1063-6889/97 $10.00 © 1997 IEEE

Real/Complex Reconfigurable Arithmetic
Using Redundant Complex Number Systems

Takafumi AOKI, Hiroaki AMADA, and Tatsuo HIGUCHI
Department of System Information Sciences
Graduate School of Information Sciences, Tohoku University
Aoba-ku, Sendai 980-77, Japan

Abstract

This paper presents a hardware algorithm for a
real/complex reconfigurable arithmetic unit, which can
change its structure for three different arithmetic
modes in real time. The three modes realize (i) a single-
precision complez-number multiplication, (it) a double-
precision real-number multiplication, and (iii) o pair of
single-precision real-number four-operand multiply-add
operations, respectively. We discuss the reconfiguration
of hardware structure on the basis of the transformation
of the number system used in each arithmetic mode.
The designed arithmetic unit can perform high-speed
real/complez arithmetic computations based on binary-
tree addition scheme, and also exhibits highly reqular
structure suited for VLSI implementation.

1. Introduction

Complex arithmetic computations are of major im-
portance for various signal processing and scientific
computation algorithms including complex orthogonal
transformations, convolutions, correlations and filter-
ing [1]. These applications require efficient represen-
tation and manipulation of complex numbers. In the
usual representation scheme, the real part and the
imaginary part of the given number are treated sepa-
rately in arithmetic operations. For example, the most
natural way of complex multiplication requires four real
multiplications and two real additions. At the recent
conference [2], a high-speed complex-number multiplier
has presented. The reported method involves three ad-
ditions to generate pre-multiplication sums, three mul-
tiplications and two additions for final results.

To simplify the manipulation of complex numbers,
several authors have proposed complex number systems
{3]. Recently, a new complex-number representation
called the polygonal representation has been proposed
[4]. In spite of its theoretical elegance, however, high-
speed circuit implementations that can be used in prac-
tical VLSI signal processors seem difficult due to the
circuit complexity required for implementing elemen-
tary arithmetic operations.

In this paper, we present an efficient hardware algo-

200

rithm for a real/complex reconfigurable arithmetic unit
that can be installed into VLSI signal processors. The
proposed algorithm employs Redundant Complex Num-
ber Systems (RCNSs), a class of complex number repre-
sentations proposed by the authors [5]. The idea of this
number representation is originally based on the con-
cept of “complex radix” in Knuth’s quarter-imaginary
number system [6]. An RCNS is a radix-(rj) system
with digits in {~a,---,0,.++,a}, where 7 > 2 and
[r?/2] < &' < r? — 1. The complex radix 7§ allows uni-
fied complex number representation without treating
real and imaginary parts separately. Also, redundancy
in number representation allows the carry-free addi-
tion and the binary-tree multiple-operand addition, as
in Avizienis’ Signed-Digit (SD) number systems [7]. In
the case of RCNS with r = 2 and «a = 3, conversion to
and from standard binary number representation can
be easily performed. The complex-number multiplier
based on this system exhibits highly regular structure
as is observed in real-number multipliers, which sug-
gests an efficient design of real/complex reconfigurable
arithmetic units.

In this context, we discuss the design of a recon-
figurable arithmetic unit that can change its struc-
ture for three different arithmetic operation modes
in real time. The three modes realize (i) a single-
precision complex-number multiplication, (ii) a double-
precision real-number multiplication, and (iii) a pair
of single-precision real-number four-operand multiply-
add operations, respectively. We propose a new de-
sign methodology for this type of reconfigurable units,
in which the reconfiguration of arithmetic circuits is
discussed in terms of algebraic transformation of the
number system used in each operation modes. The
proposed real/complex reconfigurable arithmetic unit
will be useful in many applications which require both
real-number and complex-number computations.

This paper is organized as follows: Section 2 briefly
describes the basic properties of RCNSs and their el-
ementary arithmetic algorithms. Section 3 introduces
a unified notation for discussing hardware reconfigu-
ration. In Section 4, we describe the algorithm and
architecture of our real/complex reconfigurable arith-
metic unit. The final section summarizes our design.

