Arithmetic Co-transformations in the Real and Complex Logarithmic
Number Systems

Mark G. Arnold, Thomas A. Bailey, John R. Cowles,

University of Wyoming

Department of Computer Science

Laramie, WY 82071
marnold@uwyo.edu

Abstract

The real logarithmic number system, which repre-
sents a value with a sign bit and a quantized logarithm,
can be generalized to create the complex logarithmic
number system, which replaces the sign bit with a quan-
tized angle in a log/polar coordinate system. Although
multiplication and related operations are easy in both
real and complex systems, addition and subtraction are
hard, especially when interpolation is used to imple-
ment the system. Both real and complez logarithmic
arithmetic benefit from the use of co-transformation,
which converts an addition or subtraction from a re-
gion where interpolation is ezpensive to a region where
it is easier. Two co-transformations that accomplish
this goal are introduced. The first is an approximation
based on real analysis of the subtraction logarithm. The
second is based on simple algebra that applies for both
real and complex values and that works for both addi-
tion and subtraction.

1. Introduction

The real logarithmic number system (also known
as LNS [32], exponential floating point [26], CRD [7],
sign/logarithm number system [29], and Gaussian log-
arithmic arithmetic[11]) uses a finite approximation for
the logarithm of the absolute value of a real and a bit
for the sign of that real to represent that value. From
a theoretical standpoint, the numerical properties of
this number system are, for the most part, an ideal-
ization [17] of floating point. It has been shown that
floating point and real logarithmic arithmetic are ex-
treme cases in a spectrum of “semi-logarithmic num-
ber systems” [20], and logarithmic representation has
been proposed as part of a new standard for “compos-

1063-6889/97 $10.00 © 1997 IEEE

190

Mark D. Winkel
Somatogen, Inc.
2545 Central Ave.
Boulder, CO 80301
mwinkel@csn.net

ite arithmetic” [12]. From a practical standpoint, the
real logarithmic number system has a tremendous ad-
vantage over floating point: multiplication and division
can be implemented using low cost fixed point addition
and subtraction.

The difficulty faced by an implementor deals with
addition and especially subtraction [2] of values rep-
resented as logarithms. These two operations require
computing functions that represent incrementation and
decrementation of the corresponding real values. For
example, given a fixed point logarithm, Zy, of a posi-
tive real value, Z, the system must compute the addi-
tion logarithm,

S4(Z1) = logy (1 +b7%), 1)
in order to obtain the representation of Z + 1. For low
precision systems, these functions can be pre-computed
and placed in a read only memory (ROM). For systems
requiring precision approaching that of single precision
IEEE 754 floating point (23 bits), interpolation {15, 3]
may be used to approximate these functions. For real
(i-e., fixed point) Zp, the Sp(Z1) function is well suited
for linear or higher order interpolation because the ex-
trema of its second and higher order derivatives are rea-
sonably small. On the other hand, the function used
for subtraction, known as the subtraction logarithm,

(2)

has a singularity at zero, and so it is costly to interpo-
late.

Several approaches for high precision real valued log-
arithmic subtraction have been proposed. Stouraitis
[27] proposed partitioning the ROM at powers of two
into increasingly denser intervals as Z; approaches
zero. Lewis [14] fabricated a logarithmic arithmetic
unit (with 20 bits of precision) that combines partition-
ing with interpolation to achieve a constant fixed point

Dy(ZL) =log, |1 — b7,

accuracy for Dy(Z1) as Z, approaches zero. A similar
combination of partitioning and interpolation was dis-
closed independently in [5]. Arnold et. al. [1] proposed
that due to catastrophic cancellation that occurs dur-
ing floating point subtraction, the required accuracy
for Dy(Zy) interpolation diminishes as Zj approaches
zero. Lewis [16] fabricated a logarithmic arithmetic
unit (with 23 bits of precision) using second order in-
terpolation that capitalizes on this diminished required
accuracy. Paliouras et. al. [24] suggested comput-
ing log, (1 — b%%)/Z1) + log,(ZL) for Zy, near zero in-
stead of directly interpolating Dy(Z1), but the draw-
back of this approach is that it requires interpolating
for two functions instead of one. Orginos et. al. [23]
avoided the problem by converting to fixed point all but
the maximum operand in a multi-operand subtraction,
however this also requires interpolating more than one
function.

An alternative approach is to re-arrange a series
of computations that involves a reasonable proportion
of subtraction in order to reduce the number of sub-
tractions that must be performed. For example, if
X1,Xa,...,X, are positive real numbers, the compu-
tation (((-++ (X1 = X2)+X3)~Xq) -)+ Xp—1) — Xn)
can be re-arranged as (X; + Xg+ -+ Xpn_1) — (X2 +
X4+ -+ X,). Arnold et. al. [1] proposed a re-
dundant logarithmic number system, which represents
both a positive and negative component of each real
value. This redundant representation often becomes ill
conditioned and loses considerable accuracy compared
to the conventional real valued logarithmic number sys-
tem. It also doubles the storage requirements. For
these reasons, the redundant logarithmic number sys-
tem is only suitable in specialized applications, where
the designer has detailed knowledge of the nature of
the computations to be performed.

