1063-6889/97 $10.00 © 1997 IEEE

High-Performance Hardware for Function Generation

Jun Cao* Belle W. ¥ Wer
Department of Electrical Engineering
San Jose State University
One Washington Square
San Jose, CA 95192-0084
(408)924-3881
FAX: (408)924-3925
bwei@email.sjsu.edu

Abstract

High-speed elementary finction generation is cricial 1o
the performarnce of many DSP applications. 1he paper pre-
Sents anew rlerpolalor architecture for generanng elenen-
rary functions based on ar optimal trade-gff between the use
gf memory modules and computarional circniss. 1%e archi-
recture uses one hird less memory than alternanve schemes
while incurring no lime penalfy and minimal additional cir-
cutt. The pipelined design has a throughput of generating
one functional value per clock cycle, and a latency of two
clock cycles.

I. Introduction

Elementary functions such as trigonometric functions,
square-root, and exponential are essential to many DSP
applications. These functions are often implemented in
software routines [2][3] which are too slow for numerically
intensive or real-time applications. The performance of
these applications depends on the design of a hardware
function generator.

In this paper we propose a new design for a hardware
function generator based on an optimal trade-off between
memory and computational circuits. The generator uses a
second-degree interpolating polynomial passing through
Chebyshev nodes. Different from existing designs
[51[61[91{10], our scheme stores a combination of the poly-
nomial’s coefficients and function values for fast function
interpolation. Our design implements function generation
for cosine, sine, reciprocal, square root, and exponential
functions, With this scheme, three steps [11]{12] are
involved in finding #2/(¥) where ¥and .Y are in IEEE sin-
gle-precision floating point format: range reduction, inter-
polation and reconstruction. It is the interpolation step that
is the focus of this paper.

*_ This work is supported in part by NSF grant
MIP-9321143

In Section II, we present range reduction and recon-
struction steps for the functions of our interest. We then
discuss current interpolation methods as well as our pro-
posed method in Section III. Section IV presents the archi-
tecture and implementation of our scheme. Its
performance and hardware requirements are compared
with those of existing schemes in Section V. The last sec-
tion summarizes our results.

I1. Range Reduction and Reconstruction

In calculating Y5A.X), Xis first mapped to .+ such that »
is bounded by {4, A. Then_f) is interpolated from /=/1)
with 1y € [A, 5. Lastly, a reconstruction step is used to
compensate the range reduction done in the first step in
order to compute X Presented below are the range reduc-
tion and reconstruction algorithms for the five functions
implemented by our function generator.

A. Number Format
The number format used in our design is the IEEE sin-
gle-precision floating point format where number X'is rep-
resented by 32 bits with the leading bit as the sign bit. The
remaining 31 bits consist of a 23-bit mantissa (47) and an 8-
bit biased exponent £ The value of .X'is given by EQ. (1)
where the 1 to the left of the binary point is implied. As a
result the effective precision of the representation is 24
bits.
X¥==xlax2"" ¢)]

B. Reduction and Reconstruction Steps

cos(X), sird X):
T = o2 nxn
X = X——lzi, n= //V](X n:) —>x€[4,4]

After reduction, calculation of cas(X), sz4.X) will be calcu-
lating cos(v), s7Ax) if 7 is even, and calculating .s7Ax),
cos(x) if #is odd. No reconstruction step is required.

184

Exponential (/'):
X L4, e
£X=21n2=2ln =2£’+x=2x.2

where £ is an integer and +€ [0, 1)

Reciprocal (1.5):

r=01M— x€E[05,1),4 =255~ F
1 | Y4
7= 3?2

Square Root:

ifEiseven: & = 0014, & = (E;Z)
ifEisodd: +=0.1M 7 = (5;1)

- re[025,1)

J¥ = Jxe2?

HI. Function Interpolator

A. Interpolation Methods

A direct table look-up is the simplest method for calcu-
lating any function y=_At) where the input .rcan be used as
the address to look up » This scheme would use an inordi-
nate amount of memory as the number of table entries is an
exponential of the input’s data width. If we are to reduce
the number of entries, using and storing only A41 evenly
spaced points in the functional space, e.g. (1, Jb), (41, 1),
... (415 yp), any entries that are missing from the table must
be interpolated by means of interpolating polynomials. For
instance, a unique second-degree interpolating polynomial
can be defined for a subinterval with two end points, (;)
and (.1, ¥41), and an additional third point. One example
for the additional third point is the midpoint of the sub-
interval, (1, »,,) where .t,=(1,1+x)/2. Figure | illustrates
the interpolation method in which the interpolation range is
/f=x41-%;, and the interpolating polynomial s
Pz(x)=b/+d,r+c. The function’s coefficients, #, 4, and ¢,
can be either calculated on-the-fly from tabulated function
values (szored fincrion values) or precomputed and stored
as swored coefficrents. Using the method of siored furictior
values, each interpolation subinterval needs to store three
function values. However, since it shares its end points

