Arithmetic for Relative Accuracy.

R. vanDrunen, L.Spaanenburg, P. Lucassen, J.A.G. Nijhuis and J.T. Udding

Rijksuniversiteit Groningen, Dept. of Computing Science, Groningen (The Netherlands)

Abstract

Of the three factors named in Moore’s first Law that drive
the advance of computational systems, circuit design re-
ceives relatively little mention. We introduce here a circuit
variety that allows to include accuracy considerations. It is
shown that accuracy—drive can be effectively realised and
leads to 60% speed improvement. Details are given of a
floating—point unit with full hardware support of complex
calculations, specifically tailored to speed-up MD-simula-
tions on the GROMACS scientific parallel computer.

1: Introduction.

Classical computer architecture nomenclature is
based on a trade—off in parallelism between instructions
(MISD) and data (SIMD). Both categories start from the as-
sumption that all computations execute independent of the
data content. Though dyadic operations involving the zero
or unity value are commonly exempted, more general accu-
racy considerations never play a role, largely because of the
lack of hardware support. In contrast, it can be recognized
that not all subcomputations in polynome evaluation con-
tribute equally to the overall result. As obviously computer
capacity may be spent on superfluous calculations, one can
expect a considerable improvement in performance from
the introduction of circuitry that operates only when nu-
merically sensible.

In the pursuit of higher performance, technology has
been a major factor, as any circuit will be faster when fabri-
cated in the next process variety. From a systems perspec-
tive, however, performance is relative to the different tasks
to be performed, most notably to the detection and recogni-
tion, which can be taken synonymous to respectively quali-
Sication and quantification. For detection it suffices that a
phenomenon satisfies a given qualification. Detection may
indicate a significant event and should therefore be fast, but
not necessarily accurate. The actual nature of the detected
condition may be established later on. This recognition of
the detected event implies, that the qualified phenomenon

1063-6889/95 $4.00 © 1995 IEEE

239

is being quantified and such may take some time in order to
be accurate.

The different computational requirements in time and
accuracy span a performance window (Figure 1). Conver-
gence problems and deadlock may cause the design to leave
this area; its occurrence must therefore be excluded.
Though the advance of microelectronics has made hard-
ware relatively fast and small, larger wordwidth connected
with more complex arithmetic operations has somewhat
compensated this. In actual fact, the choice has remained
between fast and large vs. slow and small (the extreme cor-
ners of the performance window), while a number of ap-
plications would prefer a selective compromise.

accuracy A

min. accura-
cy for -
detection : speed
r— >

min. speed
for recognition

Figure 1 The performance window.

Some typical problem areas, wherein the require-
ments for detection and recognition are widely differing,
are listed in the following:

1. (Collision Avoidance) if an object moves at high speed
between obstacles (for instance an autonomous car on
a factory floor), it is of utmost importance to note that
an obstacle comes within collision distance, and less
to know what the exact distance is. Furthermore, the
required accuracy is dependent on the actual speed of
the vehicle and the relative distance to the object: the
closer it gets, the more accurate it has to be and the
slower it has to move.

(Imaging) if a moving object is displayed on a screen,
it is of most importance that the object is displayed.
The amount of detail in the displayed picture is of less
importance, being dependent on the speed by which
the object moves over the screen.

(Synthetic Aperture Radar, Pulse Compression [1])
where large amounts of integrations are needed on a
probabilistic basis, the accuracy of a single computa-
tion has less meaning than the mean and variance on
the signal ensemble.

These examples show, that in a realistic setting a large
amount of data must be manipulated at various data-depen-
dent speed and accuracy restrictions. Such balances be-
tween much inaccurate data processed at high speed and
less (but more accurate) data at lower speed. Though per-
formance problems can be solved by a next shrink in
technology, the simultaneous increase in computational
complexity just re-introduces the problem. This calls for
appropriate architectures, that are aimed for a large perfor-
mance window, thereby uncoupling the requirements on
detection and recognition.

In a broader sense, the impact of accuracy consider-
ations is to be felt in polynome evaluations, as can be found
in a number of computation—intensive simulation tasks
such as the Molecular Dynamics (MD) investigation of
complex (bio)chemical systems [2]. MD aims to apply
Newton’s motion equations to a many—body system. The
resulting-pasticle-trajectories-can be-analyzed to-reve al

BS-CAl o9

ious physical and chemical properties. Until now, MD sim-
ulations are limited to timescales of about 1 nanosecond.
This timescale is far too small to observe, e.g., conforma-
tional changes in proteins, dynamic phenomena in mem-
branes or reaction sequences in enzymes. As the MD algo-
rithm is well suited for parallelization, the use of a efficient
parallel computer seems almost implied.

In Groningen such a computer was built at the Univer-
sity Department of Chemistry. Initially this GROMACS
(Groningen Machine for Simulating Chemistry) was de-
signed around a hardware core that performed the inner
loop of the force evaluation by means of a huge number of
ECL ALUEs. In this design the pre— and post processing was
concentrated in an array of transputers. At the time where
the machine was to be built, general-purpose processors
were much more cost—effective than the special-purpose
design we had designed. So the next version, that actually
got built and used, consists of 32 modules with each an Intel
i-860 processor connected in a ring and custom DMA—in-
terfaces. The machine is hosted by a SUN workstation. Af-
ter years of service, the GROMACS is recently rejuve-
nated, whereby the processor modules are located two by
hwo-on-VVME 1zed-boards-(Eioure

8Mb RAM (64bit) -] a M (64bit)
Parity
I (a
| N 1
ssocru FH |™H = i860 CPU
----- Ring i
] gate | | gate [
amay | || array
|
Clock Clock
40MHz " 40MHz
= {sa]
I i
Timing Clock bus Timing
ASIC ASIC
- 1 —
VME I/F ASIC Adr.sel.
CHESS dual 1560 board C A32:D32 VME Connector I ()

Figure 2 The GROMACS -3 board.

