167 MHz Radix-4 Floating Point Multiplier

Robert K. Yu and Gregory B. Zyner

SPARC Technology Business, Sun Microsystems Inc.
Sunnyvale, California

Abstract - An IEEE floating point multiplier with partial sup-
port for subnormal operands and results is presented. Radix-4 or
modified Booth encoding and a binary tree of 4:2 compressors
are used to generate the 53x53 double-precision product. Delay
matching techniques were used in the binary tree stage and in
the final addition stage to reduce cycle time. New techniques in
rounding and sticky-bit generation were also used to reduce area
and timing. The overall multiplier has a latency of 3 cycles, a
throughput of 1 cycle, and a cycle time of 6.0ns. This multiplier
has been implemented in a 0.5um static CMOS technology in the
UltraSPARC RISC microprocessor.

1. INTRODUCTION

Multiplier units are commonly found in digital signal pro-
cessors and, more recently, in RISC-based processors[1].
Double-precision floating point operations involve the inher-
ently slow operation of summing 53 partial products together
to produce the product. IEEE~compliant multiplication also
involves the correct rounding of the product, adjustment to the
exponent, and generation of correct exception flags. Multi-
plier units embedded in modern RISC-based processors must
also be pipelined, small, and fast. Judicious functional and
physical partitioning are needed to meet all these require-
ments[5][6][14]. In this paper, Section II describes the partial
subnormal support. Section Il describes details of the imple-
mentation, including the 4:2 compressor design, the binary
tree composition, final addition, rounding, and sticky-bit gen-
eration. Finally, Section IV concludes this paper.

II. SUBNORMAL OPERATIONS

Multiplier units that handle subnormal or denormal oper-
ands and results often require the determination of leading
zeros, adjustments to mantissas (shifting) and exponent, and
rounding. Overall timing and area are affected when subnor-
mal operations are fully supported. However, by introducing a
modest amount of hardware to compare only the value of the
exponents, we can provide support for a large subset of the
subnormal operations. This partial subnormal support does
not require detection of leading zeros, adjustments of subnor-
mal mantissas, and does not introduce an extra cycle penalty.

Figure 1 shows the floating point data formats, and Figure 2
shows their value definitions according to IEEE standards.
The value of the mantissa is formed by concatenating the

1063-6889/95 $4.00 © 1995 IEEE

implicit bit with the fraction. For normalized values, the
implicit bit is one, and for subnormal values, the implicit bit is
zero. Note that for subnormal values, the convention is to
have the exponent field zeroed, but the value of the exponent
is taken to be one.

Single Precision:
s| exp[7:0] fraction[22:0]
Double Precision:
s| exp[10:0] fraction[51:0]

Fig. 1. Floating point formats.

s =sign

e = biased exponent
f=fraction

E = number of bits in exponent (8 for single, 11 for double)
F = number of bits in fraction (23 for single, 52 for double)
B = exponent bias (127 for single, 1023 for double)

Normalized Value (0 < e < 2E-1):
1’x2¢Bx1f

Subnormal Value (e = 0):
1 x2"Bx0f

Zero:
1D’x0

Fig. 2. Floating point format definition.
In multiplication, the resultant exponent e, is calculated by:

e, =e +e,-B-z, -1, Q)

where e; and e, are the biased exponents, and z; and z, are
the leading zeros in the mantissas to the multiplicand and mul-

149

tiplier, respectively. We can simplify Equation 1 by noting
thatifboﬂ:opumdsaresubnormal,thmﬂ:evalwofe,
underflows to a value no greater than -B, and cannot be repre-
sented in the given precision!. We can therefore impose the
constraint that only one operand can be subnormal without the
loss of generality and rewrite this equation as:

e,=e,+e,-B-z 2

where z is the number of leading zeros of the subnormal
operand, if any. We further note that if the resulting value e, is
less than one, then the amount by which the resulting mantissa
needs to be right-shifted to set e, = 1 is:

rshift = 1-e, @

X the rshift value is greater than the number of bits in the
of the given precision. We define this condition as “extreme
underflow.”? Specifically, if

rshift2 (F +3) “)

then the mantissa will be right-shifted to the sticky-bit posi-
tion or beyond and the resulting mantissa is either zero or the
smallest subnormal number, depending on the rounding mode.
The two cases where rounding will produce the smallest sub-
normal number are 1) rounding to plus infinity and the result
is positive and 2) rounding to minus infinity and the result is
negative. All other rounding modes including rounding to
nearest and rounding to zero produces zero as the result.

