Hardware Design and Arithmetic Algorithms for a
Variable-Precision, Interval Arithmetic Coprocessor

Michael J. Schulte and Earl E. Swartzlander, Jr.
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX 78712, USA

Abstract

This paper presents the hardware design and
arithmetic algorithms for a coprocessor that performs
variable-precision, interval arithmetic. The coprocessor
gives the programmer the ability to specify the precision
of the computation, determine the accuracy of the result,
and recompute inaccurate results with higher precision.
Direct hardware support and efficient algorithms for
variable-precision, interval arithmetic greatly improve
the speed, accuracy, and reliability of numerical
computations. Performance estimates indicate that the
coprocessor is 200 to 1,000 times faster than a software
package for variable-precision, interval arithmetic. The
coprocessor can be implemented on a single chip with a
cycle time that is comparable to IEEE double-precision
floating point coprocessors.

1: Introduction

As noted in [1], the computational speeds of the
fastest computers have increased by a factor of roughly
100 during each of the last three decades, and an increase
by a factor of 1,000 is expected during the present
decade. This tremendous increase in computing power
gives researchers the ability to solve previously
intractable problems. The large number of arithmetic
operations, however, makes it important to monitor and
control efrors in numerical computations.

As the number of arithmetic operations increases, the
probability of inaccurate results due to roundoff error and
catastrophic cancellation also increases. This calls for an
increase in the precision of modern computers.
Unfortunately, however, most modern computers only
provide hardware support for floating point numbers with
64 bits or less. For example, computers which conform to
the IEEE-754 double-precision floating point standard
[2] use a 64-bit floating point format with an 11-bit
exponent and 53-bit significand. As a result, today's
numerically intensive applications may produce results

1063-6889/95 $4.00 © 1995 IEEE

222

which are completely inaccurate. On most computer
systems, however, there is no efficient method to
determine the accuracy of the result or increase the
precision of the computation.

To overcome the numerical deficiencies of existing
computer systems, several extended scientific
programming languages that support variable-precision,
interval arithmetic have been developed. These include
ACRITH-XSC [3], PASCAL-XSC [4], C-XSC [5], and
VPI [6]. Variable-precision arithmetic gives the
programmer the ability to specify the precision (i.e., the
number of bits or words in the significand) of the
computation, based on the problem to be solved and the
required accuracy of the results. Interval arithmetic [7]
produces two values for each result, such that the true
result is guaranteed to be between the two values. The
distance between the two values indicates the accuracy of
the result. The combination of variable-precision
arithmetic and interval arithmetic gives the programmer
the ability to set the precision of the computation,
determine the accuracy of the result, and recompute
inaccurate results using higher precision.

The main disadvantage of the extended scientific
programming languages presented in [3-6] is their speed.
Since these languages are designed for machines which
support the IEEE 754 standard, all variable-precision,
interval arithmetic operations are simulated in software.
This adds tremendous overhead due to function calls,
memory management, error and range checking, changing
rounding modes, and exception handling. As reported in
[8], changing the rounding mode on IEEE processors can
take as long as executing six floating point additions,
due to an inefficient user interface. The interval arithmetic
routines discussed in [9] are approximately 40 times
slower than their single-precision floating point
equivalents. and routines which support variable-
precision interval arithmetic (up to 56 decimal digits) are
more than 1,200 times slower.

To overcome the speed limitations of existing
software techniques, direct hardware support is required.
Early hardware designs for accurate arithmetic focused on
supporting exact dot products [10], in which all
arithmetic operations are mathematically exact and only a
single rounding is performed at the very end. A survey of
a hardware designs for computing exact dot product is
presented in [11]. To produce accurate results when
multiple computations are performed, exact dot product
computations should be combined with variable-precision
arithmetic [12]. Processors have also been designed
which support variable-precision arithmetic, including
CADAC [13], DRAFT [14], and CASCADE [15].
Although these processors improve the speed of variable-
precision computations, they do not provide special
instructions for interval arithmetic. CASCADE and
CADAC use non-binary number representations, which
complicates the hardware design and decreases
compatibility with existing processors. DRAFT and
CASCADE perform variable-precision integer arithmetic
and do not have hardware support for floating point
operations.

