An Area/Performance Comparison of Subtractive and Multiplicative
Divide/Square Root Implementations

Peter Soderquist and Miriam Leeser
Cornell School of Electrical Engineering
Ithaca, NY 14853

Abstract

The implementations of division and square root in the
FPU's of current microprocessors are based on one of
two categories of algorithms. Multiplicative techniques,
exemplified by the Newton-Raphson method and Gold-
schmidr’s algorithm, share functionality with the floating-
point multiplier. Subtractive methods, such as the many
variations of radix-4 SRT, generally use dedicated, par-
allel hardware. These different approaches give rise to
the disﬂlonﬁtedari;a ‘lllnisd onnzce characteristics which
are exp this paper. Area comparisons are de-
rived from measurements of commercial and academic
implementations. Representative dividelsquare
root implementations are paired with /t'ypical add-multiply
structures and simulated, using data from current micro-
processor and arithmetic coprocessor designs, to obtain
performance estimates. The results suggest that subtrac-
tive implementations offer a superior balance of area and
performance, and stand to benefit most decisively from im-
provements in technology and growing transistor budgets
due to their parallel operation. Multiplicative methods
lend themselves best to situations where hardware re-use
is mandated due to area or architectural constraints.

1 Introduction
1.1 Motivation

Every general-purpose microprocessor of recent de-
sign provides hardware support for division, and most
implement square root as well. These implementations
are split between two different types of algorithms. The
IBM RS/6000 scries and Mips R8000 employ multiplica-
tive techniques. The DEC 21164 Alpha, Hewlett-Packard
PA8000, IBM/Motorola PowerPC 604, Intel P6, Mips
R4000 series, and Sun UltraSPARC, on the other hand, use
hardware based on subtractive methods.

The different algorithms lead to distinct types of im-
plementations. Multiplicative divide/square root designs
make extensive use of the floating-point multiplier. They
frequently require little additional hardware and yicld low
latencies. However, using a single functional unit for
multiply, divide, and square root operations risks creating
a performance boitleneck and complicates the design of
the multiplier. Subtractive implementations require dedi-
cated hardware, which is often more costly, and tend to
have higher latencies. On the other hand, having a sep-
arate functional unit provides for parallel operation and
Wples the design of multiply and divide/square root

ware.

It is not obvious how these various advantages and

1063-6889/95 $4.00 © 1995 IEEE

132

disadvantages play themselves out in actual floating-point

units. We examine the relative area of typical i ta-

tions, both qualitatively and quantitatively when possible.
selected divide/sq

W paired with representati %m&tumln-
are ve add-multiply
structures and simulated, using data from hard-

ware. We also attempt to anticipate how different types of
implementations might be affected by future improvements
in technology.

12 Related work

Other researchers have performed comparisons of dif-
ferent division and square root implementations, usually
focussing on a small subset of the possible alternatives.
In his seminal paper on higher-radix division, Atkins [2]
considers how to compute the cost of different types of
SRT i i Steams [17] discusses the merits
and demerits of multiplicative and subtractive algorithms,
w:wgnfaSRTdiviﬁmqummot

ich synthesizes ‘“the best of the ideas presented over the
last thirty years.”* While quickly dismissing multiplicative
methods, Peng et. al. [13] give a detailed but largely qual-
itative discussion of the area and performance properties
of a variety of subtractive division methods. Taylor [18]
performs a systematic study of ten related but different SRT
divider designs with a quantitative comparison of cost and
performance. Ercegovac and Lang [5] present a time and
arca analysis for a smaller but more diverse group of SRT
dividers; Ercegovac, Lang, and Montuschi [4] perform a
similar study of very high radix division methods. Using
the benchmarks, Oberman and Flynn [12] ex-
amine the tradeoffs of different division implementations
at the system level.

This study attempts to address and, where possible,
quantify the area and performance tradeoffs of division and
square root implementations at the floating-point unit level.
It uses a single, carefully chosen benchmark taken from real
applications and focusses on the type of implementations
used in current microprocessors.