240

In the past, we have compared the performance of the
GROMACS-2 system (a 32 i860—processor machine with
GROMACS software) to the performance of a Cray Re-
search Y/MP machine (1 processor running a specially op-
timized MD code). The simulation performed was a run of
1782 water molecules. Both simulations were done with the
same arithmetic—precision in the inner loop. In this typical
MD-application a speed-up factor of 8 between the Y/MP
and the GROMACS was noted (Y/MP .59 simulation steps
per second compared to the GROMACS 4.08 simulation
steps per second). The currently tested GROMACS-3 will
certainly bring an even larger performance gap, but as sim-
ulation time is still measured in days rather than hours the
quest for larger improvements is still on.

The description of the molecular forces in the GRO-
MACS program is a model of the real situation. The model
is parameterized and fitted to experimental values of the
different properties that can be observed when doing MD
(such as pressure, temperature, surface tension of liquids
etc.). While evaluating the accuracy of the force-field, of
the initial conditions of the system and of the experimental
values that are used to fit the parameters, it is questioned
whether (double) float arithmetic is actually needed in the
inner loop of the program. As the hardware currently avail-
able does not support reduced accuracy computations, this
question seems largely of an academic nature. However,
the tendency to answer this question in the negative stimu-
lates an interest in alternative hardware. Though in the past
the need for general-purpose hardware has been identified
by commercially available processors, the advance of
Field-Programmable Gate-Arrays and/or ASIC processor
cores provides new roads to innovation.

The long—term goal of the ressarch presented in this
paper is therefore to construct a novel arithmetic unit that
can do computations in reduced precision and so speed up
the process of simulation, while at the same time NOT af-
fecting the overall validity of the resulting physical proper-
ties. This reduced-precision arithmetic unit must be
constructed to cooperate with the existing i-860 processor
or be integrated with suitable ASIC core modules to be-
come a drop—in replacement of the main processor in the
GROMACS machine. In the current semiconductor mar-
ket, the latter approach is not only attractive but has also
rapidly become feasible.

This leaves for this paper accuracy—driven arithmetic
as central issue. Selective speed-up can be introduced by
local parallellization. An example is the use of residue
number arithmetic, but unfortunately this technique is not
very agreeable for detection [3]). An altemnative is on—line
enumeration, where the computation is performed MSB-
first and therefore a detection is facilitated at an early stage
of the arithmetic process. A popular example in this class is
digit—serial arithmetic [4]. This paper introduces a on-line

241

enumeration style based on the use of binary logarithmic
arithmetic. In section 2, basic concepts of binary logarith-
mic arithmetic are stated. Then the benefits are quantified
through a study of polynome evaluation. Ensuing we dis-
cuss the architecture and implementation of an AD module,
by which floating—point arithmetic with reduceable accura-
cy can be executed in hardware.

2: Arithmetic principles

The multiplication of two numbers A and B reduces to
an addition in the logarithmic domain. As an adder is small-
er and faster than a multiplier, this seems to be a clear ad-
vantage [5]. Lets assume the numbers A = 22 and B = 2° de-
fined in a radix—2 logarithmic system. These can simply be
multiplied by adding the exponents and taking the antilog
of the result: Z = 22+ Division can be likewise facilitated
by subtraction of the exponents. In other words, a multi-
plication that takes and returns non-logarithmic values
needs two tables for conversion to the logarithmic domain,
an adder and finally a table for the antilog operation. The
logarithm table takes 2" entries of m-bits, whereas the anti-
log table takes 2™ entries of n-bits. In order to be more effi-
cient than the Ling multiplier [6], it is mandatory to have m
< n, which is normally the case. Moreover, where the num-
bers are constants and/or intermediate results, the tables are
not needed and the multiplier becomes a straight adder.

2.1: Logarithmic numbers

Lets detail the logarithmic coding of the numbers A
and B into an integer (characteristic value) and a fractional
(segment value) part: A = 281+32 and B = 201452 where al
and bl are integer and a2 and b2 are fractional parts be-
tween O and 1.

In the popular Sign Logarithm Number System, the
data formats are fixed with two separate fields for storing
the characteristic value and the segment value respectively.
This eases table construction, as now the conversion can be
based on two tables of which one is covering the integer val-
ue space and the other the fractional value space. For en-
coding, the table at size 2"*m can be replaced by a table at
size 2"1*m1 and one at size 2"2*m2; for decoding a like-
wise separation can be accomplished. In the Level Index
Number System a more generalized view is taken. Here one
field for storing the data is taken with a flexible internal
boundary, such that when the characteristic value is long it
takes less space leaving more room for storing the segment
value. This gives it the potential to exploit the dynamic ac-
curacy inherent in binary logarithmic number systems.

Taking the physical limitation of wordsize into ac-
count, two effects become noticeable. When the integer
field in the data format is not large enough, overflow (satu-
ration) occurs. The overflow of a negative exponent indi-
cates a number of which the logarithm will be the same as

that of zero. These numbers are called the essential zero'’s
and must be separately handled. Furthermore the number of
essential zero’s provides a direct indication of the arithme-
tic accuracy of the system. A related problem is catastroph-
ic cancellation, where two almost identical numbers are
subtracted and provide the essential zero result due to lim-
ited wordlength [7].

When on the other hand the fractional field in the data
format is not large enough, value truncation (round—off)
occurs. Despite the limited range, the accuracy can be en-
larged by interpolation. Three basic procedures have been
reported in literature [8]: linear interpolation, quadratic in-
terpolation and linear interpolation with non-linear differ-
ence.