This paper presents a coprocessor which performs
variable-precision, interval arithmetic. Because the
arithmetic operations are implemented in hardware, this
design offers a substantial speedup over existing software
methods for controlling numerical error. It also uses non-
redundant binary arithmetic, which simplifies the
coprocessor design and enhances compatibility with other
processors. An overview of interval arithmetic is given in
Section 2. In Section 3, the number representation and
hardware design of the coprocessor are presented. Section
4 describes hardware algorithms for the arithmetic
operations, elementary function generation, dot product
computation, and interval operations. Area, delay and
performance estimates for the coprocessor are given in
Section S, followed by conclusions in Section 6.

2: Interval arithmetic

Interval arithmetic was originally proposed as a tool
for bounding roundoff errors in numerical computations
[7]. It is also used to determine the effects of
approximation errors and errors that occur due to non-
exact inputs. Interval arithmetic produces two values for
each result. The two values correspond to the endpoints
of an interval, such that the true result is guaranteed to
lie on this interval. The width of the interval (i.e., the
distance between the two endpoints) indicates the
accuracy of the result. Because of its usefulness in
monitoring numerical error, interval arithmetic has been
applied to several numerical problems including global
optimization, function evaluation, differential equations,

223

finding roots of polynomials, and solving systems of
equations [16].

As defined in [7], a closed interval X = [a, b}
consists of the set of real numbers between and including
the two endpoints @ and b (ie., X = {x: a <x <b}). A
real number c is equivalent to the degenerate interval /c,
c/. Interval arithmetic specifies how to add, subtract,
multiply, and divide intervals. When performing interval
arithmetic on computers, the interval endpoints may not
be representable. In this case, the lower endpoint is
rounded towards negative infinity and the upper endpoint
is rounded towards positive infinity.

3: Hardware design

This section gives an overview of the hardware
design for the variable-precision, interval arithmetic
coprocessor. The hardware is designed to handle the
common case quickly, while still providing correct
results and acceptable performance when extremely high
precision is required. The hardware unit functions as a
tightly-coupled coprocessor, which receives input data
and instructions from the main processor. Standard
floating point arithmetic is performed by the main
processor, and the coprocessor handles all variable-
precision, interval arithmetic. The hardware supports the
four rounding modes specified in the IEEE 754 floating
point standard: round-to-nearest-even, round toward
positive infinity, round toward negative infinity, and
round toward zero. The software interface to the
coprocessor is described in [17)].

The format for variable-precision numbers is shown
in Figure 1. Each variable-precision number consists of a
16-bit exponent field (E), a sign bit (5), a 2-bit type
field (T), a 5-bit significand length field (L), an index
field (7), and a significand (F) which consists of L+1
significand words (F[0] to F[L]). The exponent is
represented with a bias of 32,768. The sign bit is zero if
the number is positive and one if it is negative. The type
field indicates if a number is infinite, zero, or not-a-
number. The length field specifies the number of 32-bit
words in the variable-precision number, and the index
field points to the most significant word of the
significand. The significand words are stored from most
significant F[0] to least significant F/L]. The
significand is normalized between 1 and 2, so that its
most significant bit is always one. The value of a
variable-precision floating point number VP is

VP = (-1P xF x 2E-32.768
For variable-precision numbers, the maximum
significand length is 32 32-bit words, or 1,024 bits. This
gives a maximum precision of around 313 decimal digits
and a range of

[2-32.768, 232,769] ~ [1079:864, 1(9.864]

For comparison, the format for IEEE double-
precision numbers is shown in Figure 2. These numbers
consist of a sign bit (S), an 11-bit exponent (E), and a
52-bit significand (F). The exponent is represented
using excess 1,023. The significand is normalized
between 1 and 2 and uses a hidden one. The value of an
IEEE double-precision number DP is

DP = (-1)5 x 1.F x2E-1023
IEEE double-precision numbers have a maximum
precision of around 16 decimal digits and a range of
[2'1.022, 21,024] = [10-307' 10308]

——— 16 Bits'

Exponent® N 7| L
Significand Word F{0]

Index (I)

Significand Words F[1] to F{L-1] |

Significand Word F[L]

<

| .

