within prescribed bounds, so the final result will
still be generated correctly.

For increased testability, most designs today are

156

scannable. All registers are stitched together in a chain to
allow a special test mode known as scan. During scan,
external values can be optionally be shifted into these
registers, the system can be clocked for one or more
cycles, and the new register values can be shifted out and
observed. These capabilities aid in functional and timing
debug.

While loading the scan chain, the partial remainder flip
flops can take on any value. Logic simplification for
don’t care cases should ensure that a unique quotient
digit is always selected (i.e. the quotient digits selects are
1-hot) for all input combinations to prevent contention of
multiplexer selects. The simplified truth table follows.

TABLE 11
SMPLIFIED QSLC TRUTH TABLE

2PR; cxtionmsed
Oxx.x

quoticat digit,,

+1
11 0

1xx.x -1

II. STICKY BIT CALCULATION

Floating point operations generate a sticky bit along
with the result in order to indicate whether the result is
inexact. The sticky bit is also used with the guard and
round bits for rounding according to IEEE Standard 754
[11]. For divide and square root operations, the sticky bit
is determined by checking if the final partial remainder is
non-zero. The final partial remainder is defined as the
partial remainder after the desired number of quotients
bits have been calculated. Since the partial remainder is
in redundant form, a carry-propagate addition is
performed prior to zero-detection (See Fig. 3a).

A. Exact Results

At first glance, the above solution seems perfectly
reasonable for all final partial remainder possibilities,
positive or negative. However, in the rare case where the
result is exact, the final partial remainder will be equal to
the negative divisor. For example, consider a number
divided by itself (Fig.2). Since the dividend is positive
and normalized, the quotient digit from the first iteration
is one. For the next iteration, the partial remainder is zero
which causes the second quotient digit to be one. For all
subsequent iterations, the partial remainder will equal the
negative divisor and quotient digits of minus one will be
selected. After the last iteration, performing a sign detect
on the final partial remainder indicates that Q- I should be
chosen which is in fact the correct result. However, this
same final partial remainder is non-zero which
erroneously suggests an inexact result.

PRI0] = init dividend/2 = D/2 ql] =+1 Q=1 Q-1=0
PR[1]=2(D/2)-(DD = 0 q2}] =+1 Q=11 Q-1=10
PR[2]=2(0) -(1)D =-D q3) =1 Q=101 Q-1=100
PR[3]=2(-D) -(-1)D =-D qM4] =1 Q=1001 Q-1=1000
PR[n]=2(-D) -(-1)D =-D qn+]=-1 Q=100..001 Q-1=100..000

Fig. 2. Divide iterations for a number divided by itself.

This problem extends to any division operation for
which the result should be exact because the quotient
selection logic is defined to guess positive for a zero
partial remainder and correct for it later. The simplest
solution is to restore negative final partial remainders by
adding the divisor before performing zero-detection.
Given the area expense of an additional carry-propagate
adder, the solution should try to take advantage of
existing hardware. Two ways to achieve this are shown
in Figs. 3b and 3c.

shift left
by one

@) ©

Fig. 3. Zero-detection and sign-detection on the final partial remainder.

@

Option 1 (Fig. 3b) takes advantage of existing csa
hardware for restoration while option 2 (Fig. 3c) re-uses
the carry-propagate adder. Both alternatives add extra
multiplexer hardware and require the sticky bit
calculation to take an additional cycle when the
preliminary final partial remainder is negative. The first
option especially impacts cycle time for basic iterations
since the multiplexer is on the partial remainder
formation critical path. Variable latency instructions in a
pipelined superscalar processor make instruction
scheduling and bypass control logic much more complex
and is generally undesirable. Thus the net effect of
restoring negative partial remainders is to add another
cycle of latency for all divide and square root operations.

B. Improved Quotient Selection Algorithm

Enhancing the quotient digit selection function to
prevent formation of a negative partial remainder for
exact results is an ideal solution because it saves
hardware and improves latency. This can be achieved by
choosing a quotient digit of zero instead of one when the
partial remainder is zero. This suggests choosing g=0 for
2PR,;~=000.0. Since the quotient digit selection function
works on an estimated partial remainder, caution is
required. An estimated partial remainder (shifted) could
appear to be less than 1/2 when, in reality, adding the

157

lower bits causes a 1 to propagate into the lowermost bit
of the upper four bit partial remainder.