With linear interpolation, the segment value is
approximated by ax+b, where the linear coefficients must
be set according to an optimization criterium. In [1], 3 opti-
mization criteria are discussed. If the approximation should
be as simple as possible, then a=1 and b=0 are the best coef-
ficients. It is shown in [5], that the maximum absolute error
is 0.086 per segment. A next possibility is to use the linear
term of a Taylor series expansion in a point x=xo. Lastly one
may try a further subdivision before applying the piecewise
linear approximation. In [1] the optimum values for a and b
assuming a 4-segment partition are respectively 1.285610
and 0.006243 in the first segment, 1.050957 and 0.006333
in the second segment, 0.888761 and 0.143537 in the third
segment and (0.770244 and 0.231857 in the fourth segment.
A maximum absolute error per segment of 0.065 is ob-
tained. It is shown, that a 4-interval partition reduces the
error by a factor 6.

In quadratic interpolation, one rather takes refuge to a
quadratic polynome [9]. An example is the following.
Instead of the simple linear approximation of a segment
value by ax, we take the more elaborate a*x*(1+*(1-x)/3)
to go from conventional binary to logarithmic number rep-
resentation and a*x*(1+*(1+x)/3) to take the antilog. This
reduces the error by a factor 6 and is therefore comparable
to the above 4-segment partition.

Under circumstances, we can pre—store the cutpoints
of a piece-wise approximation of the quadratic polynome
[10). This leads to the linear interpolation with non-linear
difference. Assuming the availability of a content-address-
able memory such as a PLA, the cut—points can be used as
the addresses to generate the exact log-value as stored in
the memory structure.

Addition (or subtraction) is less self-evident, as

A+B = 28420 = 20%(142b-9) = Daxd
where d = 2log(1+25-9).
In [11], it is suggested to find the value d = 2log(1+2>2) by
addressing a look—up table. This of course brings the table
reduction problem back again [12]. Several approaches
have been used, of which [13] presents a very elegant one.

242

Assume the exponent b-a in the sum formula d
Zlog(1+2°-*) can be written as s=s1+s2. Then the main con-
version error will occur for small s, in which case we simply
write d Zjog(14251+s2) 2log(1+2s)) +
Ziog(1+(2s1+52_251)/(14251)). In order to achieve linear in-
terpolation, the second term has to be approximated into the
form Zlog(1+23). This is achieved by taking (252-1)*2* for
2s1< 5, or (252-1)*281*5 for 0.5<251<2, or 252-1 otherwise.
This brings an additional 3.85 bits of accuracy compared to
a straight linear interpolation.

2.2: Binary logarithmic

For a discussion on the gate-level, the operations
have to be described in the binary logarithmic system [5}.
Here, the 2-logarithm of a binary number A = a,.2" +
ag 1.2%1 4+ + a0.20 is notated as 2logA = j + Zlog(1 +
A,/2)), where the characteristic value j is defined by Gla=1
and a;=0 for all i > j) and therefore represents the entier of
the logarithm Zlog(a;.2) + a; 1.2 1+........+a9.2%), while the
segment value A is the remainder a; 1.2 1+........+29.20.

In [14], the DIGILOG hardware model for performing
binary logarithmic operations is discussed. It sets out to
provide log- and antilog— conversion directly in logic,
thereby evading the need for bulky look—up tables. As the
conversion logic is small, addition and subtraction can be
realized in the binary domain, while multiplication and di-
vision will be in the logarithmic domain. As an example,
lets look at the multiplication of the two binary numbers A
and B, where

A= + a1 2 1+.......+89.20

B=2K 4 by 1.2k 14 +b0.20 =2k + B,
A straight calculation will provide

A*B =2i*2k 4 2i*B, + 2k*A_ 4+A *B,
Upon closer inspection, one finds that the multiplication in
the AD representation can be performed by adding the seg-
ment values j and k separate from adding the shifted values
A, and B,, assuming that the productterm A,*B, can be ne-
glected.

‘The multiplication of the binary values 010110 (deci-
mal 22) and 001110 (decimal 14) should result in
000100010000 (decimal 272). In a DIGILOG multiplica-
tion with n-bits accuracy, first the leading 1’s have to be
found. Then of both binary values the n-bits following the
leading 1 are taken. The position of the first 1 is the charac-
teristic value and the following n-bits are the segment val-
ue in the previous discussion. In the second step of com-
putation the characteristic values and the segment values
are shifted and added. Finally the partial results are suitably
concatenated, while correcting for the overflow in the seg-
ment addition.

In this example a 3-bit accuracy would have sufficed,
but a similar conventional computation with 3-bits accura-
cy would have resulted in 000010000000 (decimal 128),

........

while the correct result is 000100110100 (decimal 308).
This points out the fundamental benefit of the DIGILOG
computation: accuracy is maintained dynamically, i.e. with
respect to the data value itself and not to its storage require-
ment. Such basically allows to compute with smaller data
registers than in case of a conventional multiplier. In the
above example, DIGILOG achieves 88.3% accuracy with
3-bits arithmetic, while conventional binary multiplication
dclivers 41.5%.

The above formel can be interpreted in line with the
usval Shifi-and-Add (S&A) multiplication, wherein the
1-bits in the value A control the shifting/adding of B. How-
cver, by noting that A;*B; is again a multiplication, we find
a recursion on both A and B with remarkable similarity to
ILNS multiplication. Moreover, the recursion leads to a
successively improving accuracy; hence the name Accura-
cy-Driven (AD) arithmetic [15]. So we can continue by
taking A; and B; as input and adding to the intermediate re-
sult to obtain 000100110000 (decimal 304). Again a rest-
term is ignored and therefore the recursion can continue.
This final recursion then leads to 000100110100 (decimal
308), which is the exact result. In the extreme, the structure
will become largely similar to a word—serial multiplication.
The important difference is, however, that the result is al-
ready more than 12% accurate after one cycle and exponen-
tially improves with every cycle.