32 Bits
Figure 1: Variable-precision number format.

19 b jig —> 52 bits —————»
S| Exponent (E) Significand (F)
Figure 2: IEEE double-precision format.

A block diagram of the hardware unit which
performs variable-precision, interval arithmetic is shown
in Figure 3. Control signals are shown as dashed lines.
The significand and exponent data paths are depicted as
bold and plain lines, respectively. The main components
of the hardware unit are a register file, a 32-bit by 32-bit
multiplier, a 64-bit adder, a long accumulator consisting
of 64 64-bit segments, and a 64-bit shifter. The hardware
unit also has a 16-bit exponent adder and data path
control unit which determines the exponent of the result
and controls the register file, long accumulator, selector,

The register file consists of two memory units: a 64-
word by 32-bit header memory, and a 256-word by 32-bit
significand memory, as shown in Figure 4. Each header
words contains the exponent, sign, type, length, and
index of the number. When operations are performed on
variable-precision numbers, the header word is first read
from memory. In the following cycles, the significand is
accessed based on the value of the index field. This two-
level design allows a maximum of 64 variable-precision
numbers to be stored on the coprocessor chip. Other

224

variable-precision numbers are stored in main memory.
The header and significand memories each have two read
ports and one write port.

Significand words are read from the register file and
go into the multiplier, selector, or long accumulator. The
selector performs comparison operations and determines
which values go into the adder and the shifter. The
shifter shifts a value by up to 64 bits, before it enters the

:_ Register File jl
- Significand Header
Words Words [* |
1y 0!
Y Y Exponent Adder
s 1 and Data Path
Multiplier Control
Y]
Selector A |
! I
> shifier fo— 4 |
i
y | l
\ Adder / : I
Y v
Long Accumulator
Figure 3: Hardware unit.

64 Header Words 256 Significand Words
<@ 16 Bits #4-8 Bis->4-8 Bits &~ - 32 Bits -
| 11 1

Header Words

I M
l[awnmp.}n]h |

11 si.mﬁmawmotqmml:u,-nl

Significand Words |

Significand Word K [0]]

I Header Woeds I

I l Significand Words
Figure 4: Register file.

Significand Word E{L,]

The long accumulator stores intermediate variable-
precision results. It functions as an extremely long fixed
point register and is useful for performing variable-
precision arithmetic algorithms without roundoff error or

overflow. The implementation of the long accumulator is
similar to the one presented in [28]. The long
accumulator consists of a 64-word by 64-bit dual-port
RAM, 64 2-bit flags, carry resolution and flag generation
logic, and rounding and normalization control. Variable-
precision values are stored in the dual-port-RAM, which
contains one write port and one read/write port.

When adding a number to the long accumulator, it is
possible for the carry to propagate over several segments,
resulting in a large number of additions. To prevent this,
each segment of the long accumulator has a 2-bit flag
associated with it that tells if the bits in the segment are
all ones, all zeros, or neither [28]. A carry propagating
into a segment that contains all ones will cause the flag
to signal all zeros. Similarly, a borrow from a segment
which has all zeros causes the flag signal all ones. If a
carry or a borrow come into a segment which has neither
all ones nor all zeros, the carry is not propagated beyond
that segment.

Figure 5 demonstrates the accumulation process
using five-bit segments, when the new addend is also
five bits. The addend is added to two of the segments in
the long accumulator. If a carry occurs after the second
addition, it is added to the first word that does not
contain all ones. The 2-bit flags, and flag generation and
carry resolution logic determine the segment to which the
carry is added. Once the final result is computed, it is
normalized, rounded to a specified precision, and stored
back in the register file. The all ones and all zeros flags
simplify normalizing and rounding the result, since they
indicate the first non-zero word of the result and help to
determine the sticky bit, which is needed to implement
correct rounding.

New Addend
4 Carry Jump] 11 101
10001 j11111 {11111 |11110 JOO110
Bef
¢ Cneither ones ones neither neither
10010 | 00000 | 00000 | 00001 J 11010
neither zeros ZET08 neither neither

Figure 5. Accumulation of a new addend.