2. Redundant Complex Arithmetic

2.1. Redundant Complex Number Systems

A redundant complex number system (RCNS) is de-
fined as a positional number system that has a complex
radix 74, where r is an integer that is not less than
2 and 7 denotes the imaginary unit. Each digit of a
redundant complex number can assume the following
2a + 1 values

{—a—y"',T’O:lf",a}v (1)
where @ = —q, and the maximum digit magnitude o
must be within the following range:
r2
[E.I_éasﬁ—l. (2)

The notation [z] refers to the least integer that is not
less than the real number z. An RCNS with radix
rj and digit set {&,---,0,---,a} is denoted simply by
RCNS 73, . In the following, we focus on RCNS 24,3
because of its compatibility with binary number sys-
tems. In this case, each digit can take the seven val-
ues, {3,2,1,0,1,2,3}. The algebraic value of a number
X = (Xg—1+-Xo X1+ -X_1) in RCNS 24,3 nota-
tion can be evaluated as

E—1

X =) Xi(2)" (3)
==l

The right-hand side of (3) can be decomposed into real

and imaginary parts as

k=121 [(k-1)/21-1 .
X =Y Xou(-4)'+25 > Ko (-4 5. (4)
i==[1/2) i=—[1/2]

The notation |z| refers to the largest integer that is
not greater than the real number z. Thus, if we decom-
pose the radix-(25) redundant complex number repre-
sentation into the real vector and the imaginary vec-
tor, each representation can be regarded as a special
Signed-Digit (SD) number representation that has the
negative radix —4. This feature enables us to design
high-speed complex arithmetic circuits with highly reg-
ular structure.

2.2. RCNS 25,3 Addition

The addition of two numbers, X = (Xz—1 - X;---
X_)and ¥ = (Yp—1---Y;---Y_;) in RCNS 25,3,
where X;,Y; € {3,---,0,---,3}, is performed by the
following three steps for each digit:

Step 1: Z; =X+ Y5, (5)
Step 2: —4C; + W; = Z;, (6)
Step3: Si=W:+Ci_a, (7

201

X=3+4j Y=5+6] S=X+Y=8+10j
weighs J3%. o4 3 16 H Ty 1
) ¢ 413 3.2 71
+) Y 2_ 10 3:3 1

A : 1.2 .3 6.1 0 Stpl
W 1.7 1 2 1.0

e - . Step 2

e el

5 0T 0 3 T 2 1 0 Step3

Figure 1. RCNS 24,3 addition.

where Z; is the linear sum, W; is called the intermediate
sum, and C; is the carry. The ranges of these values
are Z; € {6,--,0,---,6}, W; € {2,1,0,1,2}, and C; €
{1, 0,1}, respectively. Obviously, the final sum S; is in
the range of {3,---,0,---,3}, which is the same set as
the input digit set. The carry output C; is determined
from Z; in Step 2 independently of the other carries.
Thus totally parallel addition can be achieved without
carry propagation. Fig. 1 shows an example of RCNS
27,3 addition. The carry must be complemented and
added two columns to the left.

When RCNS 24,3 arithmetic circuits are con-
structed with binary logic elements, each digit X;
(€ {3,---,0,--+,3}) must be coded into a vector of
binary bits. We introduce here redundant coding of
the RCNS 27, 3 digit X; using 2-digit radix-2 SD code
z}z? as follows:

Xi = 2zi+2}, (25,2 €{1,0,1}). (8)
On the basis of this coding scheme, we can construct an
RCNS 27,3 parallel adder with radix-2 SD adders (or
“redundant binary adders” [8],[9]) as shown in Fig. 2.
In this circuit, every digit 2 (6 € {0,1}) of the radix-2
SD number is represented by 2-bit binary code.

Assuming the above coding scheme, RCNS 23,3 ad-
dition process (5} ~ (7) can be decomposed as

Step1': 2 =g} +u}, 2 =al +9], ©)
Step 2’ : —2c! +w! =2}, 20 +w) =27, (10)
Step3': st=wl+cf, P=w)+c . (11)

The ranges of z{, w{, and ¢! are 2 € {2,1,0,1,2},
w! € {1,0,1}, and ¢f € {1,0,1}, respectively. The
values of wf and ¢! are selected in order that the final
sum s? is kept within the range of {1,0,1}. This can
be done by using well-known carry rules of the radix-2
SD number system (redundant binary number system)
[8],[9]. Fig. 3 shows an example of RCNS 27, 3 addition
using this coding.

XimYn X Y Xe1 Y
Radix-2] Redix-2] Radix-2]
RCFA RCFA RCFA
s | i sne
1 G 1 G ! Gz
Sia Sy St

Radix-2j RCFA : Radix-2] Redundant Complox Full Adder
Radix-2 SDFA : Radix-2 Signed-Digit Full Adder
(Redundant Binary Fuli Adder)

Figure 2. Realization of the RCNS parallel adder
using radix-2 SDFAs.