Rewriting Equation 4 in terms of e,, extreme underflow
occurs when .

e, <-(F+2))

We note from Equation 2 that e, requires the detection of
leading zeros z. If we ignore z altogether, which greatly sim-
plifies the implementation, then Equation 5 becomes a conser-
vative criterion for extreme underflow. That is, using only

e, =e,+e,-B 6

to determine extreme underflow ignores those cases where
extreme underflow would occur because of leading zeros
present in the subnormal mantissa.

Equation 5 and Equation 6 form the basis used to provide
partial subnormal support in this design. If Equation 5 is satis-
fied with the appropriate rounding mode, then the multiplier
generates a zero result. The multiplier does not support the
case where Equation 5 is not satisfied and a subnormal oper-
and is encountered.

1. Does not apply to single precision multiplication resulting in a

double precision result, or “fsmuld”.
2. Sometimes loosely referred to as “gross underflow”.

IIL. IMPLEMENTATION
A. Folded 3-Stage Pipeline

The multiplier operates over three stages. In the first stage,
the muitiplicand and multiplier operands go through the radix-
4 encoding and multiply tree[3][4]{7]. The intermediate sum-
mations of partial products and the result of the tree are in
carry-save format. In the second stage, a conditional-sum
adder is used to determine the product, converting the result
from carry-save to binary form. In the third stage, rounding
and flag generation is performed. The multiplier has a single-
cycle throughput and a three-cycle latency.

B. Stage 1: Multiply Tree

1) Interleaved Binary Tree with Delay Matching

The first stage of a 53x53 bit multiplication of the mantissas
is performed by a radix-4 Booth encoded binary tree of 4:2
compressors, or 5:3 counters. Figure 3 shows a schematic of
the binary tree. The encoding scheme produces 27 partial
products which are generated at blocks 0,1,3,4,7.8, and 10.
Since 4:2 compressors are used, each block generates 4 partial
products, except for block 10 which generates 3.

DATAPATH
8CCs D: &Eﬂm 1.37 ST
10 ¥ 8

Fig. 3. Schematic of radix-4 binary tree.

Unlike traditional implementations, where inputs fiow start-
ing from the top and side of the tree to the bottom of the tree,
this implementation has the multiplier and staged results
placed on the same side of the tree. That is, pipeline register
are embedded in the tree and are routed to the same side as the
multiplicand, as shown in Figure 4. The advantage of this
approach is to reduce interconnect lengths and to push some
of the interconnect delay to the next stage.

The complexity of a binary tree does not lend itself to a
straight-forward layout[2]. To minimize the delay through the
tree due to interconnects, the placement of the rows of partial
product generators and adders are dooe such that wire lengths

150

the horizontal distance, which comes about because the tree is
“left-justified” and is significant in some cases, were taken
into account.

Table I shows the vertical row distances and horizontal bit
distances between cells on different rows. The critical path
through the array involve the rows with large horizontal shifts,
namely rows 0, 2, 6, and 12. These rows have been placed
close together to reduce this path. Figure 4 shows the place-
ment used[8].

TABLE1
DISTANCE BETWEEN CELLS

Row Horizontal Vertical
Transition Distance Distance
0->2 9 1

1->2 1 2
3->5 9 1

4->5 1 3

7->9 9 1

8->9 1 2
2->6 17 3
5->6 1 3
9->11 3 3

10-> 11 0 7
6->12 18 4
11->12 0 4

2) Folded Adder Rows

Another problem presented by the irregular tree structure is
the differing number of bits in each row, which varied from 61
to 76 bits. In order to reduce the area of the tree, some of the
adders in the larger rows were “folded” to rows with fewer
cells. The folding was done such that timing was not affected.
More folding could be done but not without impacting the
critical path through the tree.