If the full partial remainder is 1/2 or above, g=1 should
always be chosen since the divisor is constrained

172<D<1 . The true quotient bit could be one. It will be
corrected later if the divisor was greater than the partial
remainder. There is no way to correct for under-
estimation if g=0 is selected when g=1 was the correct
quotient digit. The result will be irreversibly incorrect
and the next partial remainder will be out of bounds.

Performing binary addition on the full partial
remainder eliminates the estimation problem, but defeats
the timing benefits of SRT division. g=0 could be chosen
only when the full partial remainder is zero, but such
detection would also be detrimental to timing.

A simple alternative is to detect a possible carry
propagation into the least significant bit of the partial
remainder. This can be done by looking at the fifth most
significant bits of the redundant partial remainder,
PRg msp-4 and PR .o 4. If they are both zero, then
propagation is not possible, and g=0 should be chosen;
otherwise g=1 should be chosen. Even though lower bits
of the partial remainder could be non-zero, the partial
remainder is still within prescribed bounds and the
correct result will be generated. As far as timing is
concerned, the carry-propagate addition is still
performed on four bits.

TABLE III
REFINED QSLC TRUTH TABLE

2PR; eytimated quotient digit;, |

000.0 (2PRg ¢ psp4 both 0) 0
Oxx.x +1

1111 0

Fig. 4 shows a logic implementation of this enhanced
quotient digit selection function. In practice, the four bit
adder and subsequent logic are merged into five stages of
logic for more efficient timing and area utilization.

i
i0
n0 nl
g=-1 (M) if x3nl
g= 0 (@ if nl+i0n0
g=+1 (P) if x3n0i0

Fig. 4. Simple implementation of modified QSLC.

The number of additional gates needed to implement
the new radix-2 quotient digit selection logic is relatively
small. From Spice analysis, the impact on the gslc critical
timing path was under five percent. There is an
implementation dependent timing trade-off between
slower quotient selection logic and eliminating the partial
remainder restoration cycle at then end. Notice that if
slowing down gslc doesn’t limit the processor cycle time,
there will always be a performance gain from saving one
cycle of latency.

C. Parallel Sign Calculation and Zero-detection

It is possible to save hardware while also performing
sign detection and sticky bit calculation in parallel as
shown in Fig. 3d. Instead of using a full 59 bit adder, a 59
bit sign detect adder can be used, slightly improving
timing, but mainly saving area. Zero-detection can be
done without an explicit addition to convert the
redundant partial remainder into binary.

t' =(si$ci)9("i—l+ci—l) (4)

where s; and c; are the sum and carry values of the
final partial remainder. The sticky bit is computed by:

(5)

This method generates inputs to the zero-detector with
a 3-input xor delay instead of the delay of a 59 bit carry-
propagate adder, a significant net savings.

sticky = gt +.. +1,

IV. OVERLAPPING RADIX-2 STAGES

The biggest performance gain is achieved by
maximizing the number of iterations per cycle. As the
number of result bits formed per cycle increases, the
relative importance of saving one cycle of latency, as
described in Section III, grows. A straightforward way of
generating n result bits per cycle is to serialize the basic
SRT radix-2 implementation. This solution is not
attractive since the critical path includes n quotient
selection logic delays and n carry save adder delays.

A. Optimal Timing via QSLC Overlapping

Overlapping quotient selection logic for the first and
second iterations [12] as shown in Fig. 5 yields better
timing results since only one gslc is in the critical path.
Overlapping is achieved by performing +D and -D
operations on the upper bits of the partial remainder
while the first quotient selection bit is being determined.
In this way, the second quotient digit selection can start
before the first is finished.

Maximal overlapping can be extended to three bits per
cycle to have an effective radix-8 implementation.

158

Fig. 5. Two overlapped SRT radix-2 QSLC stages.