X=3+4j

Y=5+46j S=X+Y=8+10j

0 Steplr

P \sip 2
lep

0

00 Step3

Figure 3. RCNS 24,3 addition using radix-2 SD
number representation.

3. Formulation of the Hardware Recon-
figuration

In this section, we show how the reconfiguration
of a specific hardware structure can be described by
a simple arithmetic notation. The proposed reconfig-
urable arithmetic unit changes its function by switch-
ing “number system” according to its operation mode.
We use the triple { D, W, A) for representing a posi-
tional number system of n digits, where D is the digit
set, W = (wn—1,---,Wi,---,Wp) is the positive weight
vector, and A = (Ap—1,---,Ai," -, Ao) s the sign vec-
tor for the n weights, respectively. The multiplying
factor A; (€ {1,1}) allows us to select between two pos-
sible weights w; and —w;, individually, for every digit
position 7. We assume the value w; to be a power of 2,

since we are interested in binary logic implementations.
For example, 4-bit 2’s complement binary number sys-
tem is denoted by

(D,W,A)
= ({0,1},(2%,2%,2,2°),(1,1,1,1)). (12)

In the following, we extend the concept of “sign” into
complex domain such that A; € {1,1,5,7}, in order to
deal with complex number systems.

A real/complex reconfigurable arithmetic unit pro-
posed here can execute the following three arithmetic
operations by changing its structure:

(i) A complex-number multiplication
(with single precision).

(ii) A real-number multiplication
(with double precision).

(iii) A pair of real-number four-operand multiply-
add operations (with single precision).

(We assume typical signal processing applications using
FFT-based pattern matching in selecting these opera-
tion modes.)

The operation (i) is executed using RCNS 23, 3 rep-
resentation. Using the triple notation, we can represent
RCNS 27,3 of 4 digits as

(Drens = {3,2,1,0,1,2,3},
Wgrens = (22,21’2072—1)’
Arens = (1,7,1,7)) (13)

As mentioned in the last section, the circuit implemen-
tations of RCNS 27,3 is based on the decomposition of
RCNS 27,3 into radix-2 SD number representations.
By decomposing every digit of the above triple nota-
tion into 2-digit radix-2 SD code, we have

(Dl = {T70a1}7
W o= (2°,2°,2%,21,21,2°,2%,27Y),
A = (T7T7j7j’171731;)) (14)

Fig. 4 (a) shows the corresponding parallel adder struc-
ture for 8 digits (4 digits for each of the real and imag-
inary parts). A carry generated at a specific digit posi-
tion is added to the adjacent digit position or is comple-
mented and added to the 3-digit-upper position. The
single-precision complex-number multiplier for the op-
eration (i) can be constructed with this parallel adder.

It is easy to reconfigure this structure to perform
real-number additions in double-length precision. Fig.
4 (b) shows an example of possible configurations. This
adder structure implies the number system:

(D2 = {T70,1})
W, = (25,2%,2%,2%,21,20,271,27%),
A, = (1,1,1,1,1,1,1,1)) (15)

(a) Adder structure for < D, W, A,) (mode (i)) \

Ko X%

4 h

(6) Adder structure for {D,, H,A,) (mode (i)

Figure 4. Reconfiguration of parallel adder structures.

Although this system employs positive/negative mixed
weights, it is functionally complete for number repre-
sentation. We select this representation for the opera-
tion mode (ii): double-precision real-number multipli-
cation, so as to minimize the hardware overhead due
to the mode change between (i) and (ii). Special at-
tention is paid to the vector A3 not to change the signs
of its elements after reconfiguration, which allows us to
use a common partial product generator for the opera-
tion modes (i) and (ii). The difference between W} and
W, clearly defines the way of reconfiguring the carry
interconnections in the adder tree.

For the operation mode (iii), the imaginary digits
in { D;,W;,A;) are used for representing an extra
real number of single precision (4 digits). Therefore,
the representation thus obtained contains two distinct
real numbers “overlapped” with each other, and may
be written as

(Ds = {T)O,l}’
Wy = (2%,2%,2%,27,21,2,2%,277),
A3 = (TaTa1,17171)TaT)) (16)

where the roman part and the italic part are regarded
as two distinct 4-digit real numbers. Clearly, addition
in { D3, W3, A3) can be achieved by using the same
parallel adder structure as shown in Fig. 4 (a), where
two 4-digit real-number additions are executed in par-
allel. If we eliminate real-imaginary dependence within
the complex-number multiplier (for the mode (i)) us-
ing this number representation, we can obtain a pair of
real-number four-operand multiply-adders required for
the operation mode (iii).