Like the multiplication was based on addition, divi-
sion in the logarithmic number system is based on subtrac-
tion. Lets assume a value A = 22 to be divided by B = 2P, The
result can clearly be obtained by subtracting the exponents
and taking the antilog of the result: Z = 22->. As an example,
lets look at the division of the two binary numbers A*B and
B, where

A=2 + aj 1.2 +.......+20.20 =D + A; and

B=2k+ by_1.2% 1+.......+b0.20 = 2K + By.
A straight calculation will provide

A/B =2k 4 (A,-B,*2%) /B

This suggests, that in a AD division the procedure is a
neat inverse of the multiplication procedure. The division
of the binary value 000100110100 (decimal 308) by 001110
(decimal 14) should result in 000000011111 (decimal 31).
In a AD division with 2n-bits accuracy, first the leading 1's
bave to be found. Then of both binary values the bits fol-
lowing after the leading 1 are taken. The position of the first
1 is the characteristic value and the following bits are the
segment value. In the second step of computation the char-
acleristic values and the segment values are subtracted. Fi-
nally the partial results are suitably. concatenated, while
correcting for the borrow in the segment addition.

A similar conventional computation with 6-bits accu-
racy would have resulted in 000000010010 (decimal 18),
while the correct result is 000000010110 (decimal 22). In
contrast to multiplication, the accuracy for division is not

243

that high. Binary logarithmic computation shares this prob-
lem with conventional floating—point arithmetic.

From the second step, one finds as a result 0100000
(=32). Again a restterm is ignored and therefore the recur-
sion can continue. The final (fourth) recursion then leads to
010110 (=22), which is the exact result. In the extreme, the
structure will become largely similar to a word—serial divi-
sion. The important difference is, however, that the result is
already more than 41% accurate after one cycle and expo-
nentially improves with every cycle.

2.3: Impact of accuracy

A recursive relation expresses a dependence of a func-
tion on itself. For instance in x=f(a,x) the value of x can not
be computed until x=f(a,f(a,x)) is computed and so on. The
recursion might be infinite, as for instance in the famous
"Tower of Hanoi”. If a limit to the nesting can be found, this
so—called recursion—depth is bounded. For instance in
x={(a,f(a,f(a,f(a,0)))) the recursion depth is 4. One way to
end the recursion is by specifying a limit to the precision, by
which the x—value must be calculated.

The way to compute a recursive relation of finite
depth can be iterative. Here, each computation delivers
new data, to which the relation is again valid. In other
words, the recursive relation is unfolded in time and/or
space to provide a bounded computational scheme. For
instance

xo=f(a,0) x;=flaxe) xz=flax) x =faxy)
shows the iterative application of the function f.

In the following, recursive relations are bounded by
accuracy constraints and hence iteratively solved. We will
therefore largely use the word iterative in this text. As each
iteration involves a single shift-and—add operation, we will
take it as the basic unit-of-time and assume that a hardware
realization will take one machine (i.e. clock) cycle to per-
form this operation. The simulations can be bounded by
limiting the number of iterations (or machine cycles) with-
in a fundamental arithmetic operation (add, subtract, multi-
ply or divide).

Another way to bound the iteration length (i.e. recur-
sion depth) is by limiting the resulting accuracy of a single
arithmetic operation. In all simulations, we use a dynamic
value storage (i.e. float for single length and double for long
length), which gives us a dynamic accuracy.

In the first experiment, numbers from 1 up to 32767
are squared by the AD method and by the usual (S&A)
method. The results of this simulation are shown in Table 1.
The left column gives the number of iterations necessary to
calculate the square of ¢ numbers with an accuracy which is
given in the first row. (e.g. 8206 in the second row means:
the square results of 8206 out of the 32767 numbers are cal-
culated in 1 iteration with an accuracy of 4%.) In the bottom
row the mean number of iterations is provided.

Table 1. Multiplication by the AD and S&A method

AD 4% 5 % 6 % 7 %
1 8206 | 9444 | 10639 | 11797
2 |20478 |21102 | 21696 | 20970
3 4083 | 2221 432 0
4 0 0 0 0
it |1.87 1.78 1.69 1.64

ssA|l 4 % 5 g 6 % 7 %
1§ 1374 | 1732 2101 2476
2 | 7452 | 8860 | 10125 |11197
3 |13395 [14003 | 14110 |14440
4 | 8940 | 7317 6262 4654
5 | 1606 855 169 0
6 0 0 0 0
itd 3.06] 2.90 2.76 2.65

c.s] 1.63 | 1.63 1.64 1.62

As is well-known from LNS arithmetic, taking just
one one iteration in AD leads to numbers, that are 11.6 %
inaccurate [5]. So after multiplying two of those numbers
one may expect a 23.2 % error. However, iterating on the
restterm rapidly decreases the inaccuracy. As shows from
Table 1, 2 cycles already suffices for most of the numbers to
rcach a better than analog accuracy (i.e. 4%). On the other
hand, it goes without saying that to be fully accurate all the
I's in the numbers have to be handled, which takes in the
underlying case maximum 15 iterations for the available 15
bits.

We will now perform the same experiment for the usu-
al series/parallel multiplication. These results are also
shown in Table 1. The interpretation of the table is the same
as above, but an extra row named cs has been added to
quantify the different number of iterations. It indicates, that
the convergence speed of the AD multiplication is a factor
1.6 to 1.7 higher than by the usual method. This is of course
not true anymore, when full accuracy is required, as in both
cases all 1’s must be handled to obtain a 0% error.

In the foregoing example, we multiplied two equal
oumbers to circumvent the influence of asymmetry in the
partial-product formula. In other words, in the above re-
sults only the effect of the improved computational accura-
Cy pro iteration was at stake. Lets now take an asymmetric
example. Or more specific, lets multiply 1 with 32767. For
reason of the symmetry in the partial-product equation, AD
will do this in 1 iteration (after one iteration the multipli-
cand A=1 will be reduced to A,=0 and iteration will stop).
However, when applying the usual series/parallel multi-
plication the results in Table 1 still hold. The ratio between

244

AD iterations and Usual iterations will consequently range
between 2.65 and 7.5 !!

