An RNS Montgomery Modular Multiplication Algorithm

Jean-Claude Bajard and Laurent-Stéphane Didier
LIM-URA CNRS 1787
CMLI, Université de Provence, France

Peter Kornerup*
Dept. of Math. and Computer Science
University of Odense, Denmark

Abstract

We present a new RNS modular multiplication for very
large operands. The algorithm is based on Montgomery’s
method adapted to mixed radix, and is performed using a
Residue Number System. By choosing the moduli of the RNS
system reasonably large, and implementing the system on
a ring of fairly simple processors, an effect corresponding
to a redundant high-radix implementation is achieved. The
algorithm can be implemented to run in O(n) time on O(n)
processors, where 1 is the number of moduli in the RNS
system, and the unit of time is a simple residue operation,
possibly by table look-up.

1. Introduction

Many cryptosystems employs modular multiplication
with very large numbers [6, 2]. Different algorithms have
been proposed in the literature [1, 3, 11, 9, 7, 5]. Most
of them use redundant radix number systems and Mont-
gomery’s modular multiplication [4]. On the other hand the
Residue Number System (RNS) is also of particular interest
because of the parallel and carry free nature of its arithmetic
(8, 10].

The RNS system is not a positional number system where
each digit corresponds to a certain weight. So compari-
son, division and modular multiplication are hard problems.
Montgomery’s algorithm uses at each step the least signifi-
cant digit of a positional representation, hence the RNS sys-
tem does not seem well suited for this algorithm. How-
ever using some operands in a mixed radix representation
related to the RNS system, we obtain an RNS version of
Montgomery’s algorithm. The basic idea of the algorithm
is that the least significant digit of a mixed-radix represen-

*Supported by Université de Provence, and grant no. 5.21.08.02 from
the Danish Research Councils.

1063-6889/97 $10.00 © 1997 IEEE

tation can be chosen as any one of the residues of the RNS
representation, when the two systems are based on the same
set of moduli. The algorithm performs a multiplication in-
terleaved with reduction steps, performed in parallel on the
individual residues of the RNS representation. Each step re-
quires an exact division by one of the moduli, which slightly
complicates the algorithm, since one of the residues then be-
comes undefined. By performing all computations also in an
additional (redundant) base, the result is still available in the
extended base.

Section 2 provides some background for, and notation
used on the RNS and MRS number systems employed. Then
Section 3 presents Montgomery’s algorithm for modular
multiplication, its adaptation to RNS arithmetic and a proof
of the correctness of the algorithm. Section 4 then maps the
algorithm onto a ring of processors, communicating only to
nearest neighbor, and finally in Section 5 some conclusions
are drawn on the possible usage of such implementations.

2. The Residue and Mixed Radix
Number Systems

We begin with a short summary of the RNS system, and
introduce our terminology:

e The vector (myg, -, m,_;) forms a set of moduli,
called the RNS-base, where the m;’s are relatively
prime.

e M is the value of the product [T/~ m;.

o The vector (g, - -, Zn~1) is the RNS representation
of X, an integer less than M, where z; = X mod m;.

Due to the Chinese Remainder Theorem any X less than
M has one and only one RNS-representation. Addition and
multiplication modulo M can be implemented in parallel in

constant time and linear space, O(n), by defining + ., and
* s @S COMponentwise operations:

A+ins B~ (a; +b;) modmy, forj € {0,---,n~1}

Axgpo B~ (a;*bj) mod my, forj € {0,---,n~1}.

We also define “exact division” by one of the moduli,
- pns i, assuming that m; divides R:

R+RN5m‘. ~ f] fOl‘jE {0$"'xi_lai+1"":n"l}
where #; is computed as:
#j = (rj * (mi)‘;l) mod m;, for j # i. m

Here (X);1 represents the inverse of X modulo m; for
X and m; relatively prime.