4: Arithmetic algorithms

This section describes hardware algorithms for the
arithmetic operations, elementary function generation,
accurate dot products, and interval operations. All
intervals are stored in the register file using consecutive
registers words, with the lower endpoint stored first. For
the variable-precision arithmetic operations, the two

225

operands are denoted as A and B with significands F
and Fp and exponents E,4 and Ep, respectively. For
variable-precision, interval arithmetic operations, the
intervals are X = [a, b] and Y = [c, d]. The symbols V
and A denote rounding toward negative and positive
infinity, respectively.

For variable-precision addition and subtraction, E4
and Ep are compared to determine the greater exponent.
The operand with the greater exponent has its significand
written into the long accumulator. Assuming that Eg >
E4 and addition is being performed, Fpg is written into
the long accumulator. In the following cycles, Fj is
added to the long accumulator using a series of 64-bit
additions, in which the carry-out of the i*# addition is
used as carry-in for the (i+1)* addition. After the final
result is computed, the long accumulator is normalized
and rounded to a specified precision. The final result is
then stored in the register file.

Interval addition and subtraction are defined [7] as:
X+Y=[V(a+c), A(b + d)]
X-Y=[V(a-d), Ab-c)]

Thus, interval addition (subtraction) requires two
variable-precision additions (subtractions). The lower
endpoint is computed first and rounded toward negative
infinity. The upper endpoint is then computed and
rounded towards positive infinity.

Variable-precision multiplication is performed by
using the multiplier, adder, and long accumulator to
generate and accumulate 64-bit partial products. During
the first cycle, the exponents of the two operands are
added to compute the exponent of the product. Each
subsequent cycle, 32 bits of the multiplier are multiplied
by 32 bits of the multiplicand to produce a new 64-bit
partial product which is added to the sum of the
previously accumulated partial products. The sum of the
partial products is stored in the long accumulator. Figure
6 shows the multiplication process for a 4-word by 4-
word (128-bit by 128-bit) multiply. To reduce carry
propagation, the less significant partial products are
generated first.

If the multiplicand and multiplier contain m and n
words (m 2 n), then m-n single-precision multiplications
and additions are required. If the final result is rounded
to m words, the n least significant words of the product
do not need to be computed. In this case, a method
proposed in [19] is used to reduce the number of single-
precision multiplications and additions to

m~n—(n2—3n)/2—1
This is possible, because only the m + I most significant
columns of partial products are likely to contribute to the
rounded product. For the 4 word by 4 word
multiplication shown in Figure 6, the partial products
Ag-Bg, Ap-B;, and A;-By are not likely to effect the

product when it is rounded to 4 words. A quick test
determines if the omitted partial products can change the
value of the rounded product. If they can, the product is
computed to full precision and then rounded.

A = Multiplicand AaTA JA [A
B= M“lﬁpliﬂ 83 Bz B 1 Bo
AoB,
A By
Ao
AB,
5
AgB,
AB,
A2Bl
Bg
A

AKEB '

2
LAsBs |

Figure 6: Variable-precision multiplication.

Interval multiplication is defined [7] as:

X xY = [Vmin(ac.ad bc bd), Amax(ac,ad,bc,bd)]
Rather than computing all four products and then
comparing the results, the endpoints to be multiplied
together to form the upper and lower endpoints of the
result are determined by examining the sign bits a, b, c,
and 4 [18]. With this technique, only two variable-
precision multiplications are required to perform interval
multiplication, unless

a<0<b AND c<0<d
The method proposed in [19] guarantees correct
directional rounding.

The algorithm used to perform division A/B is a
variation of the short reciprocal divide algorithm [20],
which is modified for variable-precision, interval
arithmetic. This algorithm initially calculates a reciprocal
approximation R =~ I1/B which is accurate to 34 bits.
During the i*# iteration, a quotient digit ¢; is added to the
quotient approximation Q; through the computations

gi=R-P;
Piyy =Pi-gq;B
Qiv1 =Qi+qi

where P; is the i** partial remainder and P’; is the ik
partial remainder truncated to 34 bits. The quotient digit
q; is computed by rounding R-P’; away from zero to 32
bits. Initially, Pp = A and Qy = 0. After computing the
quotient, a correction step produces a correctly rounded

226

quotient and exact remainder for any of the IEEE
rounding modes [21].