3) 4:2 Compressor Design

The 4:2 compressor schematic is shown in Figure 5. This
adder takes 5 inputs {x3, x2, x1, x0, and cin} and generates 3
outputs {carry, cout, and sum}. All inputs and the sum output
have a weight of one, and two outputs carry and cout have a
weight of two[10][12]. That is,

2°. (x3+x2+x1+x0+cin)
=2 (carry + cout) +2°- sum

D

;
g E: .
= S
= e g
: .
H > i = Tl
H >
B == o ——
an
:-—--- | — I) I

Fig. 5. Circuit schematic of 4:2 compressor.

The 4:2 compressor has been designed according to
Table II. Since the cout signal is independent of the cin input
and only dependent on the x inputs, a row of such adders
hooked up together as shown in Figure 6 will not exhibit any

TABLE I
TrRUTH TABLE FOR 4:2 COMPRESSOR
x3 x2 xl x0 cout carry sum
0 0 0 0 0 0 cin
0 0 0 1 0 cin cin
0 0 1 0 0 cin cin
0 0 1 1 1 0 cin
0 1 0 0 0 cin cin
0 1 0 1 0 1 cin
0 1 1 (1] 0 1 cin
0 1 1 1 1 cin cin
1 0 0 0 0 cin cin
1 0 0 1 0 1 cin
1 0 1 0 0 1 cin
1 0 1 1 1 cin cin
1 1 0 0 1 0 cin
1 1 0 1 1 cin cin
1 i 1 0 1 cin cin
1 1 1 1 1 1 cin

0l r--q T
& % = = T
3
2 i1 T M
4
1 i =
% 7 1 i ii: 1
I I
g [l i i i 11
lo‘Lunl E | —
multiplicand result

Fig. 4. Block diagram of binary tree showing the ordering of the rows used to
balance the interconnect delays.

rippling of carries from cin to cout. The adder has also been
designed such that the delay from xi to sum or carry is approx-
imately the same as the combined delay from xi to cout, and

151

cin to sum ox carry of an adjacent adder.

Fig. 6. Interconnect of 4:2 compressors with no horizontal ripple carry.

C. Stage 2: Final Addition

1) Optimized Conditional-Sum Adder

The final add stage of the multiplier makes use of a 52-bit
conditional sum adder that is partitioned for minimum delay.
Figure 7 shows a block diagram of the recursive structure of
the conditional sum adder. As shown in the diagram, an N-bit
condmanlmadcbnsmadeupoftwosmallaoondmonal
sum adders, one that is j-bits, and one that is N-j bits wide.
'I‘woZ:lmuxesueusedtoanpnttheuppersmandcarry
results; these outputs are selected by the carries from the
lower j-bit adder. Typically the selects to the muxes are buff-
ered up to handle the capacitive loading due to large fanouts.
'Ihesesmalleraddmm,mnnn,madeupofsmalleroondl
tional sum adders{11].

8N-14) biN-1511 oj-1:0] bjj-1:0)

Fig. 7. Recursive structure of conditional sum adder.

The delay through this adder is affected by how the adders
are partitioned. We define the delay for an N-bit adder parti-
tioned at position j as T(N j):

T(N,)) =)
max[Top‘)+Tb (N-J) +T,,,Tap‘(N-]) +7T,.1

In Equation 8, Topdi) is the optimal delay for an i-bit adder,
Tpypis the buffer delay and is a function of the number of bits
on the left adder, or N-j, T, is the select to out delay of the
mux, and 7, is the data to out delay of the mux. The mini-
mum delay for an N-bit adder 7,,(N) is simply:

Top (M) = min[T(N,)})

where j varies from 1 to N-1. The problem of finding
T,x(N) is a recursive min-max problem and lends itself well
to an efficient dynamic programming solution developed
internally for this implementation.