The Mixed Radix System (MRS) associated with this
RNS is defined using the same base of moduli. With
(#0y -+ &h_1), 0 < @} < m;, being the MRS represen-
tation of X, an integer less than M, then

/ ! I /
X =ap+aimo+xomemy +---+,_1Mmg---Mp_2.

Observe that the value of y in the MRS representation is
identical to the value of the first component zq of the RNS
representation of X, when we use the same base vector for
the two systems. We shall use the notation z;} for compo-
nents of an MRS representation, as opposed to z; for the
residues of an RNS representation.

Conversion from RNS into MRS representation is often
used for comparison of RNS numbers, but the MRS system
is not well suited for computations in general. In the follow-
ing algorithm we shall use a mix of both representations.

3. An Algorithm for RNS Modular
Multiplication

The Montgomery algorithm for modular multiplication
[4] is based on the change of residues from (X mod N)
into (XM mod N), for some value of M chosen such
that the operations mod M and div M are easier to per-
form than mod N and div N. Usually M is chosen as
a power of the base when employing radix represen-
tations, but here we shall utilize an RNS system with
M = [['=) m;. If X and Y are two operands for which
(XM mod N) and (Y M mod N) are known, then an
operation M-Reduce(t) = (¢tM~! mod N) can be used
to yield (XYM mod N), only employingmod and
divM operations. This is useful if repeated modular
multiplications are needed as in modular exponentia-
tion. Also, M-reduce((X mod N){Y mod N)) produces
(XYM~ mod N), from which (XY mod N) can be
recovered by multiplication with a precomputed constant

(M? mod N).

3.1. Presentation of the Algorithm

The algorithm below computes ABM~! mod N in
RNS arithmetic, however given the operand A in its MRS
representation. During the algorithm a quotient @ is deter-
mined, also in MRS representation.

ABM ™1 mod N is obtained in an auxiliary base defined
by

o The vector (g, - - -,M,—1) forms a set of moduli,
called the auxilary RNS-base, where the 172;’s and the
" my;’s are relatively prime.

o M is the value of the product [T} ;.
o and M > M.

In the following we assume that A, B, R, N and Q are
integers smaller than M, with gcd(N, M) = 1. The RNS
representations of B, N and R are in the extended base with
the auxiliary base:

(bO, o 'vbn—bEO’ v ')En—l)a

(nO; sy Bpo1, fig, o ');"n—l))
('I’o, . ',7""_1,'7'0, o 'aﬁn—1)~

The MRS representation of A and @ are:
(“6’ Tty ag-l):

(q6: o ')q;'g—l)‘

Note that the algorithm is not symmetric in the two
arguments A and B; but as we shall show later, A can also
be given in RNS representation, and converted to MRS
representation during the algorithm,

Algorithm 1
R ¢, 0
Fori=0ton~ ldo
g — (ri + af x b;)(m; — n3);7! mod my

' ’
R ¢—pnsR+rns @ *ans B+ans @ *pns N
R ¢—pnsR+pys mi

Since each division by m; implies that one residue be-
comes undefined, at the end only the residues of the ex-
tended base are defined and represents the value of B =
ABM~1 mod N. To obtain the final result, we thus ap-
ply the same algorithm with A = R, B = MM mod N,
where the two RNS-bases are permuted, and thus obtain
R=AB mod N.

235

3.2. Correctness of the Algorithm

Theorem 1 For A < 223222 M B < 9N and
M : .
0< N <3 P) with N and M relatively

prime, Algorithm I computes R such that

R=AB(M) ' mod N, and R < 2N.