with its neighboring subintervals it is effectively storing
two function values. With the sired cogfficienss method,
the subinterval needs to store three coefficients. As a
result, the szored finction values method uses one third less
of the look-up table memory at the expense of extra hard-
ware and time for calculating the coefficients on-the-fly.
The design issue here is how to minimize this extra hard-
ware and computational time for a given approximation
polynomial.

7% %)

)
P(W=braric

Figure 1: Second-Degree Interpolation

The second-degree approximation polynomial dis-
cussed above is not optimal with respect to minimizing the
maximum approximation error [1][8]. Instead, the optimal
interpolating polynomial uses Chebyshev nodes whose val-
ues (7) on [-1,1] are:

(2-/+1)=xn

2N)’/'= 0,12,..,/-1

/j = COS(

The Chebyshev nodes are then transformed from [-1,1] to
[4, 4] by the following formula:

_ b—a a+é
Tt
The three Chebyshev nodes dividing subinterval [1; .1, /],
i.e., AE3, become:

31— HotH A
x,_ = _[__ 7+1 1+ 7+ /
g 2 2 2

A, + 4

_ T+l /

oo = Ty

31— A, At A
X, = _[__ i+ 1 ‘y 7+ 1 / (2)
b 2 2 2

These three Chebyshev nodes and their corresponding
function values uniquely identify a second-degree interpo-
lating polynomial on subinterval [.r; .x,., J.

Given function values, one well-known method for
finding the coefficients of the interpolating polynomial is

185

the Lagrange Approximation. According to Lagrange, a
second-order approximation polynomial A2) that passes
through (2.1, £.1), (@, o) and (1, £1) can be formed by:

(z-2) (z-2)
(5_1 _Zo) (5_1 _Zl)g-l
(z-29) (2—7)
(G- 21) (-2
(e—24) (e—g)
(g—-2y) (Zl“zo)gl

P(2) =

+

Coefficients for each order of z can be calculated by col-
lecting like terms and it is difficult to compute them on-the-
fly.

An alternative for finding coefficients is to use a family
of algorithms for interpolation with equally spaced data
points, which includes the Newton-Gregory Forward,
Newton-Gregory Backward, Gauss Forward, Gauss Back-
ward, Bessel and Stirling methods [1]. The Stirling algo-
rithm computes a second-degree polynomial A2) passing
through (2.1, £.1). (4, &) and (&1, £1) as follows:

2
S
P =52t e) t5(n-80 8 O
= —b+;ﬂ+€— —(a+sﬁ) +c
where
-
g = () and £ = z/~-4 = 4-2

£

EQ. (3) shows that the polynomial’s coefficients are a
weighted sum of existing function values and can be easily
calculated. Note that the Stirling algorithm is applicable

only to evenly spaced points, e.g. £ = &,—2, = 72 -
In the next section, we will discuss how we can use this

algorithm to interpolate using Chebyshev nodes.

B. A Hybrid Method
The simplicity of the Stirling algorithm in computing
the polynomial’s coefficients leads to the development of a
hybrid scheme. The hybrid method stores function values
as well as one coefficient for each interpolation subinterval.
It has the advantages of both swred function valwes and
stored coefficrents methods.
The Stirling method specified in EQ. (3) shows that the
coefficient 4 is a weighted sum of three function values g;,

Sopand gy
&1, and g4

Coeffitients # and ¢ can be computed from 4,
For subinterval [x; ;. /1, &1 becomes the

function value at .1; £ becomes the function value at x,, 4
4 becomes &, and g, corresponds to the function value at
the subinterval’s midpoint. Our hybrid method stores ¢, ,

&> and 4. Since neighboring subintervals share function
values, we are effectively storing only one function value
and one coefficient for each subinterval.

Similar to the swored funcrion valwes method, our
hybrid method saves one third of the look-up table memory
over the stored coefficienss method. The advantage it has
over the swred fiunction values method is that one of the
coefficient, 4, is precomputed. This takes the calculation of
4 out of the critical path of the overall computation. While
the multiplication of sand 4takes place, #and ¢can be cal-
culated using EQ (4) and EQ(S) shown below.