In almost the same way as AD multiplication is
compared to the usual multiplication method, AD division
is compared to the usual division method. Only this time the
square of the numbers 1 up to 32767 is divided by the num-
ber itself. A drastic improvement can not be expected here,
as the division would be accurate when computing with full
accuracy. Rather will we see the difference between two
ways to perform a non—restoring division.

Table 2. Division by the AD and S&A method

AaD| 4 % 5 g 6 % 7 %
1| 2615 | 3271 3925 4581
2012411 |14257 | 15795 | 16680
3[13847 [12342 { 10603 9436
4| 3098 | 2453 2347 2070
s| 796 444 97 0
6 0 0 0 0

it]l 2.61]| 2.47 2.36 2.27

S&A 4% 5 g 6 % 7 %

1 | 2615 | 3271 3925 4581

2 | 9878 |11376 | 12609 |13507

3 |12938 [12857 12216 |11916

4 | 6466 | 4819 3920 2763

5 870 444 97 0

6 0 0 0 0

it | 2.79] 2.63 2.50 2.39
c.s] 1.07] 1.0 1.06 1.05

In Table 2 the results of the usual division are shown.
The number of iterations necessary for AD division is less
than for using the usual division. The reason is that AD divi-
sion can calculate with a negative remainder. The conver-
gence speed is a factor 1.19 better by AD if the needed accu-
racy is set t0 0.01 %. When the needed accuracy is set to 7 %
the convergence factor decreases to 1.05.

The difference between AD and S&A division seem
to be negligible. Moreover, the technique introduced here
as AD division can also be in the usual case, where it is nor-
mally called the SRT division. A major difference, howev-
er, is buried in the tiny implementation details. Where the
usual division is based on a wordwide compare of the two
numbers to establish the value for | (the shifting factor for
B), the AD division merely aligns the two numbers. The re-
sult is a division style that can be implemented using the
same hardware as the multiplication [16].

Sofar we looked at divisions, that in principle could
give an exact result. The effect of the different ways to
creep to the result become more noticeable when the result

100000
1

' 75000
g
2
5

5 50000
S
<)

g 25000
g
=]
Z

0

1 5 9 13 17 21

Number of iterations — —>
Figure 3. Graphic AD/Usual division.

can never be exact. In Figure 3 we divided again the square
of the numbers 1000-10000 to the numbers itself (AZ/A).
But this time with a increment of 0.02. In this figure we see
clear that the AD technique of dividing is faster than the
S&A technique. Accelerations in the order of 30% can ap-
parently be reached.

3: Potential impact

One way to solve the equation f{x) =0 is by iterative-
ly applying the Newton-Raphson formula x,; = i -
Jx VS’ (%) . Lets assume a polynomial equation of the nth—
ordertobe writtenas fix) = a, *x"+a,_; *x* 1+a; *
x’ + ay , then simply evaluating the function value takes n
multiplications. The derivative is slightly more compli-
cated, as it involves adivision f(xx) = [fx) —fixe_ 1)V 1% —
X-1]. In turn, the Newton-Raphson main equation involves
a division. Apparently, the iterative equation solving poses

>

a computational problem, involving a number of multi-
plications and divisions and is therefore very well suited to
evaluate the impact of AD arithmetic.

One way to accelerate the Newton—Raphson process
is by separating the task of xy,— and fy—value enumeration
from the task of establishing a derivative. It has been found,
that the convergence properties are not damaged by simply
not waiting for the correct derivative value to be calculated
but rather taking the last computed one. In the following we
will evaluate both styles. The former, where all tasks are
performed one after the other, will be called the sequen-
tial” style, while the latter, where taking the derivative is
handled in paratlel with the x— and f-value enumeration is
called the parallel” one. For both arrangements we will ap-
ply AD arithmetic or the S&A one.

3.1: Limiting the iterations

For the same accuracy of 24-bits,we found that in the
sequential mode of operation the AD method is about 30%
faster. We then tried the parallel mode of operation.
Compared to the sequential operation, it provides a clear
speed-up. Nevertheless, for the same accuracy of 24-bits,
the AD method is about 30% faster.

As apparently precision has a significant impact on
the number of iterations required to solve a polynomial
equation using the Newton—Raphson formula, the question
arises whether we can also do with less iterations per single
computation. In the next simulation the ability of AD to cal-
culate with less accurate numbers in order to gain speed is
tested. Precision will be held at 24-bits, while the maxi-
mum number of iterations per computation will be varied
from 24 downwards using the parallel mode of operation.
As an example we will look in Figure 4 at one solution for
the equation x3-9x2-66x+90=0.

- AD | 750 B T
Al ! S \S&A
| =37 8 600 . .
I L’ 1S4
- , b
g =39 . 2 450
. : =
g 61 S&A g 300
N ¢ St
! o
-63 ', 5 150
—6.5 ' E o
1 2 3 4 5 6 % 1 35 7 9 11 13 15

Max. number of iterations ——>
Figure 4. Graphic AD against S&A.

With no iteration limit, AD needs 460 iterations with
24 bits accuracy, while for AD with iteration limit is set to 3

Maximum number of iterations — —>

245

only 195 iterations are necessary. The accuracy, however, is

decreased from about 0.0018% (with no iteration limit) to
0.0527% (with the iteration limit set to 3). But, if we set the
iteration limit to 5, AD still needs only 333 iterations and
the accuracy has almost not decreased. If we look at these
results, we see that, if the iteration limit decreases, the num-
ber of iteration decreases also. On the other hand, when the
iteration limit is set to 1 or 2, the accuracy is rapidly lost and
the AD computation gets into troubles. So, when the itera-
tion limit is set to 3 or 4, we have a good compromise be-
tween the accuracy and the number of iterations.