Analyzing the possible partial remainders needed for the
third quotient digit selection, as depicted in Fig. 6, shows
that only seven csa’s and gslc’s are needed rather than
nine. Since quotient selection logic is area intensive, a

22% reduction is quite beneficial.
(a) / T\
2PR-D 2PR 2PR+D
2(2PR-D) 2(2PR+D)
4PR-3D mm mu 4PR+3D
4PR-2D 4PR 4PR+2D

Fig. 6. Possible partial remainder values after the first and second itera-
tions. (a) initial PR;, (b) three possible PR;, |, (c) seven possible
PR;,,.

Further timing improvement is also possible. By
speculatively calculating the next partial remainder,
quotient, and divisors for each possible quotient selection
digit, the delay of a datapath carry-save adder can be
masked by the longer gslc operation occurring in
parallel. Fig. 7 shows the overall UltraSPARC floating
point divide, square root implementation. The critical
path is reduced to 1 gslc, 2 csa’s, and 3 muxes.

There is a timing, area trade-off. Overlapping
improves timing at a cost of additional speculative
hardware. The focus of this study is to optimize timing to
the utmost with area minimization as a secondary goal.

B. Extension

In theory, n gslc stages can be overlapped. Assuming
speculative datapath partial remainder calculations each
iteration, the critical path for n bits per cycle is 1 gslc, (n-
1) csa’s, and n muxes. The incremental timing cost is one
csa and one mux. There are 2"-1 partial remainder

8 Bit FPDS C LD i 59 Bit Main FPDS D }

fpm_opl l lfpm_opZ fpd_Q fpd_Q-1

INPUT MUXES /

* Inputs from main datapath *

P flops (upper bits) I

p FLIP FLOPS (7) |
g
>
- - - g | PR SIGN, ZERO DETECT |
o = 2 % = “a
€35 g £ 39
58 & &g SCy DBy
[Z =) 2] L7 =}
osLC e QQ 1y ¥
]]
CSA_8 CSA_8 RN R C (R R |-
1 Dﬂ
$Cp 5C, 5Ca .

Gie1 = QS1[2:0)

DB,
= ,Q-1 =
div2 = QS202:0) Z Qlw | 2
4 F|

_______ -1 IR A |

D(z) i l !

1}

; [0Q1ogc |

| 083:n=0S3np |
:1 31 Yis1

'
:l 2CSA’s] l DB logic | IQ,Q—] logic Iu

X :
3:1 Gis2 ' '
Gjs3 = QS3[2:0] ! !

LN 4 STy S—— T

$.Cl59:1} D.B,(58:0] I Q.Q-13,156:0] 1

* Upper bits sent to 8 bit control datapath *

Fig. 7. UltraSPARC radix-8 floating point divide, square root implementation with three overlapped radix-2 stages and speculative datapath calculation.

159

possibilities for the nth gslc stage. They are in the range:
2*IpR; +[(2™1-1)D,...0...(2"1-1)D]. ©6)

Therefore, the incremental gsic cost for the nth
overlapped stage is 2"-1 rather than 3™"! as suggested by
Taylor [12). In practice, overlapping two to four stages
makes the most sense. As n gets higher, the number of
gslc’s grows exponentially making the area cost
prohibitive. In addition, greater fanout leads to increased
wire and gate loads which significantly lessen the timing
benefits. Table IV summarizes timing and gslc cost
considerations for overlapped radix-2 stages.

TABLE IV
PERFORMANCE, CoST TABLE FOR MAXIMUM OVERLAPPING

stages critical path totqsic’s delta critical path delta gsic’s
1 qs + mux 1
2 gs + pr + 2mux 4 Pr+ mux 3
3 qs + 2pr + 3mux i1 pr+ mux 7
4 qs + 3pr + 4mux "26. pr + mux 15
o gs+(n-1)pr-+(n)mux LEJZ'" Pr + mux 2.1

There is a limit on how much overlapping is necessary
to achieve the optimal radix-2 implementation critical
path as illustrated in a four bit per cycle example.
Suppose the quotient selection logic delay is three times
a carry-save adder delay. Then the quotient digits from
the first stage gslc will be ready at the same time as the
third stage partial remainder bits are entering the fourth
stage gslc’s. The first level of three-to-one muxes
following the fourth stage of gslc’s can be moved before
the quotient selection logic as shown in Fig. 8. Thus, the
fourth stage number of gslc’s is reduced from fifteen to
seven while achieving the same timing as with maximum
overlapping. In general, the optimal degree of
overlapping will depend on the relative csa and gslc
delays, and need only be sufficient to mask the delay of
previous quotient selection logic stages.

no.of gates
[CsA] .. [CsA] .. PR, - [csA] -
psid - fsid - ,5\9 E.Qp E;D @
Ep Ei_]j tg_;g_&gx 9 ¥y @
G O Ul e—4w 3 S waW,

It
4

3T de
(a) ®
Fig. 8. Optimal radix-2 timing with (a) maximum overlapping, (b)
reduced overlapping.