Proof We assume that N and M are relatively prime. At
each step we compute a quotient (MRS) digit ¢} +— (r; +
al* b;)(m; — n;)7 ! mod m;, and thus obtain that R + s
@i *pye B tans 9i *ans N is a multiple of m;. Hence
division by m; can be done by multiplying with the inverse
modulo m; for j # ¢. From the algorithm we have:

IB IN
LI F 0T | B+ N
mo +
my "

Ao 4 ag_zB + QZ-zN

Mp-2

thus,

R = ZH{(ag+aimo+---+a,_yme - -mu_s)*B

+ (g +dimo+ -+ ¢ 1Mo mp_2) ¥ N)

= HAxB+@xN).
As B < 2N we find that R < 3N at each step:
R+ a* B+ g*N
<BN+(mi—-1)2N+(m—-1)N
<3m; N.

With A < Za=1_M
=1
the last step:

we further obtain that B < 2V after

R+ a;_l * B + q:l—-l* N
mn_l“l_l

<3N+ 5

< 2mpy_1 N.

)2N+(mn_1—1)N

m}

For use in modular exponentiation it is necessary that the
result B can be used as one or both of the operands of a
subsequent multiplication. Hence it is necessary that A <
2N = A < Rejpzl L, which is easily seen to be sat-
isfied for m,_1 > 2. But it is also necessary to convert A
from RNS to MRS representation, which can be performed
by the classical conversion algorithm [8). This algorithm in
RNS arithmetic produces the MRS digits ag,af, -, af_;
sequentially, and can be overlapped with the remaining com-
putations of Algorithm 1, as we shall show in the next sec-

tion.

4. Implementation of the Algorithm on a
Ring of » Processors

For an RNS computation with 7 moduli it is customary
to use n processors, operating independently and in parallel,
without any mutual communication. Here we will map
the algorithm onto an interconnected set of n processors
forming a ring structure, with processor j communicating
some data to processor (j + 1) mod n. Processor j stores
various constants and tables related to the modulus m;, and
receives upon initialization n; and the precomputed vaiue
of (m; — n;)~! mod m; (defining N) and b; (defining
B). The other operand A is input in RNS representation
to processor number 0, with components delivered in
sequential order: ag, as, - - -, a,_1, one residue for each of
the first n algorithm cycles.

Figure 1. Ring of 6 processors
Each processor goes through 3n cycles, processor j
starting at cycle j, so that the latency of the complete
modular multiplication is 4n — 1, but with a possibility of
pipelining with a result every 3n cycles. In the following
we will describe the algorithm performed at each processor,

Algorithm 2 THE ALGORITHM ON PROCESSOR j
(Loops are empty if upper bound is negative or smaller
than lower bound, fx. processor 0 begins at step 4. ¢ repre-
sents the time.)

0 Initialization: i +— 0; flag «— 0; k «—

1 fort +— 0 to j—1 do idle
2 fort «— j to 35— 2 do

if flag = 0 then B else C
3 fort+—3j—1 do C
4 fort +— 3j doA
5 fort +— 35 +1 to 2j+n~1 doD
6 fort «— 2j4+n do D’
7 fort «—2j4+n+1 to 35+n do idle
8 fort+— 3j+n-+1 doC”
9 fort+—3j+n+2 to j4+3n—2 do

if flag = 0 then B else C
10 fort «+— j+3n—1 do C

11 fort{ «— j+3n to 4n — 2 do idle

The individual tasks of Algorithm2, A, B,C,C”, D, D’
are described separately in Figure 2. Task A computes the

236

A: (atthisstepj =iandk = j)
Receiving a); from processor (j — 1) mod n;
gy «— ((r; +aj +b;)(m; — n;);') mod m;
Sending the current values a; and g;
to processor (j + 1) mod n;
k+—k+1
: Receiving a! and ¢! from processor (§ — 1) mod n;
rj +— (rj +al *xb; + gl x nj) » (mi);" mod m;
Sending the current values a} and g;
to processor {7 + 1) mod n;
flag +— 1
P e— (F, +al l;j 4 gt #* fz,') * (mi),;; mod m;
flage—0 1 ¢+—i+1
Fi — (f,‘ +albj+qi+ ﬁj) * (m,),f,,lJ mod i
t+—1+1
: (atthis stepk =t — 27)
Receiving aj, from processor (j — 1) mod n;
a} +— (a} — a}) * (m;); " mod mx
Sending a},_; to processor (7 + 1) mod n;
ke—k+1
: (atthis stepk = n)
Sending a}, _, to processor (j + 1) mod n;