2 Multiplicative divide/square root
2.1 Algorithms

Multiplicative algorithms use iterative refinement to
achieve successively more accurate estimates of the quo-
tient or square root. The two techniques used in current ma-
chines are the Newton- method and Goldschmidt’s
algorithm. Each technique transforms divide/square root
computation into a series of multiplications, subtractions
from a constant, and bit shifts. Both algorithms also have

a

b axb|a+b|va

4 4
[_operand registera | | operand register b]

--=d

cnm-

Figure 1:

quadratic convergence, which means that the number of ac-
curate digits in the partial result doubles at every iteration,
and both use reciprocal estimates to improve performance.
The two methods differ primarily in the arrangement of
operations, which has consequences for hardware imple-
mentation.

The Newton-Raphson method. A popular algorithm for
several centuries, the Newton-Raphson method [14, 8] has
been implemented in many designs, including the IBM
RS/6000 series [9]. To compute the quotient a/b, let zo be
an initial estimate or seed value close to 1/b, and iterate
over the formula

zipp =2z x (2-bxz)
until z;4, is sufficiently close to 1/b. Multiplying by a
yields a/b within the desired accuracy. The square root
y/a is computed by refining an estimate of 1/+/a using the
iteration

z?)

2
Calculating a x 1/,/a produces the final estimate of \/a.

Zip1==xz; x(3—-ax

Goldschmidt’s algorithm. Goldschmidt’s algorithm [8]
performs the same operations as the Newton-Raphson
method but in a different order. It has been implemented in
the Sun SuperSPARC [3] and arithmetic sors from
Texas Instruments. Computing the quotient a/b = zo/w

133

A floating-point multiplier enhanced for multiplicative divide/square root computation

with Goldschmidt’s algorithm involves multiplying both
the numerator and denominator by a value r; such that
Ziy = zixriandyiy) = yi xri. Withr; = 2—y, 4 — 1,
and therefore ; — a/b. To insure rapid convergence, both
numerator and denominator are prescaled by a seed value
close to 1/b. Square root calculation is similar. To find
Va, let 2o = w = a and iterate over z;y; = z; X r?
and yi41 = ¥ X r; SO z.'+1/y,?+l = z.-/y% = 1/a. Let
r; = (3 —y)/2; then z; — 1, and consequently y; — /a.
The prescaling operation uses an estimate of 1/1/a.

22 Implementations

Multiplicative implementations consist primarily of
modifications to the floating-point multiplier. The choice
of algorithm depends parily on the topology of the mul-
tiplier hardware. The IBM RS/6000 FPU is based on an
atomic multiply-accumulate structure and uses specialized
versions of the Newton-Raphson iterations to compute di-
vision and square root. For more conventional multipliers,
Goldschmidt’s algorithm has the advantage that the nu-
merator and denominator operations in each iteration are
independent, and can therefore be efficiently pipelined.
Newton-Raphson implementations incur dependencies at
every step of the computation, but may require less hard-
ware because fewer concurrently existing values need to
be maintained [16].

The block diagram in Figure 1 shows a conven-
tional, pipelined floating-point multiplier tailored for Gold-
schmidt’s algorithm. Dotted lines indicate datapath com-
ponents and routing not required for multiplication alone.
Details will vary depending on the structure of the multi-

s[jldivisor registers
and fj] logic
dlmi| | t@esin,
4
factor generation | 14
-‘ij+1|-'m
'dqﬁll‘f[i]‘iu [Ccany-save adder |
wefj+1]{ lwslj+l]
~the-fly conversi
q-x-odls-{x-

Figure 2: Radix-4 SRT divide/square root unit

plier, but the following elements are common to nearly all
implementations:

o extra routing and storage

e lookup table for seed values

° hudwareforcomtantsub&acﬁonlshifﬁng
e last-digit rounding logic

The and divi
mm&ing) ‘stuagea:e’requiredtomake vide/square

produce an accurate
double-precision value, while a 16-bit seed only needs 2.
However,lhemeaccmatelablewillbesminulm’ga
than the less accurate one. Hardware to suppost the constant
snbﬂd%hgdﬂnmmm
speedup. Finally, i

ve
varying in cost,
be noted that

ively i |
them lic on the

computes the quotient ¢ one digit
at a time; the procedure for conventional long divisiongils