160

C. Overlapped Radix-2 versus Radix-4

Overlapping radix-2 stages yields better timing results
than overlapping radix-4 stages. With radix-4, the upper
eight bits of the redundant partial remainder and upper
four bits of the divisor are sent to the quotient selection
logic. The logic cannot be merged as with radix-2, so
there is an explicit eight bit binary addition followed by a
ten input, forty-four product term PLA [12].

Comparison of the critical path gate delays (gd) for
two bits per cycle and four bits per cycle confirms better
timing from a radix-2 based solution. The critical paths
for two bits per cycle are as follows.

radix-2: gslc + csa + 2 mux3.
5 1.8 2x1)

(88gd) (7)

radix-4: add8 + pla + muxS5.
6 1
Two overlapped radix-4 stages are implemented in the
same way as depicted for radix-2 in Fig. 5. The critical
paths for four bits per cycle are shown below.

(7gd+pla) (8)

radix-2: gslc + 3 csa + 4 mux3. (14.4gd) (9)

5 (3x1.8) 4x1)
radix-4: csa + add8 + pla + 2 muxS5. (10)
L8 6 (2x1)=(9.8gd+pla)

A 10-input, 44-product term pla takes more than five
gate delays, so for both two bits per cycle and four bits
per cycle, overlapping radix-2 stages produces better
timing. This analysis implies that a combined radix-4,
radix-2 approach to yield an effective radix-8 solution is
not faster than simply overlapping three radix-2 stages.

V. PROCESSOR IMPLEMENTATION

UltraSPARC performs non-blocking divide and
square root operations. Generating three result bits per
cycle at 167 Mhz, the latency is twelve cycles for single
precision (SP) and twenty-two cycles for double
precision (DP). The divide and square root unit contains
seventy-thousand transistors implemented in 0.5um
CMOS technology (Fig. 9).

Instructions are both issued and completed through the
pipelined floating point multiplier which formats
operands, calculates the exponent, and performs
rounding. The floating point multiplier and divider share
the same register file read ports for operands, so divide
and multiply instructions are never issued at the same
time. Therefore the multiplier is always available for
operand formatting and exponent calculation when a
divide instruction is issued. Multiply instructions can be
issued during subsequent cycles while the divider is
iterating. Four cycles prior to division completing, a

Fig. 9. UltraSPARC (above), UltraSPARC floating point, graphics unit (below).

2 1 SEA N

161

multiply slot is reserved so that the divider can re-use the
final stage multiplier rounding hardware. Since
UltraSPARC performs in-order execution, there will be a
one cycle delay only in the unlikely event that the
superscalar processor has been able to issue independent
instructions for 8 cycles (SP) or 18 cycles (DP) and an
independent multiply instruction is ready to be issued
during this exact cycle. Thus making use of the
multiplier yields significant hardware savings with near
zero performance impact.

The modified quotient selection logic algorithm
slowed the internal floating point divider critical path by
approximately 100ps, or by less than two percent. The
limiting timing path on the processor was slower, so
there was no negative impact from the improved gslc.
The full benefit of eliminating the cycle for restoring the
partial remainder prior to sticky detection was realized.

Division and square root operations were thoroughly
tested with 100% toggle coverage and 100% finite state
machine arc coverage in a stand-alone test (SAT)
environment, at the cpu level, and in silicon. Over
860,000 directed vectors and 140,000 random vectors
were applied at the SAT level. Included were pseudo-
exhaustive double precision tests for division in which all
combinations of the upper eight bits of the dividend and
divisor were sequenced (64K vectors). The same was
done for square root in which all combinations of the
upper thirteen bits of square root operands for odd and
even exponents were sequenced (16K vectors).