4. Algorithms for the Three Operation
‘Modes

In this section, details of the arithmetic modes (i) ~
(iii) are presented. For compatibility with the binary
system, input and output of the reconfigurable arith-
metic unit are assumed to be 2’s complement binary
numbers.

4.1. Single-Precision Complex-Number
Multiplication

Let the multiplicand and multiplier be denoted
by X and Y, respectively. The multiplicand X
is first given as an alternating sequence of the real
and imaginary parts each are represented in 2’s com-
plement form, and is converted into { Dy, Wj, A;)
representation by sign complementation (see the up-
per portion of Fig.5). On the other hand, the
multiplier Y is converted into RCNS 25,2 (=
({2,1,0,1,2}, Wrcens, Arens)) by using the Booth’s
recording algorithm [10]. This reduces by half the num-
ber of partial products. Assuming that X and Y are
first given with the precision of 2n bits (n bits for each
of the real and imaginary parts), the above recording
process produces the expressions:

X = (12—1"'z§$2"'x(1)$g$1-1)a (17
Y = (YooY -Yo.Ya), (18)

where z¢ € {1,0,1}, and ¥; € {2,1,0,1, 2}.
These multiplicand and multiplier generate n partial
products P,_o,- -, P_1, which can be represented as

P, = X Y x2%
= (I’?u o 'Pitl’gt ° 'p(l)tpgtpl—lt) x4t (19)

203

X=5+2§

(Multiplicand) X = 5+2f 0.0 1

010
Sign Conversion 1 l
1

welght

<Dv"{~Ax>

sign Ay T 7 T
welght W} 127 27 28 ;

Partial Products

1st Level
RI+R) Z
. W

C

Pi+P

2nd Level
S+ S

Y=7+3j

P=XY=29+29}

(Mutiptie) ¥ =7+37 0 1071 1 1)

Booth's Algorithm

4
.2

Sign Conversion ¥
7

RCNS 2,2 3

T

2-1

0 ~— P,
: — PO

— B

— B

Final Product

18 digits

Figure 5. An example of complex multiplication (4-bit precision for each of the real and imaginary parts).

where p%, € {1,0,1} and (¢t = —1,---,n — 2). Note
that these partial products are generated by shift and
complement operations as follows:

if Y, =2, then p, —ws; Po = 73,
if Y;=1, then pst = zs, p% =19,
1f 1,t = 0, then pst pst O

if =T, then pst ""1’.39 pst =E(T
if K = §’ then pst - ms’ pst - mi—-?

The complex-number final product P is obtained by
adding P,_s,---,P_;. Each partial product is in the
form of { Dy, Wi, A;), and therefore the parallel adder
shown in Fig. 4 (a) can be employed to achieve fast
binary-tree multi-operand addition. Fig. 5 shows an
example of single-precision complex-number multipli-
cation in the mode (i).

4.2. Double-Precision Real-Number
Multiplication

The multiplicand X is first given as a 2n-bit 2’s
complement binary form, which is converted into

204

{ D2, Wa, Az) representation by sign complementa-
tion (see the upper portion of Fig. 6). On the other
hand, the multiplier Y is converted into the represen-
tamon({21012}(42414° 471),(1,1,1,7)) (ie.,
the minimally redundant radix-4 SD number system
whose weights are complemented every 2-digit posi-
tions) by using Booth’s algorithm. Using this repre-
sentation, partial product generation is achieved only
by shift and complement operations. Consequently, the
2n-bit multiplicand X and the 2n-bit multiplier Y are
converted into the form:

X = (z2n-2-""Ts Tp.To1), (20)
Y = (Ypoaeo Yo YoXiy), (21)
where z, € {1,0,1}, and ¥; € {2,1,0,1,2}.
These multiplicand and multiplier generate n partial
products P, _o,---, P_;, which are denoted by
Pt = X- lft X 22t

= (p(2n-—1)t cec Pst ’ p—lt) X 4t> (22)

where p,, € {1,0,1} and (¢t = —1,---,n — 2). These

(Muttiplicand) x = 21

sign A T 1 1
weight Wz 2“2“2“"2° 28,

Partial Products

1st Level
Pi+R Z
w

C

P+B Z

2nd Level
Syt Sy

Final Product

P=X-Y=4935
(Multiplie) ¥=235 0101 1 1.1 0()