134

an algorithm of this type. Let ¢[5] be the partial quotient at
step j (where g[n] = ¢), and u| j] the residual or partial
remainder. The goal of the algorithm is to find the sequence
of quotient bits which minimizes the residual. To compute
¢ = z + d for n digit, radix-r values, set w[0] = z and
evaluate the recurrence

wlj+ 1] = rulj] - dgg41,

where g; 41 is the j + 1st quotient digit. For square root
computation, let the jth partial root be denoted by s[j]. To
find s = s[n] = \/z, set w|0] = z and evaluate
wlj +1] = rulj] - 2s[j]s;41 — &y, -0+,
Define f[j] = 2s[j] - 8;41r~U+1); then
wlj + 1) = rwlj] - fljls;n
has the same form as the division recurrence. In practice,

f[s] is simple to generate, which facilitates combined
dnlﬂnmandsqmmotimpmm
3.2 Implementations

The efficient of subtractive algorithms
requires dedicated resources. Fi 2 shows a
basic radix-4 divi root unit. Most of the features

enabling high performance are visible in the diagram. The
S i e 1 of
carry bits; use of a low- carry-save
adder to calculate the subtraction in the recurrence. The
result-digit selection table returns the next quotient/square
rootdiﬁ' on the basis of the residual and divisor/partial
root ; the redundant result digit set allows trancated
values to be used, ;Illletablebsl;nanandfm(t;fgao-
tor logic keeps all possible multiples or
g&imdevaytuultdigitavaﬂableatallﬁmfamulﬁ-
er selection. Finally, on-the-fly conversion logic [5],

operating concurrently with computation and off of the
critical path, is used to maintain updated values of s[;] and
f[4], and to incrementally convert the partial result from
redundant into conventional representation.

A radix-4 implementation produces 2 bits of the result
for every iteration. Higher-radix units retire larger groups
of bits at every step. Unfortunately, for radices
than 8, the latency and cost of result digit selection and
factor generation become prohibitive. One solution is to
combine lower-radix stages into a single higher-radix unit.
For example, two radix-4 dividers can be overlapped to
enable radix-16 division [5], with only a modest increase
in area and cycle time.

4 Case studies in divide/square root imple-
mentation

This section contains a series of experimental case stud-
ies which combine representative add-multiply structures
with different practical implementations of division and
square root, and presents the cost and performance impact
of each choice. Area estimates and performance simulation
are employed to achieve a quantitative comparison of the
alternatives.
4.1 Selection of cases

The choice of add-multiply configuration largely deter-
mines the cost and performance properties of the FPU as
a whole. The case studies are based on three representa-
tive configurations, as listed below, derived from actual
machines in a sample of recent designs [16]. Every con-
figuration reflects a different set of design prerogatives; in
each casz: maximum issue rate of one operation per cycle
is assumed.

1. chained add and multiply
2. independent add and multiply
3. multiply-apcumulate

Each add-multiply configuration is tested with four dif-
ferent divide/square root implementations. The basic list
appears below, although there are a few exceptions for
individual cases. Alternatives 1 and 3 represent practical
implementations used in current systems, based on multi-
plicative and subtractive methods, respectively. Methods
2 and 4 are enhancements of these respective techniques.
Together, these four implementations illustrate the current
state-of-the-art and the effects of possible improvements.
Performance figures are based as closely as possible on
actual implementations, using data from the FPU designs
informing the add-multiply models.

1. 8-bit seed Goldschmidt
2. 16-bit seed Goldschmidt
3. radix-4 SRT

4. radix-16 SRT

The Goldschmidt implementations are of the type pre-
sented in Section 2.2, utilizing hardware enhancements
to the multiplier. Performance estimates are based on
the Texas Instruments implementations [3], taking into
account the particular topology of each multiplier. The
multiply-accumulate case, which is based on the RS/6000,
actually uses a Newton-Raphson iteration for division and
square root as implemented by IBM.

135

Implementations of radix-4 and radix-16 divide/square
root are of the presented in Section 3.2. Most of
the FPU’s which form the basis of the add-multiply con-
figurations implement radix-4 division. The latency and
throughput of division and square root in these designs are
used in simulation, since these figures reflect the constraints
of the configuration and implementation technology. The
radix-16 performance figures are also based on the given
radix-4 figures. Again, the multiply-accumulate config-
uration is a special case since there is no actual radix-4
implementation available for reference.