Of course, real logarithmic arithmetic was widely
used in manual computation for over three centuries
until the widespread adoption of digital electronics.
Despite the ubiquity of fixed and floating point hard-
ware available today, real logarithmic arithmetic has
found recent practical application primarily in two ar-
eas: low precision applications running on specialized
hardware (image and digital signal processing [30],
graphics [13], aircraft controls [25], hearing aids [21],
and neural nets [6]) and higher precision applications
running on microprocessors that lack floating point
hardware [10], such as the Fujitsu SparcLite 930 [28].
Sections 4 and 6 describe two new co-transformation
techniques for real valued logarithmic subtraction that
improve its cost effectiveness while maintaining reason-
able accuracy.

Many of the practical applications of low precision

191

logarithmic arithmetic involve complex numbers, for
instance the Fast Fourier Transform (FFT). The con-
ventional way of implementing complex arithmetic is to
work with pairs of real numbers that represent points
in a rectangular coordinate system. Multiplication of
two complex numbers, X and Y, in the rectangular
coordinate system requires separate computation of
R[X]-R[Y] - S[X]- Y] and R[X]- S[Y]+ [X]-R[Y],
where R[X] is the real part of X and S[X] is the
imaginary part. This approach can be used regard-
less of the underlying implementation of the real ad-
dition, subtraction, and multiplications. Swartzlan-
der et. al. [31] compared floating point, fixed point
and real logarithmic number systems for an FFT im-
plemented with rectangular coordinate complex arith-
metic. Section 9 describes a new number system,
known as the complex logarithmic number system,
which represents each complex point in log/polar coor-
dinates. Co-transformation techniques similar to those
for the real logarithmic number system are useful for
practical implementation of the complex logarithmic
number system.

2. The Real Logarithmic Number
System

In sections 2 through 8, upper case variables and
functions are used for real values, and lower case vari-
ables are used for integer data. f X 2 0and Y # 0
are real numbers, the following identities hold when the
transcendental Sy, Dy and log, functions are computed
ezactly:

logy(IX|-1Y]) = logy|X|+1logy [Y] (3)
logy (|1X1/[Y]) = logy|X|—log, [Y] (4)
log, (| X| +[V]) = logy (Y] (IXI/IY]+1)) (5)
= log, Y]
+ Sp(logy | X| — log, |Y])
log, (JIX] = Y1) = logy(IY]- (IIX1/IY] - 1])) (6)

log, |Y'|
+ Dy (logy | X | — log, [Y])

where b > 0 is the base of the logarithms and S, and
D, are defined in (1) and (2). In typical modern im-
plementations, b = 2, and in the nineteenth-century
literature[11], b = 10. In an actual implementation,
the transcendental functions cannot be computed ex-
actly since log, | X| will be stored in a fixed size word.
The computation of log, |X| can be thought of as an
input conversion, analogous to the conversion of a dec-
imal input to IEEE 754 floating point, and so the error

is related to the number of bits allowed in the repre-
sentation. To understand this error, one must describe
the effects of input quantization that occur when a real
value, X, is converted to a logarithmic representation,
z, composed of an integer, zz, and sign bit, zy:

|
o (225)) - ([3])

or(|logs |X1J)

where overflow and underflow are dealt with by

0
1

fX2>0

if X <0 (7)

and

TL

i

my ifz >myg
op(g) =< = if —mp <z <my 9
—-my fz<-—mp

and where Ay and mj are chosen so that B = bAL
is the closest real value larger than 1.0 that can be
represented exactly (zy = 1) and B™F is the largest
real value that can be represented exactly (zr = myr).
Therefore, — logs(AL) is roughly the number of bits of
precision. We introduce B as a notational simplifica-
tion which may be omitted in an actual implementa-
tion. Use of base B with the integer z, is equivalent
to the use of base b with the fixed point, 2y - Ay. The
latter has — log,(Ar) bits after the binary point, as is
often described for implementations in the literature.
For instance, B = 1.0000000826 and Ay = 2723 are
roughly equivalent to IEEE 754 single precision.

Given the real logarithmic representations, z and y,
the result, z, of division is:

2g = (zg—ys) modmy (10)

OL(xL - yL)

zZL =
where mg = 2 for the real logarithmic number system,
and so the modulo two subtraction can be implemented
simply with an exclusive OR. When z and y are exact
representations, (10) is exact. If z and y are not exact,
(10) propagates the error analogously to floating point.
A similar situation applies to multiplication, except the
“«_7g are replaced with “+”s. Negation is implemented
as multiplication by the representation of minus one
(Yo = 1,yL = 0).

The algorithm for real logarithmic addition and sub-
traction requires first computing z, the representation
of the ratio of the numbers, as shown in (10). The
representation, r, of the sum is:

) fo(y, z) mod my

OL(fL(y7 Z))

(11)

TL

192

where
_ | (ys+2z)mod2 ifz, >0
f@(yaz) = { Yo if 2L <0 (12)
and
— L + dB(ZL) if zg = 1
fL(y;Z) - { YL +3B(ZL) i 25 =0 (13)

We will use the notation f(y,z) to describe com-
puting the quantized logarithmic representation,
(fL(yaZ)afﬂ(y,z))7 of the sum, X +7Y. Note fe(y’z)
is either zg or yg, depending on whether |X| > Y|
or |X| < |Y|. Subtraction is implemented as negation
followed by addition. (13) uses the quantized addition
logarithm,

sB(zL) = |SB(2L) + Es(2L)] = [SB(21)] + €s(2L),
(14)
and the quantized subtraction logarithm,

dp(zr) = |DB(z1) + Ea(zL)] = | DB(2L)| + ea(2L),
(15)
where e;(z1) and e4(zr) are quantization errors de-
termined by the approximation method(s) used. The
problem addressed in the sections 4 and 6 is that given
equal resources for interpolation, max |eg4| > max |e|.

