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Abstract - This paper describes the design of a 16x16
complex-number multiplier developed as part of the
arithmetic datapath of a complex-number digital signal
processor. The complex-number multiplier internally uses
binary signed digits for fast multiplication and compact
layout. It employs the traditional three-multiplication
scheme while minimizing the logic and delay associated
with the three extra pre-multiplication binary additions
which that scheme requires. The minimization comes from
producing the redundant binary sum for each of the pre-
multiplication binary additions with minimal hardware, and
then recoding the redundant sums as radix-4 multiplier
operands. The radix-4 operands halve the number of
summands to be added in each of the three real multiplier
units. Furthermore, an additional factor of two reduction in
the number of summands is effectuated by our coding
scheme for representing binary signed digits. The result is
a fast and compact complex-number multiplier.

L Introduction

Complex-number multipliers process and filter
signals arising from Fast Fourier Transform (FFT), quadra-
ture signal representations, or Hilbert transforms. They are
time-critical components for radar, satellite, and digital
modulation applications.

A direct implementation of a complex-number
multiplication uses four multipliers with significant chip
area and delay: (A+jB) (C+jD) = R+jI where
R = AC-BDand I = AD + BC. One method in reduc-
ing the multiplication count is the use of modular arith-
metic. Examples are Quadratic Residue Number System
(QRNS), Quadratic Like Residue Number System
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(QLRNS), Modified Quadratic Residue Number System
(MQRNS), and Polynomial Residue Number System
(PRNS)[11[2][3][4][5]. For instance, a complex multipli-
cation in QRNS requires two real multiplications instead
of four. The trade-off is a large number of adders used for
preprocessing and postprocessing. If we balance a number
of design issues like dynamic range, data width, scaling,
RNS-to-binary conversion, post/preprocessing, and circuit
pipeline, it is doubtful that these RNS systems are as com-
petitive as conventional binary implementations. This is
especially true in view of recent advances in the develop-
ment of commercial floating processors with fast and com-
pact binary multipliers [6]{71[81{9].

Among binary complex-number multipliers, a
common implementation scheme is t0o merge real (or
imaginary) products in one adder tree summing up twice
the number of partial products, i.e, R = AC —BD, with-
out reducing logic complexity [10]. Another method is to
make my = (A+B) (C+D), m, = AC, m, = BD,
and then compute R = m;, —m, and I = my—m, —m,.
The resulting circuit has one less multiplication but three
more additions than the conventional scheme.

Our complex-number multiplier uses three
binary multipliers with minimal additional hardware for
extra additions due to two design innovations. The first is
the use of a particular coding of redundant binary digits
(BSD)[11] such that producing redundant binary sums
from binary numbers uses minimal hardware [12]{13].
The second is the “recoding” of redundant binary numbers
into radix4 digits which are used as a multiplier operand
for subsequent multiplication operations. The recoding is



accomplished by applying two “filtering” factors to the
target redundant binary number, and this leads to simple
logic.

In Section 2, we present the computational algo-
rithm and architecture of our complex-number multiplier.
Section 3 discusses two key components of our design:
redundant binary addition and the radix-4 recoding of
redundant binary numbers. Section 4 describes the circuit
implementation and layout as part of a complex-number
multiplier-and-accumulator (MAC) unit. The final section
summarizes our design.

2. Architecture

Given (A+jB) (C+jD) = R+jlI  where
R =AC-BD and I = AD+BC, a complex-number
multiplication can be written as:

my = (C-D) xB 6))
m; = (A-B) xC @
m, = (A+B) xD 3)
R =m+m, @
I'=my+mg. ®)

This method requires three additions to generate pre-mul-
tiplication sums, and three multiplications and two addi-
tions for the final results, a saving of one multiplication at
a cost of three extra additions. However, we can imple-
ment these three additions at minimal additional cost, thus
realizing savings in both chip area and speed. Figure 1
presents a block diagram for the above computation in
which the pre-multiplication sums are in redundant binary
(RB) forms produced by Redundant Binary Coders.
These RB values are then filtered into a form suitable for
radix-4 recoding. The filtering and recoding functions are
performed by Binary Signed Digit (BSD) Recoders. The
resultant radix-4 digits, in the same format as Booth
recoded multiplier digits, feed the subsequent Redundant
Binary Multipliers. The products are then added and con-
verted to binary outputs by Redundant Binary Adder and
Converter.

3. Redundant Binary Coder and Binary Signed Digit
Recoder

Among four circuit blocks of a complex-number
multiplier, Redundant Binary Multipliers and Redundant
Binary Adder and Converters have been documented
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Figure 1. A Complex-Number Multiplier

extensively in the literature [9][12}[13][14](15]. It is
Redundant Binary Coders and BSD Recoders that merit
special discussion. A Redundant Binary Coder adds up
(or subtracts) a pair of 2’s complement numbers and gen-
erates the corresponding sum (or difference) in redundant
binary format. Consider the sum of two (n+1)-bit binary
numbers A and B as follows:

n-1

A+B(or A-B) = d2"+ ) d2'+g2° ©)
where i=0
A= (aa,_,...a,ap)»

]
|

= (bb,_,...b by,
...,al,ao,bn, b, 1»--bpbg€ {0,1}’

d,d,ge {10,1)

Let two coding bits 00, 01, 10, and 11 represent 1, 0, 0,
and 1 respectively. The resulting logic for a redundant
binary sum digit is trivial, and is summarized in Table 1 in
which a BSD d, (d;e (1,0,1}) has two coding bits
d; d;. The corresponding Redundant Binary Coder has
only inverters which along with the correction term g are
integrated with the following BSD Recoder. We thus
obtain the pre-multiplication sum in redundant binary
form at minimal costs.