C:

Figure 2. The individual tasks of processor ;j

value of ¢; based on a received value of a;, and communi-
cates both values to its successor in the ring. Task B com-
putes a new value of the residue r; at the ith step of Al-
gorithm 1 for § > 4. The C tasks (C” doesn’t change the
flag) computes the residue #; for j = 0,...,n — 1. Fit-
ted into some otherwise idle cycles are tasks of type D and
D’, performing the conversion of operand A from RNS to
MRS representation. Note that since af = ag, the first MRS
digit is immediately available to the first A-operation, and
the following converted values are delayed to become avail-
able at the correct time for subsequent A-operations. A and
D-operations on processor 0 differ slightly from the rest, as
they receive values ay from the outside, not a preliminary
value of an aj, from a neighbor.

The values of ¢ and flag as functions of j and ¢ can be
described by the following table:

Interval Value of 2 Value of flag
JEt<3j -2 152 (t = 7) mod 2
t=3j-1 ji—-1
3j<t<3j+n j
t=35+n+1 i+1
3j+n+2<t<j+3n—1||=0E24 (4 - 35— n) mod 2

Itis easy to verify that the values of < and flag at step ¢ on
processor j are equal to the values of and flag at step £+ 1

237

on processor (j + 1) mod n. For k it is found that for ¢ in
therange 35 < ¢t < 2j +nthenk = ¢ — 24, Itis easy to
verify that the value of k at step ¢ on processor j is equal to
the value of k at step ¢+ 2 on processor (j+1) for j < n—1.

step\processor”O—ll |2 I3 |4 jS |
0 A

jwiivikv] vl w)

w}

ojojolg|>»| 0w

Q

=]

vlo|xlaln|lsajw|ol—=
ivliwlRwlir g Rel i--h Nel -

=
o}
v

Cluir|{O|RjIOE[O|w

—
-

o
w)

Tl |0jw w0

-
w

S
v

iQiEwiaiw|iwlalw|0lw

—
w

—_
(=)

nlelalwlialwlalwialw

—
~

Niw|alwia|lwlia|w

[y
oo

alwlaleialw

—
O

S
njw|olw

N
—

»N
[\%]

C”

Table 1. Allocation of tasks on a ring of six
processors.

To ease the understanding, Table 1 shows the allocation
of tasks to processors for the particular case of 6 processors.
The conversion of the value of A from RNS to MRS repre-
sentation takes place in a triangle of D-tasks, which can be
eliminated if A is available in MRS form. But note again
that the D tasks are placed in idle slots. The work to be per-
formed in the A, B, C’ and D tasks is approximately of the
same time complexity, possibly realized by a few table look-
up’s.

The computations in RNS with » moduli can also be
mapped on a set of p processors, where p < n. If p divides
n the tables storing the various constants are assigned in a
regular way to the processors. Thus the constants related to
m; are stored on processor j mod p.

We parcel out the scheduling in two parts, 7" and R (Fig.
3). Part T" is composed of the tasks from the p = n (Table 1)

Figure 3. Scheduling of the Montgomery algorithm with p processors for n = 2p moduli (k=2)

allocation before the computation wraps around to proces-
sor 0, part R is then the remaining part of the computation.
Assuming n mod p = 0, we define £ = n div p. The total
scheduling time 7 is :

r=T—-(2p-2)+R

with Skn +
2
and
R=nk+p+n—-Fk-1,
thus 5k 3
_ n;— n_k_1

The utilization of the processors depends on the values
of n and p (c.f. Table 2). The lower bound of the utilization
is reached for asymptotic values of p = =, and is 62.5%.
The upper bound of 100% is obtained for p = 1. But the
individual tasks are not quite of the same time complexity,
hence some tasks do not fully utilize the time slot.