3. Co-~transformations in Computer
Arithmetic

Similarly to Chen [9], we define a co-transformation
of two values Y}, and Z; as:

Yiv1 = Ur(Yi, Zi) (16)
and simultaneously:
Zia = Vi(Ye, Zi) (17)

where Uy, and V}, are functions chosen to preserve some
approximate relationship:

F(Yk, Zr) = F(Yet1, Zkar) (18)

The function F' is chosen so that one or more appli-
cations of the co-transformation will yield a meaningful
result. For a co-transformation to have practical utility
in computer arithmetic, the functions Uy and V;, should
be relatively economical to implement, and the result
of n applications of the co-transformation should make
F(Xpin, Yitn) “closer” to a desired goal than the orig-
inal F(Xy,Y:). In sections 4, 6, 8 and 10, we introduce
novel co-transformations that are specifically designed
to make computation of Sy and D, easier.

Some simple co-transformations that reduce the cost
of implementing logarithmic arithmetic are well known,
such as that for commutativity. As we will do for
the novel co-transformations described later, we be-
gin the discussion of this trivial commutativity co-
transformation by giving analytical and/or algebraic
background. Then we use this background to derive
the actual co-transformation found in the implementa-
tion.

In this trivial example, we start with the commu-
tativity of X and Y for real addition, X + Y
Y + X. With (5) in mind, commutativity implies
X-1+Y/X)=Y -1+ X/Y)for X #0and Y # 0,
In a quantized implementation, this is equivalent to
f(z,2) = f(y,z), where Z represents the reciprocal of
the value represented by z, in other words, Zf = -z,
and % = (—zg) mod 2. Because of the properties of
modulo two arithmetic, £y = zy.

With the algebraic background above, we are ready
to define the well known co-transformation that re-
duces the table size in half for logarithmic addition
and subtraction:

wly,s) = 20
) yr+2r ifzp <0
Uﬂ(ya Z) { (y0 + za) mod mg if zr, < 0 (19)
vi(y,z) = |l
vy (y, 2) il oz
olY, % (_zH) mod me if zL < 0

There are no preconditions for applying the commu-
tativity co-transformation. The postcondition guaran-
teed as a result of applying it is v (y,2) > 0A f(y,2) =
flu(y,2),v(y,2)). Note that vg(y,z) = z¢ because of
the properties of modulo two arithmetic. From (19),
it is easy to show that f(y,2) = f(u(y, 2),v(y, z)) be-
cause

_ y ifz, >0
u(y,2) = {x if 21 <0
_ z ifzp 20
v(y,2) = {z if 2 < 0

This co-transformation is only applied once. The ef-
fect is to insure that sp and dp are only computed for
positive arguments, effectively reducing the implemen-
tation cost by one half. To those familiar with previ-
ous real logarithmic number system implementations,
this derivation may seem a bit tortured, but it will be
useful in section 10 when these ideas are generalized
to complex values. In a real valued implementation,
the determination of the sign, fo(u(y, z),v(v,2)) can
be simplified considerably.

193

4. Co-transformation Derived from a
Truncated Series

As the bibliography of [2] shows, the following series
has been given in the literature several times for real
VAR

Z, . Z3-Inb
Dy(Zr) = logy|Zx| ~logy(log, €) + = + ~L
_Zi-(nb)® Z}-(nb)s 20

2830 181440 :

However, we will use (20) in a novel way to derive
an approximate co-transformation that converts cer-
tain logarithmic subtraction (dg, which is costly for
interpolation near the singularity) to logarithmic addi-
tion (sp, which is much cheaper for interpolation). For
Zp, near zero [11, 22],

VA
Dy(Z1) = logy |Z1] ~ logy(logye) + =7, (21)
and the error is bounded by Z2 - Inb/24. As described
in [1], the required accuracy (due to unavoidable catas-
trophic cancellation) diminishes as Z approaches zero:

Ed(ZL) ~ C/ZL, (22)

where C is a constant which most naturally would
be Ap - logye. By solving for (Z} - Ind)/24 <
(A - log,e)/Zy, we find that when Z; <
/24 - (log, €)% - AL, the truncated series produces less
error than is inherent in the subtraction being imple-
mented by this approximation. For example, for 23
bits of precision, Z;, < 0.0181255.

The constant —log,(log,e) and the linear term,
Z1,[2, are trivial to implement. The only difficulty is
logy(ZL). Let g = |~logy(24 - (logye)® - AL)/3] be
the number of bits of Zr, after the binary point that
are zero when this truncated series is used. Suppose
there are 2n additional bits in the fixed point Z;. It
is then possible to break Zj apart into two n bit inte-
gers, 21 and zg, such that Zy = 2797". 2, +279-2. 5,
and Ap = 279727, For example, with 23 bit precision,
g =5 and n =9. Applying (5), we have:
log,(Z) log,(2797™ . 2y + 2797 . 3,)
log, (27972 . z5) + (23)
Sp(log, (279" - ;) — log, (27972 . 23))
—log, (27*2") + logy(22)

+ Sy (logy(z1) — logy(22) + logy(27))-

Since n is a small integer, the size of the lookup table

for log, (1) and log,(23) is affordable.