42 Area comparisons

Estimating area in a way that holds true for different
architectures is difficult because of basic differences in
the implementation technology. Nevertheless, we shall
attempt to give some basis for comparing the different
implementations. Table 1 compares the size of the hard-
ware required for division in the Weitek 3364 and Texas
Instruments 8847 arithmetic coprocessors (not including
shared components); the figures are based on measure-
ments of microphotographs [8]. The chips have similar die
sizes and device densities, and although the multiplication
algorithms are different, both have two-pass arrays which
take up approximately 22% of the chip area. In short, apart
from their divide/square root implementation, these two
chips have a lot in common. Now note how the area of
the division hardware is no more than 5% of the chip size
in either case. Also, the relative area requirements differ
by little more than 1%. Although these figures represent
only two particular designs, they suggest that 8-bit seed
Goldschmidt and radix-4 SRT implementations are both
economical, and that the area differences between them
can be kept small.

radix-4 8-bit seed
Algorithm SRT Goldschmidt
viCce Weitek 3364 11 8847
Chip Area [mil*) 148,000 156,000
Transistor Count 165,000 180,000
Mult. Area Share 22.1% .
[Div./Sqrt. Area Share 3.95% 3.0%

Table 1: Area comparison of two divide/square root
implementations

As for the more advanced implementations, case stud-
ies suggest that a radix-16 SRT unit need only be 45%
larger than a radix-4 design in the same technology [5].
Determining the size of a 16-bit seed Goldschmidt imple-
mentation is more difficult given the available data, but a
rough estimate indicates that it would be as much as 20
times larger than the 8-bit seed implementation, given a
straight ROM implementation of the seed table [16]. Even
if the table size could be halved, the area would still be
greater by more than a factor of 10. This calls into question
the practicality of such an implementation.

4.3 Simulation

The benchmark used for performance is based on Givens
rotation [6], chosen for its richness of divide and square
root operations and importance in solving real problems.
Scientific applications frequently require the solution of
partial differential equations, and Givens rotations are a

trian, one usin
Givens rotations [16]. 'lhelcheduhw ofm 4
optimized for each confi

square or overdetermined systems, and matrices
m:morfewamws.mwatdan.whichmdm
rdingly, consist of 8 matrices ranging from 10-by-10

to 200-by-100 elements in size.
_ Each case study assumes that every one of the four
di _mﬂ;ootalm:ﬁesmbemfullzyima-
, existing add-m structure, In reality,
e of gt 1y b el i
processor or exam-
ple, the radix-16 root unit has a 20% longer
cycle time than radix-4 design [5). If the radix-4 unit only
es 80% of the available cycle time per iteration, then
Fequired engihtoing of peooeaior syCl e Wil eon
bly not be acceptable. Fm.:maltamﬁmmaybe
area limitations,

- Throuaghput

m 4

Figure 3: Chained add-multiply configuration

4.4 Case 1: chained add and multiply

The first case to be examined is typical of so-called
chained add-multiply configurations, where the adder per-
forms the final stages of the m y operation. A block
diagram of this structure and the and throughput
of addition and ipli appear in Figure 3. This
configuration is y associated with designs where
wmnﬁoifmhvaluedovumwﬂoaﬁng-poimm-
mance. motivates the re-use of hardware which makes
the multiplier dependent on the adder. Typically, neither

136

DEC 21064.
R4400 (10, 15).

Table 2: Divide/square root performance of chained
implementations

The latencies of division and square root for the dif-
ferent tation altematives are given in Table 2.
actual configuration of the Mips R400. Ly actouity
actual i i 3 ity,
divisioniapufoumedbyi:ﬂm‘gix-4dividu,whileaqm
root computation occurs -point adder using
a radix-2 algorithm. Needless to say, this is a stumbling
block for algorithms using square root at all. For the sake
of uniform com with other configurations, we use
the latency for radix-4 division from the Mips R4400 for
both operations.
The radix-16 latencies are computed as follows. Com-

tin, 53(;)70nmt/root' bits in radix-4 requires a minimum
FSJS/ = 27 cycles; since the actual latency is 36 cycles,
there is a 9 cycle overhead which is an artifact of the
ular and FPU configuration of the Mips R4400.
the minie beofcyclegfx:quh;(f,lfsgﬁi s

um num =14,

add the 9 cycle overhead from the radix-4 case to obtain a
latency of 23 cycles.