A radix-2 solution was preferable over radix-4 for a
number of reasons including timing, as described earlier,
and greater flexibility. From the outset, it was known that
it might be necessary to scale back the number of bits per
cycle due to timing or area considerations. That raised
the specter of having to reduce to two bits per cycle in a
radix-4 implementation. Going with radix-2 provided a
better safety option since three bits per cycle yields 6%
better overall floating point performance (SPECfp92)
than two bits per cycle [13].

Implementing square root did not come for free. While
it is true that square root completely re-uses existing
divide hardware, additional logic was required to
generate the so-called divisors used in square root. In
addition, the quotient had to be developed on the fly, as
opposed to using a shift register and assimilating the
redundant bits during the final cycle, since it was needed
for the divisor calculation. Additional datapath
feedthrough tracks were also necessary. An estimated
15% of the area went to support square root. With careful
design, the logical critical path for square root was made
the same as for divide. The additional area required to
support square root, though, did impact timing since wire
delays were greater.

162

VI. CONCLUSION

High-speed floating point division and square root is
achieved by overlapping radix-2 quotient selection logic
stages and speculatively calculating the partial
remainder, quotient, and next divisor. An enhanced
quotient digit selection function prevents the working
partial remainder from becoming negative if the result is
exact. This translates into a one cycle savings since
negative partial remainders no longer need to be restored
before calculating the sticky bit.

ACKNOWLEDGMENT

The authors would like to thank Marc Tremblay and
Guy Steele for reviewing the preliminary draft, and
Nasima Parveen and Richard Landes for their contribu-
tions to verification and physical design.

REFERENCES

[1] J. E. Robertson, “A new class of digital division methods,” IEEE
Trans. Comput., vol. C-7, pp. 218-222, Sept. 1958.

2] K. D. Tocher, “Techniques of multiplication and division for
automatic binary computess,” Quart. J. Mech. Appl. Math., vol. 11,
pt. 3, pp. 364-384, 1958.

[3]1 M. D. Ercegovac and T. Lang, “On-the-fly rounding,” IEEE Trans.
Comput., vol. 41, no. 12, pp. 1497-1503, Dec. 1992.

[4] M.D. Ercegovac and T. Lang, “Radix-4 square root without initial
PLA,” IEEE Trans. Comput., vol. 39, no. 8, pp. 1016-1024, Aug.
1990.

[5) S. Majerski, “Square root algorithms for high-speed digital
circuits,” Proc. Sixth IEEE Symp. Comput. Arithmetic. pp. 99-102,
1983.

[6] D. Zuras and W. McAllister, “Balanced delay trees and
combinatorial division in VLSL” IEEE J. Solid-State Circuits, vol.
SC-21, no. 5, pp. 814-819, Oct. 1986.

[7] M. D. Ercegovac and T. Lang, Division and Square Root: Digit-
recurrence Algorithms and Implementations. Kluwer Academic
Publishers, 1994, ch 3.

[8] S. Majerski, “Square-rooting algorithms for high-speed digital
circuits,” JEEE Trans. Comput., vol. C-34, no. 8, pp. 724-733,
Aug. 1985.

(9] P. Montuschi and L. Ciminiera, “Simple radix 2 division and
square root with skipping of some addition Steps,” Proc. Tenth
IEEE Symp. Comput. Arithmetic. pp. 202-209, 1991.

(10} V. Peng, S. Samudrala, and M. Gavrielov, “On the implementation
of shifters, multipliers, and dividers in floating point units,” Proc.
Eighth IEEE Symp. Comput. Arithmetic. pp. 95-101, 1987.

[11]) “IEEE standard for binary floating-point arithmetic,” ANSI/IEEE
Standard 754-1985, New York, The Institute of Electrical and
Electronic Engineess, Inc., 1985.

{12]G. S. Taylor, “Radix 16 SRT dividers with overlapped quotient
selection stages,” Proc. Seventh IEEE Symp. Comput. Arithmetic.
pp. 95-101, 198S.

[13]M. Tremblay, “A fast and flexible performance simulator for
micro-architecture trade-off analysis on UltraSPARC,” Submitted
to the 1995 Design Automation Conference.