The real analytical background above justifies the
co-transformation described below which assumes the
quantized addition logarithm, sp, is used rather than
the exact Sy;. Furthermore, it assumes that the com-
mutativity co-transformation described in (19) has al-
ready been applied so that z;, > 0. When z,-Ap < 279
(equivalently, zr, < 2%"), 21 = 2™ - z1 + z3. From this,
we can define the co-transformation:

(YL if2=0
v 2L Z 2277.
ur(y,z) = q @
+or([logg(z2)]) ifzg=1
(+ 51 +ur Ao <2
ug(y,2) = Yo (24)
(2 ifzg=0
v(y,2) = 4 or([logp(z1)l)
—or([logg(z2)]) ifzg=1
\ ta-—c Az <20
) = Z ifZ9=0VZL222n
ve(y,2) = 0 ifzg=1Az <22
where
e —[log(291") — logg(logp €)],
2 = ~—|logg(297™") —logg(logg e)],

and so ¢; — cg = |logg(2™)] = n- 297 and ¢
(g +2") 2972 — |logp(logge)] for b = 2. Note that
(24) insures that vr(y, z) > 0 for zr > 0. The precon-
dition for applying this series co-transformation is that
the commutativity co-transformation has already been
applied, i.e., z; > 0. The postcondition that is guar-
anteed as a result of applying it under these circum-
stances is (vr(y,2) > 2*" V (ve(y,2) = 0 Avi(y,2) 2
0) A £(y,2) ~ fluly, 2),v(5, 2)).

5. Implementation of Series
Co-Transformation

The terms or(|logg(z1)]) and or(|logg(22)]) in
(24) can be implemented with one small (2® word)
ROM containing —my, as an approximation for —oo in
its first word. Such an approach assumes that two or
more clock cycles may be spent computing vy (y, z), as
would be acceptable in a software implementation. An
advantage that (24) has for software implementation
is that, unlike hardware partitioning schemes [16, 5],
the point of separation between z; and z; is fixed, and
therefore easier to implement on a processor that lacks
normalization hardware. The address calculation for
a fully partitioned dg table involves normalization of

194

2L, as does Paliouras’ approach [24]. Although some
high performance CISC processors have instructions
that find the position of the leading bit in a word,
on many processors that lack floating point this can
only be accomplished by a loop that shifts zy while
maintaining a count. There is often a penalty asso-
ciated with loops on such processors. For these pro-
cessors, co-transformation software may be faster than
full partitioning of dp since the table addresses can be
computed without a loop.

A real logarithmic arithmetic software package [10]
that utilizes this co-transformation was implemented
in 80x86 assembly language for 23 bit precision (g =
6,n=9).

A slight variation of (24) allows for a hardware im-
plementation [5] that computes v (y, z) in one clock cy-

cle by storing o ({logg(21)})+¢1 and or(|logg(22)]) +
¢y in two separate ROMs.

6. Algebraic Co-transformation

There is an alternative co-transformation that
achieves a similar effect to the one described in the
previous section, but which has many additional desir-
able properties. Rather than being based on analysis of
a series expansion as in the last section, this alternative
co-transformation is derived from simple algebra.

If Z;, > 0 is the fixed point argument to the real
Sy or Dy functions, there are many ways we can select
two positive fixed point numbers, Z; and Z; such that
Zy, = Z1 + Z3. Equivalently, there are corresponding
ways to select the integers, z; and z2, such that z;, =
21 + 2z2. Unlike the previous co-transformation (24),
the co-transformation derived below does not depend
on any particular choice of Z; and Zs.

Dy(Zy) log, |1 — bZx|

log, |1 — b71+ 72|

logy |1 — 422 + (b%2 — b1 . p%2)|
log, |1 — b%2 + b%2 . (1 — b%1)|
logy |1 — b7 + b72 . plose(1-671),
logy [1 — bZ2 + bZ2 . pPe(21))|
log, |1 — b%2 4 bZ2tDPe(Z1))

7, 1=02 sipyz
= logb 1—b2+1——6—2—2—.b2+ v(Z1)
pZ2+Du(Z1)
= logb (1 — bZz) . (1 + ‘W
Z2+Dy(Z1)
logy, |1—572 b
= log, bloss | I'(l'i'm

pZ2+Du(21)
TpDs(Z2)

log, |bD"(Z2) 1+ bZ2+Db(Zl)_Db(Z2))|
logy, [bP+(72)]

+ logy (1 + bZ2tDs(Z1)—Ds(Za))
Dy(Z3) + Sb(Z2 + Dy(Zy) — Dy(Z2))

logy [bP(%2) . (1 +

As a notational convenience, we will define an auxiliary
function,

H(P,QyR)=Q+Sb(R+P_Q)1 (25)

and so,

Dy(Z1) = H(Dy(Z1), Ds(22), Z5) (26)

is an identity that holds when H is computed ezactly.
Similarly, we define a quantized auxiliary function,

h(p,q,r) =q+sp(r+p—q), (27)

and so,

dB(Z) ~ h(dB(Zl),dB(Zz),Zz)- (28)
Analogously to (15), we can define the error in (28) as
en(zr). Since dp(z1) and dp(zs) are implemented by
table lookup, 0 < eq(21) <1 and 0 < eq(22) < 1. Since
0<8p <1,

en(zL) h(dB(z1),dB(22),22) — [Ds(zL - AL))

< eq(#2) + Sp - (ea(?1) — ea(22))
+ es(2z2 +dp(21) — dp(22))
< 1+4es(z2 +dp(21) — dp(z)).