Av
08
38

342

423

Table 3: Improvement in execution time [%], by im-
plementation, for chained configuration

improvement effected by the transition from 8-bit seed to
16-bit seed Goldschmidt, as compared to the dramatic dif-
ference provided by the radix-4 and radix-16 techniques.
This is due to the enhanced parallelism of the latter designs
and the ability to overlap steps in the computation.
4.5 Case 2: independent add and multiply
In the second type of add-multiply configuration, cap-
tured in Figure 4, addition and multiplication are com-
ﬂetdy independent of each other. Performance is the
ighest priority, and cost less of an object. Not only are
adder and multiplier independent and fully pipelined,
but their latencies are matched and only two cycles long

register
file

e

addition

multiplication

L

Operation
addition
multiplication

Latency | Throughput
7o T

2 1

Figure 4: Independent add-multiply configuration

cach. The particular chip which this configuration is based
on, the HP PA7200 [1, 7], also has a very short cycle time.
Other designs with similar topologies include the Sun Ul-
traSPARC, the Mips 10000, Intel P6, and DEC 21164.

Latency
Implementation Divide | Square Root
| 8-bit seed Goldschmidt 9 13
16-bit seed Goldschmidt 7 10
radix-4 SRT 15 15
[Tadix-16 SRT 8 8

Table 4: Divide/square root performance of indepen-
dent implementations

The division and square root latencies are shown in
Figure 4. For radix-4 division, there is a simple but powerful
optimization in effect. In the implementation technology
of the HP PA7200, the cycle time of the divide/square root
unit is so short compared to the latency of the multiplier
array that its clock runs at twice the frequency of the rest
of the system. Thus it requires only [53/(2x2)] = 14
cycles with one cycle of overhead. The radix-16 design,
if it could implemented with a com le iteration delay,
would therefore require [53/(4x2)| + 1 = 8 cycles. Even
with these optimizations, the extremely fast multiplication
makes the Goldschmidt implementations competitive in

latency with the subtractive ones.
Implementation T Max T Min Avg_
8-bit seed Goldschmidt || 0.0 [0.0 0.
16-bit seed Goldschmidt [991 16| 350
91 721152
radix-16 SRT 1400 721234

Table 5: Improvement in execution time [%], by im-
plementation, for independent configuration

The execution time improvement figures shown in Ta-
ble 5 reinforce the effects of enhanced parallelism noted
carlier. Although the lower multiplication latency cuts into
the benefits of the radix-4 and radix-16 implementations,
the performance advantages are still significant. The shift in
balance between multiplication and addition latency from

137

the chained configuration mean that the difference between
16-bit seed Goldschmidt and 8-bit seed Goldschmidt s also
smaller than before.

register
file

il

multiply-
accumulate

| E—

Operation || Latency
multiply-accumulate || 2

‘Throughput

Figure 5: Multiply-accumulate configuration

4.6 Case 3: multiply-accumulate

The multiply-accumulate structure represents a bid for
high-performance floating-point, but with a different de-
sign philosophy from the independent configuration. Multi-
plication and addition are coupled, not unlike in the chained
configuration, but a large amount of hardware has been de-
voted to bring the latency of these operations to an absolute
minimum. Furthermore, addition and multiplication are
performed as a single operation. The multiply-accumulate
unit in this example, shown in Figure 5, is based on
the IBM RS/6000 series [11, 20, 19] and can perform a
multiply-add instruction in the same number of cycles it
takes the HP PA7200 to perform just one of the operations.
This configuration is capable of very high performance,
particularly for algorithms which can be arranged to suit
its topology. The Mips 8000 and HP PA80O have similar
add-multiply hardware.

Latency
Implementation Divide | Square Root
8-bit seed Newton-Raphson 19 22
16-bit seed Newton-Raphson 14 17
radix-4 SRT 15 15
|_radix-16 SRT 8 8

Table 6: Divide/square root performance of muitiply-
accumulate implementations

The IBM RS/6000 series uses unique algorithms for the
Newton-Raphson iterations to accommodate the structure
of the multiply-accumulate unit. Division and square root
latencies for the 8-bit seed Newton-Raphson implementa-
tion in Table 6 are identical to the actual processor. The
16-bit seed Newton-Raphson figures are obtained from es-
timates based on available information about the division
and square root algorithms [9]. The POWER2 series of
processors actually has two identical floating point units,
each centered on a multiply-accumulate structure. We have
decided to avoid the complexity of scheduling operations
for two floating-point units and chosen to simulate the

behavior of one in isolation, as in the original POWER
series

. Wﬁwi}canutothesubhwﬁveimplenmtaﬁau.ﬂne
is a gap in the available data, since the IBM RS/6000
mnmmmﬁm divide/square

the di
100t circuits from the HP PA7200 can be

performance values; this scems reasonable since
fl‘:gdeﬁmdmksmnmuykmguthmfor

Table 7: Improvement in execution time [%), by im-
plementation, for multiply-accumulate |lx