7= g -2, @
_ & +4£4 -0
= > (5)

Our design is able to interpolate based on evenly
spaced points as well as Chebyshev nodes. However, in
case of the interpolating polynomial using Chebyshev
nodes, the function values stored are not the true function
values, but values extrapolated from the polynomial. For
instance, given subinterval [x;], its Chebyshev nodes
can be found based on EQ. (2). The nodes are then used to
generate an interpolating polynomial, ¢{.x). The function
values that get stored are C{r) and C{x,,) instead of Ax)

and/(,r,u).

IV.The Architecture and Implementation

Our architecture uses three separate look-up tables: 4
ROM for 4 coefficients, AROMe for even-indexed function
values (e.g. /4, /... etc.), and £FROMo for odd-indexed

function values. This is shown in Figure 2. Consider, as an
example, subinterval [t .t/ as one of 255 subintervals

where the 4~ROM has 255 entries, #ROMe 128 entries,
and AROMo 128 entries. That is, 0 = /<255 and is repre-
sented with 8 bits, The 8-bit /is used to retrieve the 4,

coefficient. In case of aneven 4 é (represented by /s lead-

ing 7 bits) is used to address both #ROMe and <ROMo to
retrieve /; and /., , respectively in order to compute

a,= f; -/ and ¢c,as shown in EQ (5). Namely, the #

ROMe’s output is subtracted from that of fROMo in
obtaining «,. If 7is ocld (fs leading 7 bits) and —_—

(7s leading 7 bits plus one) address ROMo and fROMe

186

x Section A
A24
if7 ‘\——
L b
17 Adder
78 » 4-ROM
) \ y16
1/4
ZROMo| |FROMe
5 A 16
P——r-:;g(77k 27 4
7 /]
27 Y + 'F
subtracter
Adder Multiplier
27 | '
Yy s z
{ \ A
Adder ! 1
Adder
- — i | = —
Y Section B
¢ Multiplier
L7 (H2)(a+s8b)
v { 27
Adder
v AL = (92 (a+sd)+c

Figure 2: Architecture of the Hybrid Method

to retrieve /-and /;, srespectively. The &, value is obtained

by subtracting #ROMo’s output from #ROMe’s, an oper-
and swap with respect to the even-/case. In summary, £
ROMo is addressed by /s leading 7 bits, and £ROMe is
addressed by the sum of /s leading 7 bits and its 8th bit, 3,
which is O for an even /and 1 for an odd /£ The & value is
also used by the subtractor to select appropriate order of
operands. Such memory organization and addressing
schemes eliminate the need for complex memory structures
used by alternative implementations [6].

As shown in Figure 2, our hybrid method saves 1/3 of
the memory at the expense of two adders and one subtrac-
tor, which compute the zand ccoefficients on-the-fly. This
trade-off is worthwhile as the additional adders and sub-
tractor are not on the critical path, and they can be shared
among multiple functions. The data widths of various
components are determined by the accuracy required by
the IEEE floating point format. The actual memory size
used depends on the specific function, and is tabulated in

Table 1.

Table 1: Memory Requirement

. No. of) &- Total
functions Entries JSWidth Width (1;4(%1;1;?)
cosine/ 202 27 12 0.96
sine
exp 128 27 14 0.64
sqrt 96 27 12 0.46
recip. 256 27 16 1.44

The dotted line in Figure 2 indicates the placement of
pipeline registers which divide the whole circuit into two
sections. Section A dictates the overall clock frequency,
since it has an additional ROM access. Based on LSI
Logic’s 1.0 micron technology [7], the architecture can
sustain a throughput of 55 ns per function calculation with
a latency of 110 ns. Another variation of the architecture is
to fold Section B into Section A [4] for hardware economy
at the expense of longer latency.

V. Comparison with Existing Schemes

Our proposed scheme compares favorably with pub-
lished results proposed by Schulte [10], Jain [5], and Lewis
[6]. Schulte’s architecture implements the swred coefi-
creris method and generates exactly rounded results, using
second-order Chebyshev polynomials. Jain’s scheme uses
an interpolating polynomial that passes through the two
end points of each subinterval and has its first derivative
equal to the function’s at the smaller end point. The result-
ing polynomial has an error bound better than the evenly
spaced method but worst than Chebyshev’s. By manipulat-
ing the polynomial, Jain’s scheme implements the second-
order term with a small look-up ROM instead of a square
circuit [5]. Lewis uses the ssored fiurection valwes method to
generate logarithmic numbers used in a logarithmic num-
ber system unit [6]. In order to reduce the number of mem-
ory accesses in retrieving three function values from the
look-up table, Lewis uses an interleaved ROM and a rota-
tor. This approach adds extra delay to the critical path and
results in inefficient ROM usage. The hardware require-
ments of these three existing architectures and our hybrid