Table 1. Redundant Binary Sum Digits
for Adding Two Binary Numbers

d, d.(0Sis<n—1) .
d g(g" 8")
d, | d, d; d;
A+B| @, | ba | g b, -1 (00)
A-B | a, . | a; b 0(01)

The redundant binary sum described above is



then presented as a multiplier to its following multiplica-
tion circuit. Typically a binary multiplier operand is
Booth recoded into radix-4 digits to reduce the number of
partial products. Since the redundant binary multiplier
operand is not in binary format, it cannot use Booth recod-
ing directly. If one adopts “Booth-like” strategy of scan-
ning consecutive BSD digits, the resulting digit may be -3
or 3. To solve this problem, we first filter the redundant
binary multiplier, Xy, by two filtering factors Fg¢p and
Gsp, and then recode the filtered output, Y. The filtering

Yop = (Xgp +Fgp) + Ggp
=W +Ggp

where

Xsp= Y %+ 2hx,= {1,0,1}

i=0

Yo=Yy 2hy,= {1,0,1)

i=0

Wep = ZW,.-z",w,: {1,0,1}.
i=0

Constants Fg;, and Gg, are filtering factors defined as
Fsp = (...0101) g, and Ggp, = (...0101) ;. The fil-
tered redundant number, Y, features that its value is the
same as the original X, and the product of even-odd
adjacent digits cannot be one, that is, Yisryi®11 or
Yisyi#11for even i (i = 0,24..). Consequently,
recoding Ysp's even-odd digit pair eliminates the possibil-
ity of producing +3 or -3 values.

The reason why the filtering operation produces
the desired result hinges upon the peculiarities of redun-
dant binary addition. A redundant binary addition takes
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Figure 2. Two Steps of a Redundant Binary Addition

two steps as shown in Figure 2. The first step adds x; and
¥i» and generates an intermediate sum (s;) and an inter-
mediate carry (c)) : x;+y; = 2¢; +s; where x;, y;, c;,
and s;e€ {1,0,1}. The second step produces the final
sum z; by summing s; and c;_, , the intermediate carry
from the less significant position; that is, z, = 85+,
In order to render a carry-propagation free addition, the
choice of the intermediary carry and sum digits should be
such that the final sum digit z; is neither 2 nor -2.

Tables 2 and 3 tabulate the two-step redundant
binary addition of even-odd digit positions for the first fil-
tering operation W, = X, + Fg,. Tables 2.a and 2.b
list the first-step addition in generating the intermediate
sum and carry digits for the even and odd positions respec-
tively. Variable 1, (or 1,;, ;) indicates whether the corre-
sponding intermediate carry belongs to {1,0} or {1, 0).
This information from the less significant position is used
to assign intermediate sum digit values, i. e. the second
row of Table 2.a, such that the second-step addition results
in a BSD sum digit as shown in Table 3. Equipped with
these tables, we can show that the even-position sum digit
(wyp) cannot be 1:

For xFT, Szﬁo, Cak. 1=0 = w2k=0’
02k_1=1' = w2k=T;
=0, sy=I,then ¢ ;=0 = wy=T,
=1, then  czp =T => wy=0;
=1, s3=0, C24.1=0 = wy=0,
Cok. I=T = WzFT.
That is, the filtering produces the wy,, ;w,; output in the
range of [-3,2].
Table 2.a The First Step of
Wsp = Xsp+Fgp
for an Even Digit Position