Booth's Algorithm 6 4 H 1/'4

1 2 0 2
Sign Conversion ' ' ' '

18 4 1 7

T 2 o0 2

P h b oY

Figure 6. An example of real multiplication (8-bit precision).

partial products are generated by shift and complement
operations as follows:

(a) t: even
L _ [Z5=7 (for s = 4m)
if =2, then p,:= {z,_l (for s # 4m)
if :=1, then pg ==z,
if Y;=0, then ps =0
if Yt = T, then Pst = Ts
. 5) hd f =4
if =2, then p, = {:s—i Efg; j # 423

(b) t: odd
. = f =4
if =2, then p,={z>=L &83#4%
Y _ Jz, (for s = 4m,4m+1)
if ¥;=1, then p,; = T, (for s # 4m,4m+1)
if =0, then py;=0
' - __ {75 (for s = 4m,4m-+1)
if V=1, then py, = zs (for s # 4m,4m+1)
o 5) s f = 4
if Y;=2, then py = :s i gfgi 3 # 42;

205

where m is an integer. The real-number final product
P is obtained by adding P,_2,-+-, P_;. Each partial
product is in the form of { Dy, W, A5), and hence the
parallel adder shown in Fig. 4 (b) can be employed to
achieve fast binary-tree multi-operand addition. Fig.
6 shows an example of double-precision real-number
multiplication in the mode (ii).

The number system { Dy, Wa, A, } used here is care-
fully selected in order to minimize the hardware over-
head required for the mode change between (i) and (ii).

4.3. Single-Precision Real-Number Four-
Operand Multiply-Add Operation

This operation mode employs (D3, Wi, A3 } rep-
resentation to execute a pair of four-operand multiply-
add operations in parallel. Since there is no space for an
extended discussion, we shall explain only the principle
of this operation mode without describing its algorithm
in detail.

The complex-number multiplication realized in the

Multiplicand X

mode (i} L 0% B x X ¥ X X
mode (ii) X X; X, X, X, X, X, X,
r—r~meeerree a6
mode (jii) fy e;a, e;a, b, b f ea ea bf
0=0=0=0=0=0—="0=0=-"0-=
R ALl
S O=0=0"'-0"'-0"-0" 009"
; WP P PR P P e
£ @\‘!}31!2‘.;(!1‘!;36.!‘!;3&!2‘ 5
2 NNV L i L L
IR b B3 B B
s AN Mg B G, W S () o
5 g vy v/
i’i M H ol H Jocd 1 Tocd F{ Jorl —{ Joxd | >
T T T T TT T
mde() # A A A A p A A B B B A A A A P A B
mode (il) P, Py Po B A A R B P B B P R Py P2 P
mode(iiy k& 4k Lk k k Lk L k k h L k k L L k k& L

Reconfiguration
® Switch

Booth Encoder

Final Product P

Partial Product

Fartiat F1¢ [radix-2 SDFA

Figure 7. Real/complex reconfigurable arithmetic unit (8 bits for double precision).

operation mode (i) can be expressed simply by

(A+ Bj)(C + Dj)=(AC - BD)+ (AD + BC&)j,)

23
where A and C denote the explicit values of the real
parts, and B and D are those of the imaginary parts.
If we consider A, B,C, and D as four distinct real-
number inputs of single precision, then the imaginary
part AD + BC directly corresponds to the result of
four-operand multiply-add operation on these num-
bers. Thus, a~complex-number multiplier can perform
four-operand multiply-add operation.

However, it should be noted that the circuit elements
to be operated in the calculation of AD + BC are half
of the elements of the whole complex multiplier. It
is possible to achieve 100% utilization of hardware ele-
ments by introducing an extra set of operands E, F, G,
and —H to the remaining portion of the complex mul-
tiplier (i.e., the portion that calculates the real part of
the result) as

(E+ Fj)G - Hj)=(EG+ FH)+ (FG - EH)j.
24
Thus, the real part EG+ F H corresponds to the result

of multiply-add operation of the four operands. As
a result, a pair of four-operand multiply-adds: K =

206

AD + BC and I = EG + FH, are carried out in
parallel with the modified complex multiplier. Only
some adjustments of the input data format are needed
to achieve this operation.