2) Sticky-Bit Generation from Carry-Save Format

The sticky bit, which is needed to perform the cormect
rounding, is generated in the second stage. Typically, the
lower 51 bits in carry-save format are summed and OR’ed
together. However, in our technique, we are able to generate
the sticky bit directly from the outputs of the tree in carry-save
format without the need for any 51-bit adder to generate the
sum beforehand, resulting in significant timing and area sav-
ings. We define:

p;=5,®c; 10)
h = 5;+¢ 1)
=p;®h_, (12)

where s; and c; are the sum and carry outputs from the tree.
The sticky bit is then computed directly by using a ones-detec-
tor[9]:

sticky = to+1,+... +1g (13)

D. Stage 3: Rounding

1) Using Conditional Sum Adders

By using a conditional sum adder to generate both the sum
and sum+1, we remove the need for an incrementer to perform
the rounding operation. Only multiplexing is needed to select
the correct result after rounding{13].

2) Overflow After Rounding

Indwbhpmclswnmulnphcmafterﬂlelo&bltp’omn
(in carry-save format) has been generated by the array, the
decimal point occurs between bits 104 and 103, and only the
upper 53-bits are used for the mantissa result. The lower 53-
bits are needed only to perform the correct rounding. After
rounding is performed, either bits 105-53 or bits 104-52 are
used depending on the value of bit 105 or MSB. K this MSB is
set, then the mantissa is taken from bits 105-53, and the value

152

of the exponent is incremented. Otherwise, if the MSB is not
set, then bits 104-52 are used, and the exponent is not incre-
mented. Note that the rounding itself may propagate to set the
MSB; this is the case of overflow after rounding. Figure 8
shows how the mantissa is selected from the array result
depending on bit 105 after rounding. In the figure, L, G, R,
and S represents the LSB, guard, round, and sticky bits,
respectively.

Bit Position: 105 53 52 51 °
LGR|S
Non-Overflow: x[... xxxqxxx ... x

Overflow:

|x %ax XXx ... X

Fig. 8. Mantissa selection for overflow and non-overflow.

Figure 9 shows a block diagram of the rounding datapath
and logic. The dotted line represents pipeline registers: the
final add operation and rounding are done in separate stages.
The lower 50 bits from the array are used to generate two sig-
nals: c51and S. The c51 signal is the carry into bit 51. Bits 53
through 51 along with c51 are added to create the L, G, and R
bits, and the rest of the bits 105:54 are added using a condi-
tional sum adder to form two results sum0{105:54] and
sum1[105:54].

<{105:0] s[105:0}

mann(1:0) | meav(0)
\ 41 fe—{ selet logic
m.i[SZ:O]

Fig. 9. Rounding.

Because of the c51 signal and a rounding that may occur at
bits 53 or 52, there is a possibility of introducing two carries
into bit position 54. To ensure that only one carry is propa-
gated into bit 54, a row of half-adders is used at bits 105
through 51.

To correctly handle the case of overflow affer rounding, our
implementation makes use of two adders, ovf and novf, to
generate the signals ¢54_v and c54_n, respectively, which are
needed by the final selection logic. The c54_v and c54_n are
the carries into bit position 54 assuming an overflow and non-
overflow, respectively. The L, G, R, S, and rounding mode bits
are used by the round logic to generate two rounding values.
One value assumes a mantissa overflow, and the other
assumes no mantissa overflow. These rounding bits are added
to the L and {L,G} bits to form the lower one and two bits of
the resulting mantissa for overflow (manv) and non-overflow
(mann), respectively.

3) Final Selection

The final select logic combines the appropriate sumQ and
suml from the conditional sum adder with either manv or
mann to form the final mantissa. Table IIl shows the truth
table to the selection logic. The key to the table is the expres-
sion for the Overflow signal, shown in Equation 14. The first
expression refers to the case where the MSB is set as a result
of a carry within the addition of the 51 bits without a carry
into bit 54. The second expression refers to the case where the
MSB is set due to some carry into bit 54 in the non-overflow
case. This carry may be due to rounding itself, or the case of
overflow after rounding.