Using (28) to approximate dp introduces no more than
one additional machine unit of relative error (perceived
by the end user as a relative error of B — 1) beyond
whatever error the sp approximation method intro-
duced. Therefore, (28) is a much more accurate ap-
proximation of the subtraction logarithm than (21) in
most cases.

There are many possible variations of co-
transformations that can be derived from (28).
For example, the one which is most analogous to (24)
is:

YL if 2g =0V 2z > 2%
us(y:2) { yr +dp(zs) if zg=1Azg <22
ug(y,2) = Yo (29)

ZL if 2g =0V zp > 22"
vp(y,2) = { 22 +dp(z1) ifzg=1Azp <22

- dp(z2)

29 if20:0V2L222"

vo(y,2) = { 0 ifzg=1Az, <2

195

The choice of n in (29) is arbitrary. The hardware
is similar to that in the last section, except there is no
need to add z/2. The preconditions and postconditions
for this form (29) of the algebraic co-transformation are
the same as for the series co-transformation (24).

There is no limitation on the size of Z, in (26), and
so there is no limitation that restricts the number of
bits in z; or z3, which means 2z; and 23 could com-
prise all of z. So, (28) may be used to derive a simpler
co-transformation that converts every logarithmic sub-
traction into a logarithmic addition:

_ yL if g = 0
uL(y7Z) - { yL+dB(Z2) ifzo =1
up(y,z) = o (30)
zL if z¢g =0
vL(y, 2) { z0+dp(z) —dp(ze) ifzg=1
vﬁ(yaz) - 0’

There are no preconditions for this alternate form (30)
of the algebraic co-transformation. The postcondition

is 7)0(ya Z) =0A f(yaz) ~ f(u(y,z),v(y,z)). (30) elim-
inates the need to interpolate for dp at all if the table
sizes for dg(z1) and dp(z2) are considered acceptable.

7. Iterative Co-transformations

The function H can be applied iteratively to reduce
these table sizes. For example, if Z1 = Z; + Z; + Z3,

H(Dy(Z1 + Zz),Db(Zg),Z:g) (31)
H(H(Dy(21), Dy(22), Z2), Dv(Z3), Zs)

Dy(ZL)

Software [10] that approximates Dy(Z1) using (32) was
implemented for 23 bits of precision, where there are
ten bits in Z;, and nine bits each in Z; and Z3. These
28 bits are sufficient to approximate the entire range
of D, within the 32 bit word because of the essential
zero concept [32].

When (26) is carried to its logical conclusion, each
bit of Z, could be processed separately in an iterative
series of co-transformations,

H(Y,Dy(2F—7),2k—7) if Z > 2k—n
U’“(Y’Z)={ GRS A
(32)
and
Z — 2k §f Z > ok—n
Ve,2) =1 z if Z < 2kn (33)

where now n is the number of fractional bits, F(Y, Z) =
Z — Sy(Y), Zo = Z1 and Yy —oo. When after j
iterations Z; = 0 we have Y; = D;(Zr).

8. Addition Co-transformations

There are relationships analogous to (26) that de-
scribe how to convert a particular logarithmic addition
into another, possibly simpler, logarithmic addition:

Ss(Z1) = H(Ss(Z1), Do(22), Z2) (34)

and
Sy(Z1) = H(S; (21), 8b(Z2), Z»)

where S;1(Z1) = Dy(21) because Z; is real.

Assuming the commutativity co-transformation (19)
and the algebraic co-transformation (30) have already
been applied, a third co-transformation, derived from
(34), can, under certain circumstances, eliminate the
need for any interpolation. The precondition for apply-
ing the following addition co-transformation is that the
commutativity and algebraic co-transformations have
already been applied, ie., 2 > 0A 29 = O:

(35)

ur(y,2) = yL+dp(z)

up(y,z) = Yo (36)
v{y,2) = 22+ sp(z1) —dp(z)

ve(y,z) = 0

where z; contains the high order bits of z;, and 2
contains the low order bits of z;. The postcondition
that is guaranteed as a result of applying the addi-
tion co-transformation given the above preconditions is
vr(y,2) > OA fy,2) = f(u(y,2),v(y,2)). For b=2,
vr(y,2) - Ar is at least equal to the number of frac-
tional bits! in Z;, which means (13) can be computed
more easily. In particular, for 23 bits of precision, the
sp in (13) can be approximated without interpolation
using the same table that gives sp(z;) when 29 con-
tains twelve bits. If 2, contains more bits?, interpola-
tion would be required, but would use a much smaller
multiplier than if (36) had not been applied.

9. Complex Logarithmic Number
System

There is a natural generalization of the real loga-
rithmic number system that allows representation of
complex values. Instead of allocating a single bit for
the sign, one can allocate an appropriate number of
bits to represent an angle in the complex plane. To
convert a complex value, X, to a quantized complex
logarithmic representation, £ = xz, + x4 - 7, composed

LoL(y,2) - AL > Z2/2 — logy(Z22) from (21), and —log,(Z2)
is at least the number of fractional bits in Z;.
280 Z1 = 21 - A, would contain fewer fractional bits.