Details for the variable-precision short reciprocal
divide algorithm and a similar algorithm for square root
are presented in [22)]. The divide algorithm requires n? +
n single precision multiplications and 2n2 + 2n single
precision additions to divide two n word numbers. The
square root algorithm requires (n? + 3n)/2 single
precision multiplications and (3n2 + 5n)/2 single
precision additions to compute the square root of an n
word number. These algorithms require 3 to 5 times fewer
arithmetic operations than well-known algorithms based
on Newton-Raphson iteration [23].

Interval division is defined [7] as:

X/Y = [Vmin(alc,ald bic,bid), Amax(alc,aldbic,bid)]
if Y does not contain zero (i.e., ¢ < 0 OR d > 0).
Otherwise, the quotient interval is infinite and extended
interval arithmetic is used [18). The sign bits are
examined to determine which endpoints are divided to
compute the endpoints of the quotient, and only two
variable-precision divisions are required. An interval
square root is defined as:

VX = (v(Va), sV
provided that a > 0. Otherwise, one or both endpoints of
the result are not-a-number.

Elementary function evaluation is performed by
polynomial approximations, using variations of the
algorithms given in {24], [25]. These approximations
have the form

fix)=pa(x)=ap+a;x+ ..+ apx*= gba,x‘

where f(x) is the function to be approximated, p,(x) is a
polynomial of degree n, and g; is the coefficient of the i*h
term. The function is approximated on a specified input
interval and argument reduction is employed for values
outside this interval, as specified in [24]. To reduce the
number of multiplications, Horner's rule is applied, which
has the form

pn(x) =ag + x(a; + ... + x(ap.; + xa,)...)
Thus, each term in the polynomial requires one addition
and one multiplication.

Interval arithmetic is defined for the elementary
functions as follows: If an elementary function f{(x) is
monotonically increasing on X = [a, b], the resulting

interval is
fiX) = [Vfla), Afib)]

For monotonically decreasing functions the resulting

interval is

fX) = [VAib), Afa)]
For functions which are neither monotonically increasing
nor decreasing on [a, b], the function is evaluated at its
local minimum and maximum and at the interval

endpoints to determine the resulting interval. For
example, if X = /-1, 2], then sin(X) = [Vsin(-1), 1],
since sin(X) has a local maximum of 1 at 7/ 2.

Correct rounding of the elementary functions is
prohibitively expensive, since there is no known
analytical method to determine in advance the number of
guard digits required to produce a correctly rounded
result [26). Instead, faithful rounding [27] is used to
guarantee that the maximum error is no greater than two
units in the last place and that all intervals endpoints are
rounded in the proper direction.

Accurate dot products are essential for scientific
applications. The dot product of two k-element vectors

V=1[v),va, ...,] W= [wp, wy, ..., w T
is defined as:

VW= tjv;-w,-

i=
For each v;, w; pair, their product is computed and added
to the long accumulator. The segments chosen from the
long accumulator and the amount that the product is
shifted is determined by the exponent of the new product.
The all ones and all zeros flags prevent carries from
propagating over several segments. After the entire dot
product is computed, it is normalized, rounded, and
stored back in the register file.

To compute an interval dot product, the lower
endpoint of the dot product is computed, followed by the
upper endpoint. The lower endpoint of the dot product is
computed by calculating the lower endpoint of each
interval multiplication and adding it to the long
accumulator, Once the lower endpoints of all £ products
are accumulated, their sum is normalized, rounded toward
negative infinity, and stored back in the register file.
After clearing the long accumulator, the upper endpoint
of the dot product is computed by accumulating the
upper endpoint of each interval multiplication. After, the
upper endpoint is computed, it is normalized, rounded
toward positive infinity, and stored back in the register
file..

To efficiently support interval arithmetic, several
interval operations are provided. These include interval
intersection, hull, absolute value, width, and midpoint,
which are defined as:

intersection(X, Y) = [max(a, c), min(b, d)]
hull(X, Y) = [min(a, c), max(b, d)]
abs(X) = max(/a/, |b])
width(X) = b -a
midpoint(X) = (a + b)/2
The interval intersection and hull operations take two
variable-precision, intervals and return a variable-
precision interval. The midpoint, width, and absolute
value operations take one variable-precision interval and

227

return a variable-precision floating point number. Interval
relational operators such as equal to, subset, superset, is-
contained-in, and disjointness are also provided as
defined in [4].