[[p=2 p=5 p=10 p=20 |
n=20 9720 89.69 79.44 64.68
n=100 (| 9941 97.67 9492 89.84
n=200 || 99.70 98.82 97.38 94.63

Table 2. Utilization of the processors (in %)
during the execution of the algorithm for p
processors and n moduli

5. Discussion and Conclusions

Employing a mixed radix representation as a tool in im-
plementing a Montgomery modular multiplication, it has
been shown that this algorithm can be realized in residue
arithmetic. This way the carry-free arithmetic of the RNS
system can be exploited for very large operands, to achieve
the same effect as a high-radix implementation in ordinary
but redundant radix representations. But none of the simpli-
fications presented for high radix representations in [5] seem
applicable when employing RNS arithmetic. Also, we can
not claim that our method is superior to a similarly pipelined

implementation of a more ordinary high-radix implementa-
tion, as we do not have such a design available for compar-
ison.

Each processor in the proposed ring structure is sup-
posed to be capable of performing addition and multiplica-
tion modulo one of the basic moduli of the RNS system. The
various tasks to be performed all consists of a few such mod-
ular operations, using moderately sized moduli, and hence
we may assume these take constant time, thus defining our
unit of time. For realizing these operations simple and fast
(possibly by table look-up), the moduli should be chosen to
be 9 to 10 bits wide, implying the need for n to be in the or-
der of 80, to be able to satisfy the security requirements of
cryptographic applications.

Alternatively, time multiplexing a smaller number of
processors can be used to reduce the hardware complexity.
It is fairly simple to map the algorithm onto p processors,
where p < n and p divides n. Even a single processor
will do, in this case the timing becomes O(nz), but allows
cryptographic algorithms to be realized on very simple
processors, like on “smart-cards”.

Acknowledgment

The third author would like to thank Université de Provence
for supporting his visit to Marseilles, during which this pa-
per was prepared.

References

[1] E.Brickell. A survey of hardware implementations for RSA.
In G. Brassard, editor, Advances in Cryptology-CRYPTO
’89, 1990.

[2] A. Fiat and A. Shamir. How to Prove Yourself: Practical
Solutions to Identification and Signature Problems. In Pro-
ceedings of Crypto 86, volume LNCS 263, pages 186194,
Springer Verlag, 1986.

[3] P. Komnerup. High-radix modular multiplication for cryp-
tosystem. In Proc. of the 11th IEEE Symposium on Computer
Arithmetic, Windsor, Canada. IEEE Computer Society Press,
1993.

[4] P. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44(170):519-521, 1985,

[5] H. Orup. Simplifying Quotient Determination in High-Radix
Modular Multiplication. In Proc. of the 12th Symposium on

238

Computer Arithmetic, Bath, England. IEEE Computer Soci-
ety Press, 1995.

[6] R.Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Comm.
ACM, 21(2):120-126, Feb. 1978,

[71 M. Shand and J. Vuillemin. Fast implementation of RSA
cryptography. In Proc. of the 11th Symposium on Computer
Arithmetic, Windsor Canada. IEEE Computer Society Press,
1993.

[8] N. Szabo and R. Tanaka. Residue Arithmetic and its Appli-
cations to Computer Technology. McGraw-Hill, 1967.

[9] N. Takagi. A modular multiplication algorithm with trian-
gle additions. In Proc. of the 11th Symposium on Computer
Arithmetic, Windsor, Canada, page 272. IEEE Computer So-
ciety Press, 1993.

(101 F. Taylor. Residue Arithmetic: A tutorial with examples.
IEEE Computer Magazine, May 1984.

(111 C. Walter. Systolic modular multiplication. IEEE Transac-
tions on Computers, 42(3):376, Mar. 1993.

239