‘ - | ®r-120-1
% wdfate) Upp_1=0) | 252

ty =0 i1 - 10

01 ‘2&—1 = l 01

tu-r =0 T1

11 - 00




Table 2.b The First Step of

Wgp = Xgp+Fgp Tabl; 43:.“;, Fxr:t GStep of
. . o sp = WsptUgp
for an Odd Digit Position for an Even Digit Position
ey | T2k V2re1| 22k |
- 2k+1%2k+ 1 W Wor 18 _
Foer 19| =) 2682k | 2ke-182k-1 | ypy = sy
t 2k"2k
%] (gy=1)| (8341=0) +igp_
bier = 1 00 - 00
10 i Ol ’2k =1 01 t2k—l =1 lT 0
- = 01 1
L1 =0 10 - T ty-1 =0
T1 - 00 Oorl
Table 3. The Second Step of a Redundant Binary
Addition Table 4.b The First Step of
Ysp = Wsp+Ggp
for an Odd Digit Position
S; Ci—1 Wi i
w, 8 w
0 1 1 bi+1 (2"” 2':);‘ (2"82’:) €2k+1%2k+1
4 = £934=
0 I I 2k+1 2k
1 0 1 tsy =1 10 ) 1T
1 T 0 Ly =0 00 - 00
T 0 1 T0 - 0T
T ! 0 After the filtering operation, the recoding becomes trivial:
0 0 0 O, = 25041 ¥y and 0,, € {041, £2].
The logic for Binary Signed Digit (BSD) Recod-
Similar tables (Tables 4.a and 4.b) can be con- ers can be derived with the BSD coding of 00 for 1, 01
structed for the subsequent filtering opera- or 10 for 0,and 11 for 1. Let x; x; and y; y; be coding
tionYg, = Wgp +Ggp, ie., adding “1” to each wy bits for x; and y; respectively, and

digit. The resultant y digits are y,, = w,,+ 1€ [0,1]

r.= (x; ®&x,*
and y,.., =w,,, €[-10,1. We can prove i = i)

I + - + - +
Yars1Ye # 11 with Tables 4.2 and 4.b: Pi = Cioy sy (gt ricy) +xipnio
- + - - +
Yoke1=1=> s34, 1=0 and cpp = 1 = y5,=0. Qi = XX Tt 1 X 0%
Then the filtered output is:
yu =1

nk = (g yPacy) @ (@ (g +3_y))
Yors1 = ’_21:: S 2T
Yaka1 = Pax-192k+1-
The recoded radix-4 digit o,, is:
(0=0) = yz—: (Y2k4+1® Y2i+1)

(0,=1) = ¥oi O2ps1+Yake1)
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(czt:i) = Yor O2ke1*+Yare1)
(Ox=2) = Yo, 1YZ:+1

(0= .2-) = Yar O2es1 +Yak41)
4. Implementation

Our complex-number multiplier was imple-
mented as part of a complex-number MAC, core compo-
nent of a complex-number digital signal processor. The
MAC has three pipeline stages and supports multiplica-
tion-and-accumulation and direct multiplication as shown
in Figure 3. The multiplier part consists of three RB
Coder/BSD Recoders, three RB Multipliers, and two
Redundant Binary Adder and Converters. A RB Coder/
BSD Recoder inputs a pair of 16-bit binary numbers and
produces 9 radix-4 digits. These 9 recoded radix-4 digits
constitute the multiplier operand for the RB Multiplier.
Adding 9 binary partial products in the adder tree of the
RB Multiplier requires three ([log,9/27) tree levels in
which the factor of two reduction in the number of sum-
mands comes from BSD coding discussed above. The
redundant binary multiplication products produced by
three RB Multipliers are added in the fourth-level RB
Adder according to Equations (4) and (5). The redundant
binary results then feed an accumulation redundant binary
adder, Acc RBA, for fast accumulation. The accumulated
redundant binary sum is then converted to binary in a
Redundant Binary Converter implemented by a 41-bit
adder.

A BSD Recoder implements the radix-4 encoding
logic and its circuit is shown in Figure 4. The circuit
inputs 6 bits, 2 bits for each digit position, and produces
five unencoded radix-4 outputs. 1t has six gates on its crit-
ical path if we treat an XOR (XNOR) gate as one 1.5 gate,
an inverter as one 0.5 gate, all other gates as one gate. The
1.2 p CMOS implementation has a latency of 3.8 ns that
includes a one-stage driver. Compared with a regular
Booth recoder inputting a binary operand, a BSD Recoder
circuit is twice as complicated and slow.

The Redundant Binary Multiplier includes Booth
decoders generating partial products (PPG), and redundant
binary adders (RBA). Figure 5 shows a redundant binary
adder circuit adding a pair of BSD x; and y; and generating
one BSD z;. The circuit has five gates on its critical path
and a latency of 3 ns.

S. Discussion and Summary

We have implemented a 16-b x 16-b complex-
number MAC using a BSD radix-4 recoding scheme. The
radix-4 recoding coupled with our coding of binary signed
digits allows us to use the three-mulplication scheme with
minimal extra hardware for the three extra pre-multiplica-
tion binary additions. In addition, our BSD codes halve
the number of summands to be added up in the multiplier’s
adder tree. Table 5 summarizes the design characteristics
of our complex-number MAC, and Figure 6 shows the cir-
cuit’s micrograph.

Table 5. Characteristics of a 16 x 16 Complex-Number
MAC

Minimum Feature | 1.2 um (drawn), two-level metal

Transistor Count 57,634

Size 30.8 mm?
Clock Rate 100 MHz
Power 26.2 mW

Our design of using radix-4 recoding does not
reduce logic complexity when compared with the imple-
mentation of merging real (or imaginary) products in one
adder tree to produce real (or imaginary) parts [10]. Both
require four levels of redundant binary addition. Our
advantage lies in the dense routing and compact layout of
distributing fewer partial products to be summed up in one
multiplier unit. Furthermore, our radix4 recoding
scheme is general, and is useful in computations such as
division/square-root [16).
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Figure 6. A Micrograph
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