The operand selector is used to determine minimum
and maximum values for interval intersection, hull, and
absolute value. If the exponents and the signs of the two
numbers being compared are the same, then the selector
compares their significand words from most significant to
least significant to determine which number is greater.
The absolute value of a variable-precision number is
computed by setting its sign bit to zero. The midpoint
and width operations are implemented using the variable-
precision addition and subtraction algorithms,
respectively. The division by two in the midpoint
operation is implemented by decrementing the exponent
ofa +b.

5: Area, delay and performance estimates

Table 1 gives arca and delay estimates for the
variable-precision, interval arithmetic coprocessor
(VPIAC). These estimates are based on data from a 1.0
micron CMOS standard cell library [29]. The estimates
for the multiplier assume that multiplication is
implemented using a Reduced Area multiplier [30],
followed by carry-lookahead addition. The area of each
component is estimated by calculating the total size of
the macrocells (e.g., AND gates, full adders, half adders,
etc.) which make up the component, plus an additional
50 percent for internal wiring [29]. The total area is
estimated as the sum of the component areas plus an
additional 60 percent for control logic, global routing,
unused space, and pad area. The total chip area is
estimated as 101.9 mm?2. The delay for each component is
computed by taking the worst case delay of the critical
path and adding 25 percent for unexpected delays and
clock skew [29]. The multiplier has the longest
component delay which is 27.8 ns; 14.0 ns for partial
product reduction and 13.8 ns for carry-lookahead
addition. Assuming these two stages of the
multiplication are pipelined and allowing an additional 2
ns for register latching, the coprocessor can have a cycle
time of 16 ns (60 MHz).

Table 2 gives the area and delay estimates for an
IEEE double-precision floating point coprocessor (IEEE
DPC). It has a 53-bit by 53-bit multiplier, a 106-bit
adder, a 32-word by 64-bit register file, a 106-bit
normalizer, a 106-bit shifter, an 11-bit exponent
add/subtract unit, and 53 and 106-bit latches. It requires a
total area of 100.8 mm?2. The worst case delay comes from
the multiplier, which has a component delay of 34.6 ns;
18.0 ns for partial product reduction and 16.6 ns for

carry-lookahead addition. If these two stages of the
multiplication are pipelined, the coprocessor can have a
cycle time of 20 ns (50 MHz). Compared to the IEEE
DPC, the VPIAC has almost the same area and a cycle
time which is 20 percent shorter. The shorter cycle time
of the variable-precision, interval arithmetic coprocessor
is due to its narrower data path.

Table 1. Estimates for the VPIAC

Unit Area (mm?) | Delay(ns)
Multiplier 15.2 27.8
Carry-lookahead adder 2.1 13.8
| Significand words 17.8 74
Header words 44 6.6
Long accumulator 13.0 70
Shifter 39 82
Operand selector 4.1 3.5
__Exponent add/subtract 06 44
Latches 26 20
| Global routing, peds, etc. | 382 *
Total 101.9 *

Table 2: Estimates for an IEEE DPC.

Unit Area (mm?) | Delay(ns)
Muitiplier 374 34.6
Carry-lookahead adder 43 16.6
Register file 44 62
Normalizer 72 9.0
Shifter 69 8.8
_Exponent add/subtract 04 40
Laiches 24 1.8
Global routing, pads, etc. 37.8 *
Total 100.8

Execution time estimates for the VPIAC are shown
in Tables 3, 4, and 5 for interval addition, multiplication,
and division. The precision of the computation is varied
from 32 to 1,024 bits (i.e., from 1 to 32 words). For
comparison purposes the execution times of the same
operations using the VPI software package [6] are given,
along with the speedup achieved by the variable-
precision, interval arithmetic coprocessor.