196

of the quantized logarithm of the length of a vector in
the complex plane, =, and the quantized angle of that
vector, xg:

o]

and

arctan(R[X], 3[X])

o . ng mod my (37
(|

)
or(|logp |X1])

where i = /~1 and arctan(R[X], 3{X]) returns an an-
gle between —7 and 7. This four quadrant arctan func-
tion handles all cases such as R[X] = 0 or S[X] = 0.
The constant my determines the precision with which
the angle is represented. Obviously, when my = 2, this
is equivalent to (7) and (9), but to represent imaginary
numbers, my mod 4 = 0. Multiplication and division,
as in (10), generalize without difficulty. The conjugate
can be formed by negating s mod my.

In 1895, Mehmke [18] described the idea of complex
addition logarithms,

R(S1(Zc))
$(S(Zc))

0.5 - logy (R[X]? + S[X]2)
Ap

TL

0.5 - log, (1 + b%~ cos(Z,) + b*42)(39)
arctan(1 + bZ~ cos(Zp), b%* sin(Z,)),

where Zo = Zp 4+ 1 - Zy, 2y, zr, - Arp and Zg
2m-zp/mr, but to the authors’ knowledge, this complex
logarithm number system was never analyzed further
and has never been used in a modern implementation
until now?®.

Complex relationships, such as

Sb(Zc) = Db(Zc +k- ‘Tri),

(40)

where k is any odd integer, simplify the description
of the addition algorithm, because there is no need to
mention the D; function. Given the complex quantized
representations, = and y, of two complex values, X and
Y, the addition algorithm is the same as (11), except
the definition of (13) and (12) generalize to:

fo(y,2) (yo + Sfsp(2)]) modmy (41)
fu(y,2) = yr+Rsp(2)]. (42)

or more simply, (41) and (42) can be combined:
f(yvz) =y+SB(Z)7 (43)

where z = zp + zpi, and sp is the quantized complex
addition logarithm.

3Except for application of polar representation to complex
SLI arithmetic [33], which bears some similarity to the complex
logarithmic arithmetic described here.

10. Complex Co-Transformation

Prior low precision implementations of the real log-
arithmic number system have typically used ROM to
implement Sp without interpolation. Having both real
and imaginary parts of Z¢ means the number of ROM
address bits required for a non-interpolated complex
Sy is almost double what would be required for a non-
interpolated real S;. Such large ROM sizes are un-
reasonable, even for moderate precision systems, and
50 interpolation is important. Furthermore, for values
that approach i, S, has the same singularity that
Dy has for values that approach zero. Therefore, inter-
polation of Sj in one half of the complex plane is much
more difficult than interpolation of the real S function,
a fact [18] failed to note. A novel co-transformation,
similar to the real ones described earlier, is required to
make complex interpolation affordable.

The relationship defined in (35) holds for complex
Zc, and so it may be used as the basis for such a
complex co-transformation. If we let Z; = Z and
Zy =i - Zy, we have

Sb(Zc) = H(Sb_l(ZL),Sb(i . Zo),’i . Zy)
= Sy(i-Zp)
+ Spi - Zo + Sy H(ZL) — Sp(i - Zp))
= Sy(i- Zg) + Sp(T) (44)
where
T=14-Zg+mi+ Dy(ZL) — Se(i - Zp) (45)

because S; (Z) = Dy(ZL) + mi. The commutativity
co-transformation (19) allows us to insure that Zp > 0
prior to applying (44), therefore consider how T' can be
simplified:

il

R[T) R[Dw(Z1)] — R[Ss(i - Zs)]
Dy(ZL)

_ log,(2) + logy (1 + cos(Zs))

2 b

Zy + 7+ S[Dp(ZL)] — (\‘)"'[Sb(i . Zg)]
Zg + 2w — i\S‘[Sb(i . Zg)]
Zs

5

(46)

S{T]

The relationship $[D;(ZL)] = 7 holds only for Zp > 0
but the other [18] identity used above, S[Sy(i - Zg)] =
Zy/2, holds for all Zy # k- m. Because |Zy| < 7 in
the complex logarithm number system, |S[T]| £ 7/2,
which has the desired effect of making interpolation of
Sp(T') much easier than interpolation of Sy(Z¢) when

197

/2 < |Zy| < =. Therefore, the following is equivalent
to (44) when Zj, > 0:

log, (2) + log, (1 + cos(Zy))
2
+ R[S (T)]

% v alsr)]

R[Ss(Zc)]

S[Ss(Z0)] (47)

If (44) were applied inappropriately, when Z; < 0,
it would have the undesirable effect of making 7/2 <
IS(T)| < .

From (47), we can derive a co-transformation
that avoids the interpolation difficulties for com-
plex logarithmic addition. Assuming the commuta-
tivity co-transformation (19) has already been ap-
plied, the following describes the complex addition co-
transformation:

ur(y,z) = yr+
[IogB(l + cos(zg - 2w [mg)) + logB(2)J
2
up(y,z) = (yo + l%o-J) mod my (48)
vr(y,z) = dp(zL) —
[logB(l + cos(zg - 2m/mg)) + logB(2)J
2
vg(y,z) = l%ﬂJ .