If we now look at the results obtained with the S&A
method, we can see that the S&A method has a minimum in
the number of iterations when the iteration limit is 8. When
the iteration limit is further decreased the S& A method has
convergence problems. Much more iterations are needed if
we calculate with less accurate numbers. Finally notice that
AD converges always while the S&A method does not. So
with AD an iteration limit can be set.

A=55
| =57 PEEE
-59 ’

~6.1 ;

~63
65 ,

1 2 3 4 5 6
Maximum number of iterations — —>

Figure 5. Graphic AD against S&A
3.2: Limiting the wordlength

zero point

Next we will again calculate the zero point of an equa-
tion with the Newton-Raphson method, but this time we
decrease the precision of the multiplier, the divider or both.
120(fliv ' precision = 24

1

Machine cycles — —>

.8858%
g |

mult precision|—->
1 5 9 1317 21

Figure 6 Newton—Raphson with different div_precision.

246

A related question is, whether the computational pre-
cision influences the results. So we repeat the same experi-
ments, taking this time with an arbitrary 14-bits precision
and using the sequential mode. As could be expected the
impact is significant, but nevertheless the 30% speed bene-
fit of AD for the same accuracy is still present. Again, the
parallel operation provides again a clear speed—up. Never-
theless, for the same accuracy of 14--bits the AD method is
about 30% faster.

Now, lets reduce the number of iterations per com-
putation. Figure 5 shows that with less iterations, thus with
less accuracy, the speed is much higher. Nevertheless AD
still gives good results. In contrast, the S&A arithmetic
breaks down even earlier and more drastically. The same
experiments, but now calculated with an precision of 14
bits, show that consistently the speed is much higher for a
shift increase in the final error.

750
600| .-~ S&A

450} .
300 |
150

0

AD

machine cycles ——>

1 3 5 7 9 11
Maximum number of iterations — —>

With these simulations we hope to find the ideal combina-
tion of precision, error of the answer and maximum number
of iterations. For these simulations we use the equation: x3
~9x2 —66x + 90 =0; the interval is -2, ~10. All these simu-
lation use an maximum number of iteration of 24.

1200 div_precision = 4

1000

Machine cycles — —->
- 8888

mult precision — >
1 5§ 9131721

In the above figure we can see that the number of ma-
chine cycles decreases substantially if we lower the divi-
sion precision. The solution is almost the same for both di-
vision precisions. We can conclude that an division
precision of 24 bits for an Newton—Raphson equation solv-
er is not relevant. It costs only more time to reach the zero
point. So we set the multiplier precision and changing the
division precision of the calculation.

mult_precision = 24

A 1150
I S&A
g 950|.
[3) LU ”,
& 750 ' AD
Q
.E _v_/—/_/_’—__
5 550
= 350
1 5 9 13 17 21

div_precision ——>
Figure 7 Newton —Raphson with different mult_precision.
3.3: Towards accuracy drive

The last simulations are those with changing preci-
sion during the calculation. For these simulations we use
again the Newton—Raphson formula For calculation of the
solution in the first stage (when f(x)>A) a low precision is
enough for the calculation. When A>f(x)>B the precision
goes linearly upwards until he reach the maximum preci-
sion. After many simulations we found the next ideal func-
tion for the precision.

A

-6-4-20 2 4 6
Figure 8 Function of the mult_prec.

[]
[= N S

f(x) ——>

S ®

mult_prec ——>

We have set the division precision at a value of 2 be-
cause previously we found that the precision of the divider
had no influence on the answer, only on the number of ma-
chine cycles.

We find, that a flexible precision leads faster to a solu-
tion of the equation. Let’s look at the equa-
tion—2.x3+33.x2-17.x-100=0 in the interval 5, 30 (test3B.

In Figure 9 our expectations are illustrated. First the
flexible way makes the most profit. For instance, for test0,
the flexible way reaches f(x) = 1 in 400 machine cycles
while with the constant precision 750 machine cycles are
required. Then (and this is detailed in the second part) the

Figure 7 confirms that the precision of the division
has no influence on the solution to the equation. If the mul-
tiplication precision is high (24), the answer is fully correct.
If the precision is low (4), the answer is not correct any-
more. With an equal multiplication precision the number of
machine cycles decrease if the division precision also de-
creased. In this simulation we can see again that the AD
way of calculate is faster than the S&A way.

mult_precision = 4

M 1150
|
3 950
Q I
& 7s0] M-
[0} A‘,‘~
R
G SSOJM,ﬂ_d\/,
= 350
1 5 9 13 17 21

div_precision ——>

precision gets matched, so that finally from f(x) = 0.1 the
both ways are identical. They calculate then both with an
precision of 24 bits.

/I\ 1000
1800
KX
= 600
=
g 400
&
200
0 S -
(b) 0 200 400 600 800
Machine cycles ——>
0.5 ;
A L]
: 0.4 B
g 0.3 constant
: ‘1
% 0.2 g
é 0.1 ex .

0

() 400 700 1000 1300
Machine cycles ——>

Figure 9 The profit of the flexible precision.

247

4: Implementation details

The next question concerns the efficiency to imple-
ment the above arithmetic. So in the next section we will
outline the parts of a single AD arithmetic unit, that can
handle the operations addition, subtraction, multiplication,
division, power and root for numbers with a large dynamic
range.

4.1: Some building blocks

The basic operation in the envisaged module is the
parallel detection and subsequent elimination of the lead-
ing ’1” within a word of arbitrary width. The problem has a
more than superficial likeliness with the handling of the
carty in digital adder structures. In its most primitive for-
mat, the detection of a leading °1° could be handled in ripple
mode.