From the performance fi in Table 7, it is clear that
even the multipl

confi can benefit
from the pa ofmwwﬁve%m. In
fact, since the latency of multiplicative division and square

138

F¥n | Av
0.0 0.(?‘
15 7
12
72 | 4438
Table 8: Cumulative execution time | [%)
due to different divide/square root i entations

Until now, the relative cost of the implementations has
bemmtio:;donlyinp%ﬁnx;'l‘able9w.z?m
differences displaying approximate area of each
configuration as a factor of the 8-bit seed multiplicative
ge. Recall that the multiplicative implementations for
multiply configuration are actually ver-
sions of the Ni method, not Goldschmidt’s
algaiﬂlm;llﬂmghﬂlee::t'gtheNewm-quwiu%nim-
plementations is ikely to cheaper, we will treat
them as equivalent for the sake of .

Table 9: Relative cost of different divide/square root
implementations

Clearly, the 8-bit seed multiplicative implementations
have the cost of the four alternatives for each case.
However, the benchmark performance is also the worst
of the implementations considered, from 19.7% to 1.6%
slower than the next slowest alternative.

The 16-bit seed multiplicative implementations show a
staggering increase in area. This is a result of the exponen-
tial growth of the seed lookup table with the number of bits
of the initial guess. Unfortunately, the number of iterations
required only decreases at a linear rate [16), which leads to
a very modest performance improvement, less than 20% in
the very best case and much lower on average. This type
of implementation is an extremely cost-ineffective to
patmndivisionmdaqmmotmdisuobablydomgm
infeasible in many situations.

Radix-4 SRT di root gives up t069.4% better
bmmmmmmﬂw&bit:gdm ve
implementations, and never less than a 7.2% improvement.
Yuﬂwmhuﬂymm.nmovgdlompafm

the 16-bit seed multi ve on average.
e e o phcaie mplementtion o tveage
efficient balance of area and

By far the swiftest of the implementation methods

csce 125.71% 1o 46 00 Tt T coeresponding
ormance . to

i ve versions, but is still less then twice as

mgzinﬁu.mdmeﬂmwnﬁmumﬂmﬂw

16-bit sced multiplicative alternatives.

6 Recommendations

At the present time, radix-4 divide/square root appears
to be the most solid choice of implementation, providing
high performance at a reasonable cost. In fact, a significant
proportion of the most recent microprocessor designs have
chosen this alternative, with multiplicative designs in the
minority. To the authors’ knowledge, no current micropro-
cessors implement radix-16 divide/square root, although
with transistor budgets on the rise, this appears to be an
increasingly appealing and feasible option for squeezing
the most performance out of an FPU.

Implementations of 8-bit seed Goldschmidt or Newton-
Raphson make sense in cases where building a separate
divide/square root unit is not feasible for cost or other
reasons. This applies either to very inexpensive designs or
machines which invest a large amount of hardware in fast
multiplication and division. The large table size required
casts serious doubts on the practicality of 16-bit seed
multiplicative implementations. No commercial designs
known to the authors implement it, and even if the required
area were available, it would be better spent on a parallel
divider.

Current trends in microprocessor implementation in-
clude ever larger transistor budgets and increasing levels of
parallelism. Designers are increasingly less likely to worry
about conserving area than to puzzle over how to use avail-
able space efficiently. Subtractive methods, with their inde-
pendent operation, are in a better position to exploit higher
degrees of scalarity than multiplicative techniques, which
serialize multiplication, division, and square root compu-
tation. Indeed, the latest generation of microprocessors
is dominated by chips with subtractive implementations,
including the Sun UltraSPARC, Mips R10000, Intel P6,
and HP PA800O. As the need to conserve area and devices
becomes less urgent, one of the primary motivations for
multiplicative methods begins to recede.