The precondition for applying the complex co-
transformation is that the commutativity co-
transformation has already been applied, i.e.,
z, = 0. The postcondition that is guaran-
teed as a result of applying the complex co-
transformation under these circumstances is

lve(y, 2)] < mo/4 A fly,2) = fuly,2),v(y, 2)).
11. Coleman’s Co-transformation

After this paper was submitted, the authors be-
came aware of the work of Coleman [8], who indepen-
dently discovered a co-transformation that reduces the
cost of interpolating the real valued subtraction log-
arithm. Coleman’s technique, unlike those described
here and in [5], transforms the problem of computing
Dy(Z1) for real Z, near zero into interpolation of D,
for an argument further away from zero. All of the
co-transformations given here convert cases near the
singularity into interpolation of S;. Coleman’s tech-
nique is more limited than those given here because
a Dy computation is required in every case. For this
reason, Coleman’s technique would not be as useful for
implementing the complex logarithmic number system
as the ones described in this paper.

12. Conclusions

We have shown that the well known real logarith-
mic number system is a special case of the more ob-
scure complex logarithmic number system. Both real
and complex systems share the common problem that
using interpolation near the singularity (as happens
when subtracting nearly equal values) produces more
error than is acceptable. We have proposed two co-
transformations to eliminate this problem. The first
is based on the analysis of the subtraction logarithm,
and the second is based on simple algebra. For 23 bits
of precision, co-transformation with the real logarith-
mic number system produces acceptable results using
small tables, and is more suitable for software than the
partitioning previously disclosed for hardware.

The iterative co-transformation described in section
7 bears some similarity to CORDIC and similar al-
gorithms [9, 19]. Further research into this may be
warranted.

Co-transformation with the complex logarithmic
number system offers a practical approach to imple-
ment this interesting system which has not yet been
fully explored. In particular, there is a question on
how to represent values near zero, for which there may
be analogies to [4]. We hope that future investigation
into the complex logarithmic number system will dis-
cover how useful it is for DSP applications, such as the
FFT, that make extensive use of complex arithmetic.
The FFT seems particularly promising since the roots
of unity used by this algorithm have exact representa-
tions in the complex logarithmic number system, and
would not have to be stored in a ROM.

Acknowledgements

The authors wish to thank Somatogen, Inc. for pro-
viding support for the writing of this paper. Also, the
authors wish to thank Pharlap and Microway.

From 1988 to 1996, two of the authors* attempted
to market a software package [10] that embodies the
real algorithms [5] disclosed here. These authors
wish to thank the following people who assisted us in
this endeavor: David Bazuki (Knowledge Revolution),
Robin Bolz (Microsoft), Walter Bright (Symantec),
Tom Brightman (Cyrix), Joel Egberg (Wind River
Systems), Nat Goldhaber (Apple), Dan Hammerstrom
(ASI), Randy Isaac (IBM - Austin Research Lab),
Ray and Sabin Larsen (Altra), David Matula (Texas
A and M), Tom Newsom (Hewlett Packard), Everett
Roach (Weitek), Jerry Rogers (Cyrix), Larry Silverman

4Arnold and Winkel

198

(Intel), Earl Swartzlander (Univ. of Texas—Austin),
Duncan Terry (Hewlett Packard), Richard Tompane
(3DO0), Susheela Vasan (3DO), Don Watt (Hewlett
Packard) and Gideon Yiguel (Microsoft).

During this time, the authors became aware of
the significant contributions [26] made to the field by
a competitor, Les Pickett (LogPoint Systems, Inc.,
www.logpoint.com), who developed one of the most
widely used commercial applications of logarithmic
arithmetic: the cabin air pressure controls for the Boe-
ing 767 and several other aircraft designed since 1977
[25].

References

[1] M. G. Arnold, T. A. Bailey, J. R. Cowles and
J. J. Cupal, “Redundant logarithmic arithmetic,”
IEEE Trans. Comput., vol. 39, pp. 1077-1886,
Aug. 1990.

[2] M. Arnold, T. Bailey, J. Cowles and J. Cupal, “Ini-
tializing RAM-based logarithmic processors,” J.
VLSI Signal Processing, vol. 4, pp. 243-252, 1992.

[3] M. Arnold, T. Bailey and J. Cowles, “Comments
on ‘an architecture for addition and subtraction
of long word length numbers in the logarithmic
number system’,” IEEE Trans. Comput., vol. 41,
pp. 786-788, June 1992.

(4] M. G. Arnold, T. A. Bailey, J. R. Cowles and
M. D. Winkel, “Applying features of IEEE 754
to sign/logarithm arithmetic,” IEEE Trans. Com-
put., vol. 41, pp. 1040-1050, Aug. 1992.

[5] M. G. Arnold, “Method and Apparatus for Fast
Logarithmic Addition and Subtraction”, U. S.
Patent 5,337,266, Aug. 9, 1994.

[6] M. G. Arnold, T. A. Bailey, J. J. Cupal and M.
D. Winkel, “On the Cost Effectiveness of Loga-
rithmic Arithmetic for Back-Propagation Training
on SIMD Processors”, accepted at 1997 Interna-
tional Conference on Neural Networks, Houston,
TX, June 9-12, 1997.

[7] J. L. Barlow and E. H. Bareiss, “On roundoff dis-
tribution in floating point and logarithmic arith-
metic,” Computing, vol. 34, pp. 325-364, 1985.