187

scheme are summarized in Table 2. As shown in the table,
our scheme uses at least one third less memory than alter-
native methods while using comparable computational
units. Schulte’s scheme requires much more memory due
to its additional accuracy requirement of producing exactly
rounded results. His method of producing exactly rounded
results can be extended to our hybrid scheme. The critical
path of our architecture is comparable to those of Schulte’s
and Jain’s, but better than that of Lewis’ primarily due to
Lewis’ use of complex ROM and a rotator.

Table 2: Comparison with Existing Architectures

Schuite Jain Lewis Hybrid
Functi
meton | Ja | L | leg2 () | L U
cos/sine cos/sine
log2 (.x) >
arctan e
Table 832x3 | 256x3 | 229x10| 208x2
Size (cos & sin)
(entries) 128 x 2(exp)
per Func- 96 x 2(sqrt)
tion 256 % 2(recip)
Accuracy | exactly <« <226 <
rounded
Compu- multi. (2) multi. multi. (2) | multi. (2)
tational sqr.ckt (1) | (2)* adder (4) | adder (6)
Units adder adder (2)
(1)**

* Uses a secondary look-up ROM to evaluate square func-
tion

**% Uses a multi-operand adder

*#3% Uses interleaved ROM

VL.Conclusion

We have developed a high-performance hardware for
function generation. Different from existing designs, our
hardware uses minimal memory to store a combination of
coefficients and function values for function interpolation
while incurring no speed penalty. Furthermore, our archi-
tecture uses simple memory structure and addressing
scheme to quickly retrieve function values in parallel. The
result is a competitive design for general-purpose function
generation.

VIL.References

[11 Curtis F. Gerald and Patrick O. Wheatley, Agplred Numer-
zcal Analysis, Fourth Edition, Addison-Wesley Publishing
Company, June 1989, pp. 189-203.

[21 Shmuel Gal and Boris Bachelus, “An Accurate Elemen-
tary Mathematical Library for the JEEE Floating Point
Standard,” ACH Transacrions on Mathemarical Sofiware,
1991, pp. 26-45.

[31 Shmuel Gal, “Computing Elementary Functions: A New
Approach for Achieving High Accuracy and Good Perfor-
mance,” Accurate Scientific Compurlations, Lecture Noles
in Compurer Science, Springer New York, 1985,pp. 1-16.

[4] Xiaoping Huang, Belle W. Y. Wei, Honglu Chen, and
Yuhai H. Mao, “High-Performance VLSI Multiplier with
a New Redundant Binary Coding,” Jowrnal of VLS Sigrnal
Processing, Vol. 3, pp. 283 - 291, 1991.

[5] Vijay K. Jain, Subrid A. Wadekar, and Lei Lin, “A Univer-
sal Nonlinear Component and Its Application to
WS, ZEEE Zansactions on Components, Hybrids and
Manyfacruring Téctinology, Volume 16, Number 7,
November 1993, pp. 656-664.

6] David M. Lewis, “Interleaved Memory Function Interpo-
lators with Application to an Accurate LNS Arithmetic
Unit,” /EEE Transactions orn Corputers, Volume 43,
Number 8, August 1994, pp. 974-982.

7 LSI Logic, /.0 Micron Cell-Based Products Data Book,
LSI Logic Corporation, Milpitas, California, 1991.

(8] John H. Mathews, Mumerical Methods for Computer Sci-
ence, Engineering and Marbemarics, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1987, pp. 166-209.

9 James A. McIntosh and Earl E. Swartzlander, Jr,, “High-
Speed Cosine Generator,” JEZE Proceeding, 1995, Pages
273-271.

[10] Michael J. Schulte and Earl E. Swartzlander, Jr., “Hard-
ware Designs for Exactly Rounded Elementary Func-
tions”, /EZE Transactions on Computers, Yolume 43,
Number &, August 1994, Pages 964-972.

[11] Ping Tak Peter Tang, “Table-Lookup Algorithms for Ele-
mentary Functions and Their Error Analysis,” Zoc. /0%
Sympostum on Compuater Arithmetic, 1991, pp. 232-236.

[12] Ping Tak Peter Tang, “Table-Driven Implementation of
the Logarithm Function,” ACH Zransactions on Mathe-
matical Sgffware, Volume 16, Number 4, December 1990,
pp. 380-400.

188