Again, like in the case of the adder, the rippling of the
detection signal will lead to ill-determined and probably
long propagation times. The optimal way to eliminate the
rippling is through a treelike detection circuit. This prom-
ises to bring the delay back from O(n) to O(2logN); for
instance for a 32-bit word the maximum delay would re-
duce from 32 time units to 5. The detection tree will have to
signal the existence of a leading *1’ and to encode its posi-
tion. We propose here to build the tree from the elementary
circuit, sketched in Figure 10. The encoding is valid, if a
"1" is detected (detect high). In that case, the ax and bx out-
puts provide encoded the subscript of the input with the
leading *1°. For example if bit3 is high, then ax as well as bx
are high.

If this circuit is used on the lowest tree level, the bit—
inputs are the word-bits of one nibble. On the next level we
take the detect-signals as bit-inputs and so on. In this way,
we construct 2-bits of the position encoding per tree level.
Next to this we have to select the encoding results from the
previous level to update the lower encoding bits. To this
purpose, we use the circuit as shown in Figure 10. So after
two levels we have as encoding: ax bx aX bX, and after
three levels we have: ax bx aX1 bX1 aX0 bX0. Beside
detection of the leading ’1°, we also have to eliminate this
’1” from the existing word.

We can now put the system parts together by design-
ing the overall control. The operation will proceed as fol-
lows. First the words are loaded into the input registers and
the output register is initialized. Directly afterwards the
leading ’1’s’ are detected, the positions are encoded and
saved in the shift latches while the barrell registers are
cleared. Ensuing, in five consecutive steps, the words are
shifted while simultaneously the inputwords are stripped of
their leading *1°. Then the results are offered to the adder,
and the above sequence is repeated for the reduced input-

248

1\
—

bit0
bitl
bit2
bit3

v

detect

v
f—

ag bx

a1
dety
by

bo
df-5ta2+3

b

b3

detys

a3

bX

@ dety2,3 = deta) 4 detas
Figure 10. Encoding the leading *I’ inside a nibble.

words if the stripped words are non-zero. A second stage
may be needed to add this to the intermediate result. The
architecture can be condensed by using a single adder with
3 simultaneous inputs, but in the schematic we will still use
2 adder stages for the sake of clarity. To support the poten-
tial speed of operation, the structure is minutely pipelined
with an internal communication scheme based on “data
valid” signals.

4.2: Module architecture

Sofar we has largely concentrated on the multiply
function of the proposed arithmetic module. The next step
towards integration is to enlarge its applicability to support
a wide range of arithmetic operations. The register transfer
model of the complete module is depicted in Figure 11. The
thick black boxes indicate the registers, the thin black
boxes the multiplexers. The triangles D denote the detec-
tion of leading 1’s, while the elimination of the leading 1°s
is performed in the traingles E. Not shown in the diagram is
the sign manipulation, while the handling of zero values re-
quires no exemptions but is implied in the structure.

To perform addition and/or subtraction, the first half
of the module can be skipped but the pipelining sequence

<0..63 | <0..63
BARREL > > BARREL
ADDER
acgyracy
IR<0..63

inC1

y

'—
ADDER ICOMPARE
R<0..63 done
result

Figure 11. Module register transfer model

must be maintained. For example, addition is performed as:

IntAdd: A+inA B+inB
MA+A MB+B
IR+~MA+MB
R+IR

Evidently, a larger part of the module will be used for
multiplication and/or division. For example, multiplication
is performed as:

IntMult: A+inA B+inB
MA=E(A), SA+~D(B) MB=B, SB+-D(A)
MA+shift(MA,SA) MB+shift(MB,SB)
IR—~MA+MB
R++ 1R

As we perform these integer operations with relative
accuracy, some degree of floating—point operation is al-
ready implied. As an example, the single module floating—

249

point addition is as follows:

FloatAdd: A+inA B+inB
SA+expA, MA=A SB+expB, MB=B

MA +shiftMA,SA) MB.—shift(MB,SB)

IR—MA+MB
R+IR

It is clear that this is merely a float-to—fix conversion
followed by an integer add. However, the module is already
rich enough to support real floating—point arithmetic by the
use of two of such integer modules. Lets look at the multi-
plication of two floats. This is composed of two steps: (a)
the addition of the exponents together with the multiplica-
tion of the mantissae, followed by (b) the handling of the
overflow from the mantissapart by the exponentpart. In
contrast to conventional floating—point units, we do not
need a separate addition and multiplication part here.

Lets look at the addition of two floats. This is com-
posed of three steps: the alignment of the mantissae, the
addition of the mantissae and lastly the handling of the
overflow from the addition into the exponent. Using two
AD modules this leads to: subtraction of the exponents and
storage of the results in a segment register of the mantissa
module, barrel shift to replace one mantissa, addition of the
mantissae, and handling of the overflow. On the one hand,
this looks relatively complicated; on the other hand it sim-
ply uses the barrel shifter that is already present for other
purposes.

Overall we have implemented the following set of
instructions on a single structure:

« the classical arithmetic operations on the A—and B-ports
(addition, subtraction, multiplication and division).

« the cooperation over the segment registers towards the
mantissa—oriented functionality; instead of a leading '1’
detection on the dataport to set the segment register, the
segment register is loaded directly and the dataword is
shifted according to the new content (addition, subtrac-
tion, log, normalisation)

« the classical arithmetic operations on the segment regis-
ters; instead of the data on the A— and B—ports, the seg-
ments registers are handled and the result is directly out-
putted to the neighbouring module (addition,
subtraction).

« the retro-functionality of the segment registers towards
the main dataports; the segment registers are externally
loaded, while the A— and B—ports are first defaulted with
a single *1”. The result of shifting is then fed back to the
A- and B-ports (antilog).

The resulting structure is pipelined at the micro-level,
which also allows for partially overlapping instructions,
further boosting the basic speed. The current 32-bits design
takes about 3000 gates on an FPGA and is prepared for fur-
ther optimization as a silicon module. From previous (par-

tial) integrations, we expect a final area consumption per
module of 2.5 mm? in a 0.8 um CMOS technology running
ai 100 MHz.

4.3: ... and its use.