The execution times for the VPIAC are determined
by multiplying the number of cycles to perform the
operation by the cycle time (16 ns). The number of
cycles needed to perform interval addition, multiplication,
and division with a precision of n words (i.e., 32n bits)
ae

Cycles_interval_add = 4n + 12
Cycles_interval_mult = 2n? + 4n + 22
Cycles_interval_div = 6n? + 8n + 38

The execution times for the VPI software package were
determined by running 1,000 iterations of the operation
on a 40 MHz Sparc processor and taking the average
execution time.
The speedup is computed as
Speedup = Execution time VPI
Pecaup = Execution time VPTAC

Based on the values given in Tables 3, 4, and 5, the
VPIAC is around 200 to 1,000 times fasrer than the VPI
software package, For the three arithmetic operations
examined, interval division has the largest speedup and
the interval addition has the smallest.

Table 3: Interval addition execution times (sec).

Precision (bits) VPIAC VPI Speedup
32 26107 9.6-10~> 369
64 3.2-10°7 1.1-104 343
128 45107 1.3-104 289
256 7.0-10-7 1.9-104 271
512 1.2-10° 2.9-104 242
1,024 2.2-10° 5.0-104 227

Table 4: Interval multiplication
execution times (sec).

Precision (bits) VPIAC VPI Speedup
32 42107 1.1-104 262
64 5.4-10"7 1.9-104 352
128 9.9-10"7 5.1-104 515
256 2.7-10° 1.7-10-3 630
512 9.1.10° 6.6-1073 725
1,024 3.3-10° 2.6:10¢ 788
Table 5: Interval division execution times (sec).
Precision (bits) VPIAC VPI Speedup
32 8.3-107 5.6104 675
64 1.2:10° 1.1.10° 917
128 2.7-10° 2.8-10 1,037
256 7.8-10° 8.2-10° 1,051
512 2.7-10° 2.8-10¢ 1,037
1,024 1.0-104 1.0-10°! 1,000

228

6: Conclusions

This paper presented a coprocessor which
implements variable-precision, interval arithmetic.
Efficient hardware algorithms for the arithmetic
operations, elementary function generation, accurate dot
products, and interval operations help to improve
performance. The coprocessor gives the programmer the
ability to determine the accuracy of the result and
recompute inaccurate results using higher precision. It can

also be used to evaluate the accuracy of programs before
running them on a general purpose processor.

By providing hardware support for variable-

precision, interval arithmetic, a substantial speedup over
existing software methods is achieved. Performance
estimates indicate that the coprocessor is around 200 to
1,000 times faster than the VPI software packages for
interval addition, multiplication, and division. The
variable-precision interval arithmetic algorithms presented
in this paper have been simulated in C++. A behavioral
level simulation of the coprocessor using VHDL is in
progress.

References

(11

(2]

B3]

(4]

[5]

(6}

(7]
(8]

(91

[10]
(11}

(12]

[13]

E. Adams and U. Kulisch, "Introduction,” Scientific
Computing with Automatic Result Verification (E.
Adams and U. Kulisch eds.), Academic Press, Inc., ppP-
1-12, 1993.

“IEEE Standard 754 for Binary Floating Point
Arithmetic," ANSI/IEEE Standard No. 754, American
National Standards Institute, Washington DC, 1985.
W.V. Walter, "Acrith-XSC A Fortran-like Language for
Verified Scientific Computing," Scientific Computing
with Automatic Result Verification (E. Adams and U.
Kulisch eds.), Academic Press, Inc., Pp. 45-70, 1993.

R. Kiatte, U. Kulisch, M. Neaga, D. Ratz, and Ch.
Ullrich, PASCAL-XSC: Language Reference with
Examples, Springer-Verlag, 1991.

R. Klatte, U. Kulisch, C. Lawo, M. Rauch, and A.
Wiethoff, C-XSC: A C++ Class Library for Extended
Scientific Computing, Springer-Verlag, 1993.

J.E. Ely, "The VPI Software Package for Variable-
Precision Interval Arithmetic,” Interval
Computations, vol. 2, pp. 135-153, 1993,

R.E. Moore, Interval Analysis, Prentice-Hall,
Englewood Cliffs, N.J., 1966.

A. Knofel, "A Hardware Kernel for
Scientific/Engineering Computations," Scientific
Computing with Automatic Result Verification (E.
Adams and U. Kulisch eds.), Academic Press, Inc., PP-
549-570, 1993.

EK. Reuter et al., "Some Experiments Using Interval
Arithmetic," Proceedings of the 4th Symposium on
Computer Arithmetic, pp. 75-81, 1978.