Fig. 7 shows the real/complex dynamically-reconfi-
gurable arithmetic unit realizing the above mentioned
three operation modes. The circuit includes switches
to reconfigure the circuit structure. Transistor count
of the real/complex reconfigurable arithmetic unit for
various word lengths are shown in Table 1. The hard-
ware overhead required for the reconfiguration is very
small, that corresponds to 16% increase of gate count in
comparison with the dedicated complex-number multi-
plier. Thus, mathematical treatment of hardware de-
sign makes possible the construction of highly regular
reconfigurable arithmetic circuits including only homo-
geneous interconnection patterns.

5. Discussion and Conclusion

In this paper, we have proposed the algorithm for
the real/complex reconfigurable arithmetic unit that
executes (i) a single-precision complex-number multi-
plication, (ii) a double-precision real-number multipli-
cation, or (iii) a pair of single-precision real-number

Word length
(double precision) 8 16 32 64
SDFAs 2176 | 9088 | 35840 [139776
PPGs 1120 | 4032 | 15232 | 59136
BEs 224 | 448 | 896 | 1792
Switches 232 | 768 | 2344 | 9592
Total | 3752 | 14336 | 54312 | 210296 |

Table 1. Transistor count of the reconfigurable
arithmetic unit.

four-operand multiply-add operations, according to ex-
ternal control instructions. We have shown that the re-
configuration of hardware can be formulated in terms
of the transformation of the number system used in
each arithmetic mode.

The proposed arithmetic unit can be installed into
typical programmable DSP architectures as shown in
Fig. 8 to achieve high-speed real/complex mixed com-
putations. In this case, the data path includes the
reconfigurable arithmetic unit and the ALU in tan-
dem, and hence the ALU must also be reconfigured
its carry interconnections according to the operation
mode. Also, dynamic switches are required between
the data bus and the reconfigurable arithmetic unit in
order to adjust the data format to the specified mode.
In practice, a few tag bits representing the operand
type { D;, W;, A;) (¢ € {1,2,3}) may be attached
to the data itself. The arithmetic unit will recognize
this information and change its structure automati-
cally, which makes possible the considerable simpli-
fication of reconfiguration control logic. Such highly
flexible arithmetic unit will be useful in many digital
signal processing applications, which require both real-
number and complex-number arithmetic capabilities.

References

[1] B. Barazesh, J. Michalina, and A. Picco,“A VLSI
signal processor with complex arithmetic capabil-
ity,” IEEE Trans. Circuits and Systems, Vol. 35,
No. 5, pp. 495-505, May 1988.

B. W. Y. Wei, H. Dy, and H. Chen,“A complex-
number multiplier using radix-4 digits,” Proc.
12th IEEE Int’l Symp. Computer Arithmetic, pp.
84-90, July 1995.

T. T. Dao,“Knuth’s complex arithmetic with qua-
ternary hardware,” Proc. 12th IEEE Int’l Symp.
Multiple- Valued Logic, pp. 94-98, May 1982,

J. Duprat, Y. Herreros, and S. Kla,“New redun-
dant representations of complex numbers and vec-
tors,” IEEE Trans. Computers, Vol. C-42, No. 7,
pp- 817-824, July 1993.

2]

3]

(4]

207

jo5u0D uonenbyuoosy

Data Bus

=i _Switch _}

Figure 8. Installation of the reconfigurable arith-
metic unit into typical DSP architecture.

[5] T. Aoki, Y. Ohi, and T. Higuchi,“Redundant
complex number arithmetic for high-speed signal
processing,” VLSI SIGNAL PROCESSING VIII
(1995 IEEE Workshop on VLSI Signal Process-
ing), pp. 523-532, October 1995.

[6] D. E. Knuth,The Art of Computer Programming,
Vol. 2,Reading, MA: Addison Wesley, 1973.
[7] A. Avizienis,“Signed-digit number representations
for fast parallel arithmetic,” IRE Trans. Elec-
tronic Computers, Vol. EC-10, pp. 389-400,
September 1961.
N. Takagi, H. Yasuura, and S. Yajima, “High-speed
VLSI multiplication algorithm with a redundant
binary addition tree,” IEEE Trans. Computer,
Vol. C-34, No. 9, pp. 789-796, September 1985.
H. Makino, Y. Nakase, H. Suzuki, H. Mori-
naka, H. Shinohara, and K. Mashiko,“An 8.8-ns
54X 54-bit multiplier with high speed redundant
binary architecture,” IEEE J. Solid-State Cir-
cuits, Vol. 31, No. 6, pp. 773-783, June 1996.
A. D. Booth,“A signed binary multiplication tech-
nique,” Quart. J. Mech. Appl. Math., Vol. 4, pp.
236-240, August 1951.

(8]

[9]

[10]