Overflow = sum0[105] + (c54_n - sum1[105]) 14)
TABLE III
SELECTION LoGic

Overflow c54_n c54_v Select

0 0 X sum0{ 104:54], mann(1:0]

0 1 X sum1[104:54), mann[1:0}

1 x 0 sum0{105:54], manv([0]

1 x 1 sum1{105:54], manv{0}

4) Shared Hardware with Divide and Square Root

In our implementation of the floating point unit, the round-
ing for multiplication is similar to that needed for division and
square root. In the interest of saving area, multiplication, divi-
sion, and square root all share the same rounding hardware.
Only additional muxing between the multiply, divide, or
square root results is required before the inputs to the block
shown in Figure 9.

One difference, however, between multiplication, division,
and square root is the handling of the mantissas overflow. In

153

multiplication, the incremented exponent is used if an over-
flow occurs. In division and square root, however, the decimal
point is taken to be immediately to the right of the MSB.
Therefore, if the mantissa’s MSB is zero, then the decre-
mentedapouentisselected.Tablelehowshowtbeexpo—
nent is selected for multiplication, division, and square root.

TABLE IV
EXPONENT SELECTION FOR MULTIPLY AND DIVIDE
Mantissa Multiply DividelSqrt
Overflow e+l e
Non-overflow e, e.-1

IV. CoNcLUSION

We have presented the design and implementation of a
high-speed floating point multiplier. Partial subaormal support
has been implemented with minimal addition to hardware and
penalty on performance. Delay matching techniques were
used in the multiplier tree and in the final addition stages. The
rounding hardware is shared with the divide and square root
units.

V. ACKNOWLEDGEMENT

'IheauthaswmldlikemﬂmnkaTremblay,Aljun
Prabhu.andﬂleProgramCanmitheeforthdrvaluablesug-
gestions, and Nasima Parveen for her contributions in verifi-
cation,

REFERENCES

(1] M. Mehta, et al, “High-speed multiplier design using multi-input counter
and compressor circuits,” Proceedings 10th Symposium on Computer
Arithmetic, pp. 43-50, 1991.

{21 M. Nagamatsu, et al, “A 1S ns 32x32 bit cmos multiplier with an
improved parallel structure,” Custom Integrated Circuits Conference, pp.
10.3.1-10.3 4, 1989

[3] L. P Rubinficld, “A proof of the modified Booth’s algorithm for multipli-
cation,” IEEE Trans. Comput., pp. 1014-1015, Oct. 1975

[4] C.S. Wallace, “A suggestion for parallel multipliers,” IEEE Trans. Elec-
tron. Comput., vol. EC-13, pp. 14-17, Feb. 1964

[5] L. Dadds, “Some schemes for parallel multipliers,” Alta Frequenza, vol.
34, pp. 349-356, 1965

[6] L. Dadda, “On parallel digital multipliers,” Alta Frequenza, vol. 45, PP-
574-580, 1976.

{7} A.D. Booth, “A signed multiplication technique,” Quarterly J. Mechan.
Appl. Math, vol. 4, pt. 2, pp. 236-240, 1951

(8] D. Zuras and W. McAllister, “Balanced delay trees and combinatorial
division in VLSL” IEEE J. Solid-State Circuits, vol. SC-21, no. §,
pp-814-819, Oct. 1986

[9] Email correspondence with Vojin Oklobdzija, 1993,

{10]D. T. Shen snd A. Weinberger, “4-2 carry-save adder implementation
using send circuits”, IBM Technical Disclosure Bulletin, vol. 20, no. 9,
Feb 1978.

[11}]. Sklaneky, “Conditional sum addition logic”, Trans. IRE, vol. EC-9, no.
2, pp. 226-230, June 1960.

[12] M. Santoro and M. Horowitz, “A pipelined 64x64b iterative array multi-
plier”, IEEE Ins. Solid-State Circuits conf., pp.35-36, Feb. 1988.

[13]M. Santoro, G. Bewick, and M. Horowitz, “Rounding algorithms for
IEEE multipliers”, JEEE 9th Symposium on Computer Arithmetic pro-
ceedings, pp. 176-183, Sept. 1989.

[14] V. Peng, S. Sanudrala, M. Gavrielov, “On the implementation of shificrs,
multipliers, and dividers in VLSI floating point units”, EEE 8tk Sympo-
Sium on Computer Arithmetic proceedings, pp. 95-102, May 1987.

154