Finally, multiplicative implementations are always more
or less intimately linked to the design of the floating-point
multiplier, possibly compromising its performance. Sub-
tractive techniques decouple division and square root from
multiplication and provide the possibility of independently
optimizing the implementations. Even if multiplication,
division, and square root are not a good combination, per-
haps, as has been suggested, multiplication and addition
are a natural pair. By this reasoning, a combination of
multiply-accumulate units and separate divide/square root
units, as in the HP PA8000, may represent the floating-
point architecture of the future,

Acknowledgements

This research is supported in part by the National Sci-
ence Foundation under contract CCR-9257280. Peter
Soderquist was supported by a Fellowship from the Na-
tional Science Foundation. Miriam Leeser is supported in
part by an NSF Young Investigator Award. We would
like to thank Bard Bloom and Adam Bojanczyk of Cornell
University for reading and commenting on an early version
of this paper.

References

[1] Tom Asprey et al. Performance features of the PA7100
microprocessor. IEEE Micro, pages 22--35, June 1993.

139

(2] Daniel B. Atkins. Higher-radix division using estimates
of the divisor and partial remainders. JEEE Trans. on
Computers, pages 925-934, October 1968.

[3] Henry M. Darley et al. Floating-point/integer processor with
divide and square root functions. U.S. Patent 4,878,190,
October 1989.

[4] Milos D. Ercegovac, Tomas Lang, and Paolo Montuschi.
Very high radix division with selection by rounding and
prescaling. In Proc. 11** IEEE Symposium on Computer
Arithmetic, pages 112—-119. IEEE, June 1993.

(5] Milos D. Ercegovac and Tomas Lang. Division and Square
Root: Digit Recurrence Algorithms and Implementations.
Kluwer Academic Publishers; Boston, 1994.

[6] Gene H. Golub and Charles F. Van Loan. Matrix Compu-
tations. The Johns Hopkins Univ. Press; Baltimore, second
edition, 1989.

[7] Linley Gwennap. PA-7200 enables inexpensive MP sys-
tems: HP’s next-generation PA-RISC also contains unique
"assist” cache. Microprocessor Report, January 1994.

(8] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kaufmann
Publishers; San Mateo, CA, 1990. Appendix A: Computer
Arithmetic by David Goldberg.

[9] Peter W. Markstein. Computation of elementary functions
on the IBM RISC System/6000 processor. IBM Jour. of
Res. and Dev., pages 111119, January 1990.

[10] Sunil Mirapuri, Michael Woodacre, and Nader Vasseghi.
The Mips R4000 processor. IEEE Micro, pages 10--22,
April 1992.

[11] R. K. Montoye, Hokenek E., and S. L. Runyon. Design of
the IBM RISC System/6000 floating-point execution unit.
IBM Jour. of Res. and Dev., pages 59--70, January 1990.

[12] Stewart F. Oberman and Michael J. Flynn. Design issues in
floating-point division. Technical R?ort CSL-TR-94-647,
Stanford University Departments of Electrical Engineering
and Computer Science, Stanford, CA, December 1994.

[13] Victor Peng, Sridhar Samudrala, and Moshe Gavrielov. On
the implementation of shifters, multipliers, and dividers in
VLSI floating point units. In Proc. 8** IEEE Symposium on
Computer Arithmetic, pages 95--102. IEEE, May 1987.

[14] Norman R. Scott. Computer Number Systems and Arith-
metic. Prentice Hall, Englewood Cliffs, NJ, 1985.

[15] Satya Simha. R4400 Microprocessor: Product Information.
MIPS Technologies, Inc., Mountain View, CA, September
1993.

[16] Peter Soderquist and Miriam Leeser. Area and perfor-
mance tradeoffs in floating-point division and square root
implementations. Technical Report EE-CEG-94-5, Comell
School of Electrical Engineering, Ithaca, NY, December
1994.

[17] C.C.Steamns. Subtractive ﬂoaﬁnggoint division and square
root for VLSI DSP. In European Conf. Circuit Theory and
Design, pages 405--409, September 1989.

[18] George S. Taylor. Radix 16 SRT dividers with overlapped
uotient selection stages. In Proc. 7** IEEE Symposium on
2’omputer Arithmetic, pages 64—71. IEEE, June 1985.
[19] StevenW.White. POWER2: Architecture a9n9dj>erfonnmce.
In Digest of Papers: COMPCON Spring 1994, pages 384--
388. IEEE, February 1994.
[20] Steven W. White et al. How does processor MHz relate

to end-user performance? Part 1: Pipelines and functional
units. IEEE Micro, pages 8--16, August 1993.