From the basic characteristics of the arithmetic tech-
nique, the extensionsion towards accuracy—drive was easy
to achieve (Figure 11). The results are either produced in a
single path or iteratively in steadily decreasing contribu-
tions. By simply guarding the contributions in each path
through the calculation, the increase in accuracy can be
monitored. A prerequisite for this measure is the fact that
the contributions becomes steadily smaller. As discussed
before, this is a basic characteristic of AD arithmetic.

A short look at the architecture of the INTEL i860 (as
is currently the basis for the GROMACS machine) shows
one of the primary problems with conventional floating—
point arithmetic: next to the multiplier, a separate adder/
subtractor is required. A further inspection brings to bear
that next to multiplication no other complex arithmetic cal-
culation is implemented in hardware. Division is micropro-
grammed; power and root are ignored. The impact of
introducing the AD-module will therefore go beyond the
support of accuracy considerations. It will also bring a dis-
tinct acceleration for accuracte computation. Moreover, it
allows to reduce the module count: the floating—point adder
has become superfluous (and we do not need the graphic
unit). This reduces the implementation by almost 25%.

More uniqueness is present in its application to pro-
vide a learning capability to a 8051—core when acting as a
ncurocontroler for real-time intelligent operation. The
handling of measurement data without preprocessing to
climinate non—repeatable data normally withstands in-line
lcarning. The use of a neural network emulator, wherein the
learning accuracy can be changed from coarse in the initial
phase to fine in the later stages provides an efficient means
1o suppress deviations in the input data until the leaming
has progressed far enough to take them into consideration.

These two examples of ongoing system development
illustrate the pursued flexibility in balancing accuracy for
speed. It also illustrates some of the advantages to be gained
when accuracy conflicts can be resolved before dead-lock
and/or convergence failure sets in.

Acknowledgements

The initial phase of this project ran under the DFG
Schwerpunktprogram 322699 "System— und Schaltung-
stechnik fiir hochgradige Parallelverarbeitung”. Further-
morc we like to thank M.H.M. Luft, PJ.H. Speckreijse, H.
van Aartsen, R. Schukken,, G. Poppinga and especially M.
Diepenhorst for their cooperation. Lastly our gratitude goes
(o Chess Engineering in Haarlem (The Netherlands).

250

References

[1] E.L. Hall, D.D. Lynch, and S.J. Dwyer III, "Generation of
products and quotients using approximate binary logarithms for
digital filtering applications”, IEEE Transactions on Computers,
Vol. C-19, No. 2, pp. 97 — 105, February 1970.

[2]H Bekkeretal.,"GROMACS: A parallel computer for molecular
dynamics simulation”, (in: Digest Conference on Physics Comput-
ing), 1992.

[3]1 E.E. Swartzlander et al., "Sign/Logarithm Arithmetic for FFT
implementation”, /EEE Transactions on Computers, Vol. C-32,
No. 6, pp. 526 - 534, June 1983.

[4]M.). Irwinand R.M.Owens, " Digit-pipelined arithmetic asillus-
trated by the Paste—Up system: A tutorial”, IEEE Computer, Vol.20,
pp-61-73, April 1987.

[5]1 J.N. Mitchell jr., "Computer multiplication and division using
binary logarithms”, IRE Transactions on Electronic Computers,
Vol. 11, pp. 512 - 517, August 1962 .

[6] H. Ling, ”An approach to implementing multiplication with
small tables”, IEEE Transactions on Computers, Vol. C-39, No. 5,
pp. 717 - 718, May 1990.

[71M.G. Arnold et al., "Redundant logarithmic arithmetic”, IEEE
Transactions on Computers, Vol. C-39, No. 8, pp. 1077 —- 1086,
August 1990.

[8]M.Combet, H. vanZonneveld, and L. Verbeek, "Computation of
the base-2 logarithm of binary numbers”, IEEE Transactions on
Electronic Computers, Vol. 14, No. 6, pp. 863 — 867, December
1965.

[9] D. Marino, ”New algorithms for the approximate evaluation in
hardware of binary logarithms and elementary functions”, IEEE
Transactions on Computers (Short Notes), Vol. C-21 , No. xxx, pp.
1416 - 1421, December 1972.

[10] H-Y. Lo, and Y. Aoki, "Generation of a precise binary
logarithm with difference grouping programmable logic array”,
IEEE Transactions on Computers, Vol. C-34, No. 8, pp. 681 - 691,
August 1985.

[11] N.G. Kingsbury, and P.J.W. Rayner, "Digital filtering using
logarithmic arithmetic”, Electronic Letters, Vol. 7, No. 2, pp. 56 —
58, 28th January 1971.

(12] EJ. Taylor etal, A 20-bit logarithmic number system
processor”, IEEE Transactions on Computers, Vol. C-37,No. 2, pp.
190 — 199, February 1988.

[13] EJ. Taylor, ”An extended precision logarithmic number
system”, JEEE Transactions on Acoustics, Speech, and Signal
Processing, Yol. ASSP-31, No. 1, pp. 232 — 234, February 1983.
[14] B. Hoefflinger, M. Selzer, and F. Warkowski, “Digital
logarithmic CMOS muitiplier for very high-speed signal
processing”, (in: Digest Custom Integrated Circuit Conference),
San Diego, CA, pp. 16.7.1 - 16.7.5, May 1991.

[15] L. Spaanenburg, A. Siggelkow, and M. Luft "An arithmetic
technique for accuracy—driven VLSI systems, Digest ECCTD, pp.
161 — 166, Davos, September 1993.

[16] L. Spaanenburg et al., ” An accuracy—driven complex arithme-
tic unit”, EuroMicro’94, pp. 491498, Liverpool (U.K.) September
1994.

[17] FJ. Taylor, ”A hybrid floating—point logarithmic number
system processor”, [IEEE Transactions on Circuits and Systems, Vol.
32, No. 1, pp. 92 — 95, January 1985.