U. Kulisch and W. Miranker, Computer Arithmetic in
Theory and in Practice, Academic Press, 1981.

G. Bohlender, "What Do We Need Beyond IEEE
Arithmetic?," Computer Arithmetic and Self-
Validating Numerical Methods (C. Ullrich ed.),
Academic Press, Inc., pp. 1-32, 1990.

W.M. Kahan and E. LeBlanc, "Anomalies in the IBM
ACRITH Package,” Proceedings of the 7th
Symposium on Computer Arithmetic, pp. 322-331,
1985.

M.S. Cohen, T.E. Hull, and V.C. Hamarcher, "CADAC:
A Controlled-Precision Decimal Arithmetic Unit,"
IEEE Transactions on Computers, Vol. C-32, pp.
370-37 7, 1983.

229

(14]

[15]

(16)

(17

(18]
(19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

[27]

[28]

[29]
(30]

D.M. Chiarulli, W.G. Rudd, and D.A. Buell, "DRAFT:
A Dynamically Reconfigurable Processor for Integer
Arithmetic," Proceedings of the 7th Symposium on
Computer Arithmetic, pp. 309-318, 1985.

T.M. Carter, "Cascade: Hardware for High/Variable
Precision Arithmetic,” Proceedings of the 9th
Symposium on Computer Arithmetic, pp. 184-191,
1989.

R.E. Moore (Ed.), Reliability in Computing: The Role
of Interval Methods in Scientific Computations,
Academic Press, 1988.

M.J. Schulte and E.E. Swartzlander, Jr., "A Software
Interface and Hardware Design for Variable-Precision
Interval Arithmetic," Interval Computations, 1995 (in
press).

E. Hansen, Global Optimization Using Interval
Analysis, Marcel Dekker, New York, 1992.

W. Krandick and J.R. Johnson, "Efficient
Multiprecision Floating Point Multiplication with
Optimal Directional Rounding," Proceedings of the
11th Symposium on Computer Arithmetic, pp. 228-
233, 1993.

D.W. Matula, "A Highly Parallel Arithmetic Unit for
Floating Point Multiply, Divide with Remainder and
Square Root with Remainder," SCAN-89, Basel,
October 1989.

G. Bohlender, W. Walter, P. Kornerup, and D.W.
Matula, "Semantics for Exact Floating Point
Operations,” Proceedings of the 10th Symposium on
Computer Arithmetic, pp. 22-27, 1991.

M.J. Schulte and E.E. Swartzlander, Jr. , "Algorithms
for Exact Variable-Precision Divide and Square Root",
in preparation.

R.P. Brent, "The Complexity of Multiple-Precision
Arithmetic," The Complexity of Computational
Problem Solving (R.S. Andressen and R.P. Brent eds.)
University of Queensland Press, pp. 126-165, 1976.

K. Braune, "Standard Functions for Real and Complex
Point and Interval Arguments with Dynamic
Accuracy,” Computing with Automatic Result
Verification (HJ. Stetter and U. Kulisch eds.),
Springer-Verlag, Wien, pp. 159-184, 1988.

D.M. Smith, "Efficient Multiprecision Evaluation of
Functions,” Mathematics of Computation, Vol. 52,
pp- 131-134, 1989.

M.J. Schulte and E.E. Swartzlander, Jr., "Hardware
Designs for Exactly Rounded Elementary Functions,"
IEEE Transactions on Computer, Vol. 43, pp. 964-
973, August, 1994.

M. Daumas and D.W. Matula, "Rounding of Floating
Point Intervals," Research Report 93-06, Laboratoire
de l'Informatique du Paralle'lisme, Ecole Normale
Supe'rieure de Lyon, France, 1993.

A. Knofel, "Fast Hardware Units for the Computation
of Accurate Dot Products," Proceedings of the 10th
Symposium on Computer Arithmetic, pp. 70-75,
1991.

LSI Logic 1.0 Micron Cell-Based Products Databook,
LSI Logic Corporation, Milpitas, California, 1991.
K.C. Bickerstaff, M.J. Schulte, and E.E. Swartzlander,
Jr., "Reduced Area Multipliers,” Proceedings 1993
Application Specific Array Processors, pp. 478-489,
1993.