[8] J. N. Coleman, “Simplification of table structure
in logarithmic arithmetic,” Flectron. Lett., vol. 31,
pp. 1905-1906, Oct. 1995.

[9] T. C. Chen, “Automatic Computation of Expo-
nentials, Logarithms, Ratios and Square Roots,”
IBM Jour. Res. Develop., pp. 380-388, Jul. 1972.

[10] “FastMath: Software Faster than a Coprocessor,”

C User’s Journal, vol. 9, no. 7, p. 12, July 1991.
[11] S. Gundelfinger, “Zur Berechnung der Gauss-
chen Logarithmen fiir Kliene Werthe von B resp.
zugehorige Werthe von A”, Journal fiir die reine
und angewandte Mathematik, vol. 124, pp. 87-92,
1902.

[12] W. N. Holmes, “Composite Arithmetic: Proposal
for a New Standard,” Computer, Vol. 30, No. 3,

pp. 65-73, Mar. 1997.

[13] T. Kurokawa and T. Mizukoshi, “A fast and sim-
ple method for curve drawing—a new approach
using logarithmic number systems,” J. of Infor-

mation Processing, vol. 14, pp. 144-152, 1991.

[14] D. M. Lewis, “ An architecture for addition and
subtraction of long word length numbers in the
logarithmic number system,” IEEF Trans. Com-

put., pp. 1325-1336, 1990.

[15] D. M. Lewis, “Interleaved memory function in-
terpolators with application to an accurate LNS
Arithmetic Unit,” IEEE Trans. Comput., vol. 43,

no. 8, pp 974-982, Aug. 1994.

[16] D. M. Lewis, “114 MFLOPS logarithmic number
system arithmetic unit for DSP applications”, In-
ternational Solid-State Circuits Conference, pp.
1547-1553, San Francisco, Feb. 1995.

[17] J. D. Marasa and D. W. Matula, “A simulative
study of correlated error in various finite-precision
arithmetics,” IEEE Trans. Comput., vol. C-22, pp.
587-597, June 1973.

[18] R. Mehmke, “Additionslogarithmen fiir Complexe
Grossen,” Zeitschrift fiir Mathematik und Physik,
vol. 40, pp 15-30, 1895.

{19] J. M. Muller, “Une Méthodologie du Calcul Hard-
ware des Fonctions Elémentaires”, Mathemati-
cal Modeling and Numerical Analysis, Gauthier-
Villars, vol. 20, pp. 667-695, Sep. 1985.

[20] J. M. Muller, A. Tisserand and A. Scherbyna,
“Semi-Logarithmic Number System,” Proceedings
of the 18th Symposium on Computer Arithmetic,
IEEE Computer Society Press, Bath, England, pp.

201-207, July 19-21, 1995.

[21] R. E. Morley, T. J. Sullivan and G. L. Engel,
“VLSI based design of a battery-operated hear-
ing aid,” Southcon/90, pp. 55-59, Orlando, FL,

Mar. 20-22, 1990.

199

[22] Nell, “Ueber die Interpolationsrechnungen bei
grosseren Logarithmentafeln”, Zeitschrift fur Ver-
messungswesen, vol. 20, pp. 442-446, 1891.

[23] I Orginos, V. Paliouras and T. Stouraitis, “Novel
algorithm for multi-operand logarithmic number
system addition and subtraction using polynomial
approximation”, International Symposium on Cir-
cuits and Systems, pp. 1992-1995, Seattle, Apr.

30-May 5, 1995.

[24] V. Paliouras and T. Stouraitis, “Novel algorithm
for accurate logarithmic number system subtrac-
tion”, International Symposium on Circuits and
Systems, pp. 268-271, Atlanta, May 12-15, 1996.

[25] L. Pickett, Private communication, Nov. 17, 1996.

[26] L. Pickett, “Method and Apparatus for expo-
nential/logarithmic computation”, U. S. Patent
5,197,024, Mar. 23, 1993.

[27] T. Stouraitis, “Logarithmic number system the-
ory, analysis, and design,” Ph. D. Dissertation,
University of Florida, Gainesville, 1986.

[28] S. Shanks, “New Soft Co-Processor for Fujitsu’s
High-Performance Embedded Controllers”, Em-
bedded Control Design, vol. 1, p. 10, Fall 1994,

[29] E. E. Swartzlander and A. G. Alexopoulos, “The
sign/logarithm number system,” IEEE Trans.

Comput., vol. C-24, pp. 1238-1242, Dec 1975.

[30] E. E. Swartzlander, et. al., “Arithmetic for ultra-
high speed tomography,” IEEE Trans. Comput.,

vol. C-29, pp. 341-353, 1980.

[31] E. E. Swartzlander, et. al., “Sign/logarithm arith-
metic for FFT Implementation,” IEEE Trans.

Comput., vol. C-32, pp. 526-534, 1983.

F. J. Taylor, R. Gill, J. Joseph and J. Radke, “A 20
Bit logarithmic number system processor,” IEEE
Trans. Comput., vol. C-37, pp. 190-199, 1988.

[32]

[33] P. R. Turner, “Complex SLI Arithmetic: Repre-
sentation, Algorithms and Anaylsis,” Proceedings
of the 11th Symposium on Computer Arithmetic,
Windsor, Ontario, IEEE Computer Society Press,

pp. 18-25, June 29-July 4, 1993.

